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Probabilistic assessment on the basis of interval data 
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Abstract. Uncertainties enter a complex analysis from a variety of sources: variability, lack of data,
human errors, model simplification and lack of understanding of the underlying physics. However, for
many important engineering applications insufficient data are available to justify the choice of a particular
probability density function (PDF). Sometimes the only data available are in the form of interval estimates
which represent, often conflicting, expert opinion. In this paper we demonstrate that Bayesian estimation
techniques can successfully be used in applications where only vague interval measurements are available.
The proposed approach is intended to fit within a probabilistic framework, which is established and
widely accepted. To circumvent the problem of selecting a specific PDF when only little or vague data
are available, a hierarchical model of a continuous family of PDF’s is used. The classical Bayesian
estimation methods are expanded to make use of imprecise interval data. Each of the expert opinions
(interval data) are interpreted as random interval samples of a parent PDF. Consequently, a partial conflict
between experts is automatically accounted for through the likelihood function. 
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1. Introduction 

Recent programs of National significance are driving the development of numerical simulation to

new levels. These include Federal Aviation Administration (FAA) Turbine Rotor Material Design

program, the Nuclear Regulatory Commission (NRC) program to assess the long-term safety of the

Natio’s first underground high-level radioactive waste repository, the Department of Energy (DOE)

Stockpile Stewardship program to replace underground nuclear testing with computationally based

full weapon system certification, and the Department of Defense (DOD) Efficient Certification

Program to augment expensive gas turbine engine testing for flight certification. The common

denominator of these program areas is the need to compute−−with high confidence−−the reliability

of complex, large-scale systems involving multiple physics, nonlinear behavior, and uncertain or

variable input descriptions. 

Because current problems of interest are necessarily complex, models developed and applied to

the solution of these problems will often involve multiple coupled physics such as solid mechanics,

structural dynamics, hydrodynamics, heat conduction, fluid flow, transport, chemistry, or acoustics.

The resulting simulations, which are highly complex, are relied upon to support design and high-
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consequence decisions. 

Our need for increased reliance on these types of simulations is changing the way in which we

develop and use models. In the past, models were used to provide insight during the design phases.

The models were first “calibrated” to match experimental data, and then exercised to identify

problem areas (e.g., high stress), and to explore the effect of changes in properties, geometry, etc. 

To support simulation-based design, models must now be used to make predictions, sometimes in

the complete absence of test data. Thus well established and thought out verification and validation

(V&V) strategies are needed now more than ever. In the simplest sense, model validation is the

process of quantifying the accuracy of the model against known experimental data. Once the model

accuracy has been established, it is exercised to make a prediction, again with the accuracy of the

prediction quantified. This paradigm shift in modeling has motivated the professional community to

begin developing well-defined guidelines and procedures for model V&V (AIAA, ASME, DMSO).

Several reports and papers have recently been published on this subject (Oberkampf 2003, 2002,

Thacker 2002, 2003).

Uncertainties enter a complex simulation from a variety of sources: inherent variability in input

parameters, lack of data, human errors, model simplification and lack of understanding of the

underlying physics. Two types of uncertainty can be distinguished: inherent (or aleatory) and model

(or epistemic) uncertainty. The key difference between these two types of uncertainties is that

inherent variability is irreducible whereas epistemic uncertainty can, in principle, be reduced by

gathering additional data, implementing more rigorous quality control, or by using more

sophisticated analysis techniques. While reducing epistemic uncertainties is a worthwhile effort,

solutions to complex engineering problems will always be forced to deal with both inherent and

epistemic types of uncertainties. 

It is well accepted that probabilistic methods are appropriate for characterizing inherent

uncertainties, provided sufficient data are available to characterize the probability density function

(PDF) of each random variable or random field. The continued successful application of

probabilistic methods in engineering applications of practical interest has increased the acceptance

of probabilistic analysis techniques by the entire engineering community. What is not as widely

accepted is the validity of employing a probabilistic approach to epistemic uncertainty due to the

fact that a particular PDF must be selected, which appears questionable in situations where only

little or vague data are available. 

Since data are typically expensive or sometimes even impossible to collect, data will typically be

insufficient to support the clear choice of a particular PDF. Quite often the available data are not

only limited but are also vague, as is the case when the data are in the form of, often conflicting,

expert opinion. In response, several alternatives to probabilistic methods have been proposed, such

as interval calculus, fuzzy set methods, possibilistic methods, and evidence theory. These alternative

non-probabilistic, non-deterministic methods have been proposed to compute, broadly speaking,

ranges of possible outcomes instead of actual probabilities for each outcome (Oberkampf 2001). 

The development and successful application of non-probabilistic, non-deterministic methods to

complex problems remains an important problem. Because a probabilistic approach is arguably the

best choice for dealing with inherent uncertainties, non-probabilistic methods must also be fully

integrated with probabilistic methods to be useful in practice. These reasons have led us to pursue

the development of a probabilistic-based methodology that will increase the domain of applicability

of probabilistic methods to include situations where the amount of data is small, or the type of

available data is in form of expert opinion. 
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2. Background 

The problem of risk assessment under imperfect states of knowledge is not new. In this context,

the state of knowledge is said to be perfect when complete statistical information and perfect

models are available (Der Kiureghian 1989). Under a perfect state of knowledge an exact

assessment of the reliability or risk can be made. The risk can be expressed as either a failure

probability pf or a reliability index . 

In practical engineering problems the analyst is forced to make decisions using incomplete

information. In these situations the measure of risk (such as the reliability index β ) is an uncertain

variable itself and is described by a PDF . Der Kiureghian (1989) uses a penalty function to

capture the negative effects of “making the wrong decision” and uses the reliability index βmp to

minimize the expected penalty as the best point estimate for the risk: 

 

(1)

 
where E [·] is the expectation operator, β * is the true (or exact) value of the reliability index and

 represents the penalty function. 

Particular attention must be paid to the selection of the PDF for any of the uncertain variables in

the problem. Because of the low probabilities involved in structural reliability problems, the

reliability can be quite sensitive to seemingly minor changes in the tail behavior (Maes 1995). 

Ditlevsen demonstrates that even when a reasonably large amount of data is available the

probability of characterizing a PDF incorrectly remains substantial if the PDF is selected solely on

the basis of a best-fit criterion (Ditlevsen 1993). He points out that, given the sensitivity of failure

probabilities to tail behavior, the reliability community is not well-served by the arbitrary selection

of PDFs, which are typically postulated in design codes. For instance, the compressive strength of

concrete is lognormal according to the Eurocode but Gaussian according to the ACI code. 

Several researchers have addressed this issue when the statistical information is limited to low-

order statistical moments or only limited sample data are available (Der Kiureghian 1989). In this

paper we focus on the practical case where only bounds are known for a continuous or a discrete

variable. 

It seems that one of the main concerns regarding the use of probabilistic methods is the

requirement to select a particular PDF (Oberkampf 2002). In many published cases, analysts will

select a uniform distribution when little or no information exists. This indiscriminate use of the

uniform distribution as a non-informative prior has caused a great deal of controversy. It is our

belief that this is not so much a shortcoming of Bayesian or probabilistic methods but rather, a

sloppy application of Laplace’s principle of insufficient reason1 by the analyst. 

The fact that a uniform distribution often does not adequately represent ignorance can be

demonstrated with a simple example. If one assumes that little is known about X, then “equally

little” is known about X 2. However, if one models the variable X with a uniform PDF, then the

mathematical rules of probability indicate that the PDF for X 2 cannot be uniform and vice versa. It

β Φ
1–

1 pf–( )=

fB β( )

βmp:minE p β * β–( )[ ] min p β * β–( )fB β( )dβ
∞–

∞

∫=

p β
*

β–( )

1Stated briefly, Laplace’s Principal of Insufficient Reason says that if we are ignorant of the ways in which an
event can occur (and therefore have no reason to believe that one way will occur preferentially compared to
another), the event will occur equally likely in any way.
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is simply impossible to assign equal probabilities to all values of X and to all values of X 2 at the

same time (Thacker 2002). The non-informative priors that are used in the Bayesian approach

therefore seek to represent not so much total ignorance (which seldom or never exists) but an

amount of prior information that is small relative to the information that the particular observations

can be expected to reveal (Box 1992). 

2.1 Expert elicitation process 

In Bayesian analysis, the prior PDF is often derived from expert opinion. Frequently, a certain

amount of vagueness is associated with such expert opinion. It is then left up to the analyst to

assign exact probabilities to an intrinsically vague assessment, which introduces arbitrariness in this

process. 

Consider as an example a probabilistic seismic hazard analysis (PSHA), shown in Fig. 1. PSHA

has become the state of the art methodology to assess seismically induced vibratory ground motions

at critical nuclear facilities. A critical component of this methodology is that uncertainty, both

epistemic and aleatoric, is explicitly incorporated into the results. 

The basic approach consists of four steps: (1) identification of seismic sources and site-to-source

distance relationships; (2) characterization of earthquake occurrence and magnitude relationships; (3)

attenuation of seismic ground motion from the source (either epicenter or focus) to the site; and (4)

calculation of the seismic hazard in terms of the annual exceedance probabilities (see Fig. 1). 

The most common approach to developing a single expert’s PSHA inputs is a logic tree. Fig. 2

shows an example of a portion of a logic tree that was used to characterize the seismic sources as

part of a license application to the NRC. Example parameters include fault activity, maximum

Fig. 1 The four steps of a probabilistic seismic hazard analysis (Budnitz et al. 1997)
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magnitude, and slip rate. In all cases the uncertainties of these parameters are assumed to be random

in the PSHA method. 

However, it can be argued that several of the uncertainties mentioned in Fig. 2 are non-random in

nature. For instance, the choice of the recurrence model, shown on the right hand side of Fig. 2, is

hardly a random process. Instead, the probabilities represent the expert’s degree of belief that a

particular model is applicable. 

2.2 Approach 

When only interval bounds are given for a random variable the selection of a uniform or any

other type of PDF requires additional assumptions that are not supported by the available evidence.

We therefore propose to not select a single PDF, but rather a continuous family of Beta density

functions; all of which are compatible with the available data. In this paper we only consider

random variables that have a strict lower and upper bound. 

For such bounded variables we propose to use a continuous family of Beta distributions with

parameters a and b, which are random variables themselves and represent the model uncertainty due

to the non-specificity of the data. The standard Beta distribution has the following PDF (

and a, b > 0): 

 

0 y 1≤ ≤

fY y a b,( )
y
a 1–

1 y–( )
b 1–

B a b,( )
-----------------------------------=

Fig. 2 Portion of a PSHA logic tree (Geomatrix Consultants, Inc, 1998)



336 Ben H. Thacker and Luc J. Huyse

(2)

 

where  is the Beta function of a and b. Some important statistics of the Beta distribution

are: 

 

Mean = 

Mode = 

Variance = 

 

Depending on the choice of the parameters, a wide range of shapes can be achieved for the Beta

distribution: symmetric, skewed to the left or skewed to the right. Shown in Fig. 3 shows a family

of Beta cumulative distribution functions (CDF) for a single random variable X. The important point

to note is that the shape of the Beta distribution is a statistic, similar to the mean and standard

deviation in a Normal distribution. Thus, the data dictate the shape of the PDF, not the analyst. 

The mean value of the standard Beta distribution can be anywhere in the interval [0, 1] and the

COV can be relatively small or large. The standard Beta random variates are easily scaled from

[0, 1] to an arbitrary . In addition, random variate generation from a Beta distribution is

relatively efficient, which makes the analysis very amenable to solution approach on the basis of

sampling algorithms (Monte Carlo or Importance Sampling) (Banks 1998). 

If the entire population for Y could be sampled, one would be able to precisely determine the

value of the parameters a and b in the Beta PDF (assuming that Y is indeed Beta distributed).

However, since typically only a limited sample of Y is known, a and b are uncertain variables

themselves. In a hierarchical model this uncertainty is described by a (joint) PDF for the parameters

a and b (Gelman 1995). Hierarchical models provide a compact, mathematically elegant and

powerful method to model the uncertainty on the shape of the Beta distribution. A non-hierarchical

B a b,( )
Γ a( )Γ b( )

Γ a b+( )
------------------------=

B a b,( )

a/ a b+( )

a 1–( )/ a b 2–+( )

ab/ a b+( )
2

a b 1+ +( )[ ]

ymin ymax,[ ]

 Fig. 3 Beta CDF for various values of a and b
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approach would require an unwieldy large number of shape parameters, which increases the risk of

“overfitting” the available data. 

We will demonstrate that Bayesian estimation methods can be used successfully to estimate the

PDF’s for a and b when only interval data are known for Y. An additional advantage of the

Bayesian approach is that the distributions for a and b are easily updated if more data become

available. The suggested method allows one to compute an uncertain risk or reliability, conditional

upon the value of the parameters a and b. 

2.3 Bayes’ theorem 

Suppose that y is a vector of n observations whose probability distribution  depends on

the value of the parameter θ. Suppose also that θ itself has a probability distribution . Then,

(Box 1992) 

(3)

 

Given the data y,  may be regarded as a function of θ instead of y. In this case it is called

the likelihood of θ for given data y and is usually written as . Since f (y) does not depend on

θ, it can be omitted from the equation and the unnormalized posterior density of θ, given the data y,

becomes: 

(4)

 

In the Bayes’ theorem prior knowledge about the parameter θ is combined with additional data y

to compute the posterior density of θ : 

(5)

 

 

That is, the posterior distribution, , is proportional to the product of the likelihood 

and the prior distribution . The integral in the denominator of the expression normalizes the

density so the total probability for θ remains equal to 1. In addition, the Bayes’ Theorem is

sequential in nature; it allows the parameter θ to be continually updated as more observations y are

taken: 

(6)
        

2.4 Use of interval data 

Consider now the case where not a precise point value y is observed but rather an interval

. Only a single interval observation, , is considered in order not to overload the

notations. This interval can be thought of as representing an expert’s opinion about the value of the

parameter Y in the model. Alternatively, the interval  may represent the measurement

f y θ( )

f θ( )

f y θ( ) f θ( ) f y θ,( ) f θ y( ) f y( )= =

f y θ( )

l θ y( )

f θ y( ) l θ y( ) f θ( )∝

f θ y( )
l θ y( ) f θ( )

l θ y( ) f θ( ) θd
Θ

 

∫
---------------------------------------=

f θ y( ) l θ y( )

f θ( )

f θ y2 y1,( ) f θ( )l θ y1( )l θ y2( )∝

 f θ y1( )l θ y2( )∝

y1 y2,[ ] y1 y2,[ ]

y1 y2,[ ]
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uncertainty of an observation. The probability of observing this interval realization for a given value

of θ is: 

(7)

 

where  represents the probability density. When interpreted as a function of θ for given

values of yi, the value  can be interpreted as the likelihood of θ for the given interval

observation . Application of the Bayes’ theorem to this result gives: 

(8)

 

This equation indicates that the Bayes’ theorem can equally well be applied to imprecise interval

observations as it is to single-point observations. Since the Bayes’ theorem is sequential, interval

data and precise single-point observations can readily be combined in the estimation of the

parameter θ. 

2.5 Selection of prior distribution 

A Bayesian analysis requires the selection of a prior distribution for each of the parameters a and

b. If one has no prior information available about the shape of the PDF of Y, a relatively diffuse

hyperprior should be used for both a and b. 

When a large amount of data are available, the likelihood (i.e., data) will always dominate the

prior. However, when few data are available, the results can be very sensitive to selection of prior. It

becomes paramount to select a prior that properly represents ignorance so as not to unduly influence

the results with the analyst’s opinion. 

Jeffrey’s invariance principle states that non-informative priors should yield equivalent results

under parameter transformations (Box 1992). Jeffrey’s choice for a non-informative prior density is: 

(9)

 

where  is the Fisher information matrix for a and b associated with the sample y given by 

(10)

 

where l is the log-likelihood function. For the multivariate case, Jeffrey’s principle does not

explicitly require that the log-likelihood function be data-translated, i.e., that the shape of likelihood

function is completely determined a priori, except for its location, which depends on the yet to be

observed data. It only states that the same volume be captured under the likelihood curve. It is

therefore important to check to what extent the shape of the log-likelihood curves is preserved. 
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An alternative approach, which we employ here, is to choose a prior distribution that specifies a

uniform distribution on the mean and the standard deviation of the Beta distribution (Gelman 1995).

For the Beta distribution the standard deviation is approximately uniform if a uniform distribution is

assigned for  (Gelman 1995). When combined with an independent uniform distribution

on the mean of the Beta distribution, , the resulting non-informative prior is: 

(11)

2.6 Comparison of Bayesian updating with precise and interval data 

In this section we demonstrate how Bayesian updating is performed using precise and interval

data. Consider the Beta-distributed random variable Y with parameters a = b = 6. The objective is to

estimate a and b using Bayesian updating in the PDF  from 20 observations of Y. The diffuse

hyperprior given in Eq. (1) is used for a and b. 

For a precise point observation yi the likelihood function  is given by the Beta density

function: 

(12)

 

The posterior density  obtained using 20 values  randomly generated

from the Beta distribution  is shown in Fig. 4(a). 

The same 20 sample points are now used to construct 20 interval data points ,

where δ = 0.15. These intervals represent the uncertainty on the measured data (e.g., expert

opinion). Since the domain of the standard Beta distribution is [0, 1], the intervals are truncated at 0

1/ a b+

a/ a b+( )

fA B, a b,( ) a b+( )
5/2–

=

fY y( )

l yi a b,( )

l yi a b,( )α
yi

a 1–

1 yi–( )
b 1–

B a b,( )
------------------------------------

fA B, a b,( ) yi i, 1…20=

fY y a b 6= =( )

yi δ– yi δ+,[ ]

Fig. 4 Impact of interval length on posterior PDF: (a) Interval length = 0.0 and 20 samples from Beta(6,6);
(b) Interval length = 0.3 and 20 samples from Beta(6,6) 
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and 1. Fig. 4(b) shows the posterior density for  when these interval data are combined

with the diffuse prior for a and b. 

A comparison of Fig. 4(a) and Fig. 4(b) reveals that the additional uncertainty on the interval

observations makes the posterior distribution  more dispersed. The Bayesian estimation

procedure has estimated the effect of the interval uncertainty δ on the original observations yi on the

hyper-parameters a and b in the Beta-distribution. 

It is observed that the contours mostly grow outwards towards larger values of a and b. This is

caused by the truncation of the intervals  to ensure they all fall within the physical

bounds [0, 1]. The truncation at these bounds reduces the length of sample Y-intervals near the

bounds, which in turn reduces the variance on the observed Y-intervals and causes a and b to be

overestimated (a larger value for a and b reduces the variance of the Beta distribution). 

2.7 Conflicting data 

Typically experts will disagree with each other and give (partially) conflicting information. The

issue of how conflicting evidence is combined may have a large impact on the results of an

uncertainty analysis (Oberkampf 2002). In addition to the level or degree of conflict, the relevance

of the conflict also plays a critical role in the application of so-called evidence combination rules

(Sentz 2002). 

In the proposed approach, the various interval data, which represent multiple expert opinions, are

treated as sample observations of the random variable . Therefore conflicting interval

estimates do not pose a numerical problem. However, if conflicting interval data are given the

resulting posterior distribution cannot converge to a unique PDF. In such a case one would expect

large uncertainties to remain on a and b. The lack of convergence indicates there is either a conflict

in the data or the PDF choice is inappropriate. 

Table 1 shows expert estimates for the annual failure probability of a reactor subsystem (Meyer

2001). All ten experts provided a “best” or point estimate as well as an uncertainty range for their

estimate. Note that some of the interval estimates are disjoint, e.g., Expert 1 and Expert 5 are in

total disagreement. 

Meyer and Booker (2001) suggest several ways in which an analyst can use this information for

formulating a distribution for the failure rate: they suggest using a variety of “logical choices for the

fA B, a b,( )

fA B, a b,( )

yi δ– yi δ+,[ ]

Y 0 1,[ ]∈

Table 1 Expert opinion estimates for failure rate (Meyer and Booker)

Expert “Best” Estimate Interval Estimate

1 0.00250 0.00100 - 0.00400 

2 0.00100 0.00010 - 0.01000 

3 0.05000 0.00100 - 0.10000 

4 0.00500 0.00100 - 0.01000 

5 0.01000 0.00500 - 0.05000 

6 0.02500 0.01000 - 0.05000 

7 0.00100 0.00500 - 0.00250 

8 0.00250 0.00100 - 0.00500 

9 0.00010 0.00010 - 0.01000 

10 0.00005 0.00005 - 0.00050 
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PDF” or altogether avoiding the selection of a PDF type by using a bootstrap simulation of the

original data instead. When only the “best”, point estimates are used, the bootstrap simulation

significantly underestimates the variance of the failure rate since the bootstrap variance is essentially

limited by the variance of the original data set. To overcome this shortcoming, Meyer and Booker

suggest supplementing the data set by adding the upper and lower range values as if they were

additional estimates. This approach, however, in effect assigns equal weight to the “best” estimate

and to the end points of the bounding interval for the estimate. Such information is not contained in

the original expert data and it therefore seems to us that the opinion of the “analyst” augments the

opinion of the “expert.” 

The proposed Bayesian updating scheme for interval data, presented earlier in this paper, is

applied to each expert opinion. The failure rate is modeled by a Beta-distributed random variable

and the non-informative prior given by Eq. (1) is used. The joint posterior PDF for the Beta-

parameters is shown in Fig. 5 for the “Best” estimate case and the Interval estimate case. As

expected, Bayesian updating with the interval estimates significantly increases the uncertainty of the

parameters for the annual failure rate distribution. It is believed that this more accurately reflects the

true uncertainty of the annual failure rate. 

Table 2 Expected values for the 5th, 50th and 95th percentile of the annual failure rate (obtained using Monte
Carlo simulation with 65,000 samples) 

Expert data 5th Percentile Median 95th Percentile

“Best” estimate 8.78E-05 6.39E-03 0.070 

Interval estimate 1.68E-05 6.25E-03 0.125

Fig. 5 Posterior density for the Beta-parameters in the annual failure rate PDF using 10 expert estimates:
(a) Joint PDF for (a,b) with 10 “best” point estimates of failure rate; (b) Joint PDF for (a,b) with
10 interval estimates of failure rate  
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The estimates for the 5th, 50th, and 95th percentile of the annual failure rate are compared in

Table 2. The estimates for the median annual failure rate are almost identical. However, the

uncertainty on failure rate is significantly smaller when only best estimates are used. Note that when

the interval estimates are used for the Bayesian estimation of the annual failure rate, each expert

interval is entirely contained within the 90% confidence bounds. When the annual failure rate is

estimated using only the best estimates, the lower bound of Expert 10 and upper bound of Expert 3

fall outside the 90% confidence bounds. 

As an indicator of the uncertainty on the Beta distribution, randomly selected values of a and b

could be drawn from the sampling distributions shown in Fig. 5, and the corresponding CDF

plotted. Fig. 4 shows the family of CDF’s corresponding to 20 samples of a and b. The “scatter” in

the CDF’s reflect the uncertainty in a and b due to limited data. 

2.8 Demonstration problem 

This application is based on a workshop challenge problem on Epistemic Uncertainty, which we

will hereinafter refer to as the “Sandia Problem.” (Oberkampf 2002) This challenge problem is

designed to include various representations of uncertainty (some through intervals, some through

PDFs, some through moments only). 

In the Sandia Problem the form of the mathematical model describing the physical system is

assumed known with certitude. Only parametric uncertainty is considered in the model: 

(13)

 

where z is the response variable and x and y are independent, continuous parameters. The objective

is to compute the probability that the response Z exceeds 1.17. 

The Sandia Problem set consists of many sub-problems where more or less information is given

about the parameters x and y. The information can be mutually supportive or some of it can be

contradictory to some degree. Sometimes the information about the variables is scant and only an

interval is given (We can expand this interval to be a confidence interval only). Other times, the

information is stated as a probability distribution with imprecise parameters. Such a mixture of input

data format poses no problem for the Bayesian analysis. 

In this paper, we compare the solutions of three cases: 

1. X is uniform over [0.1, 1], Y is uniform over [0, 1] 

2. X is uniform over [0.1, 1], Multiple experts give their assessment for Y : y1 = 0.6; y2 = 0.6; y3 =

0.4; y4 = 0.5 

3. X is uniform over [0.1, 1], Multiple experts give their assessment for Y in the form of interval

estimates: y1 in [0.5, 0.7]; y2 in [0.4, 0.8]; y3 in [0.1, 0.7]; y4 in [0.3, 0.7] 

Note that the expert opinion yi in the first case coincides with the midpoints of the intervals given

for Y in the second case. Fig. 6 indicates that the parameters a and b are likely to be smaller when

interval data are input. This is in line with our expectations since smaller values for a and b

increase the variance of the Beta-distribution. If only vague interval data are given, the variance on

Y is likely to be higher. 

The first analysis (uniform distribution for both X and Y) is used for reference purposes only; the

probability Pr[Z > 1.17] = 0.285. The exceedance probabilities in Table 3 show that the median

values for Pr(Z > 1.17) for cases 2 and 3 are fairly close to the value obtained in case 1. 

z x y+( )
x

=
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Table 3 Expected values for various percentiles of the exceedance probability Pr(Z > 1.17) 

PDF model for Y

Percentile Precise data Interval data 

1st

5th

50th

95th

99th

0.084 
0.117 
0.220 
0.376 
0.458 

0.073
0.111
0.245
0.417
0.493

Fig. 6 Iso-likelihood contours for the posterior PDF of the hyper-parameters aY and bY for the Beta PDF of
Y : (a) Four precise data points for random variable Y ; (b) Four interval data for random variable Y  

Fig. 7 Pr(Z > z0) when only interval data are available for Y (Case 3) 
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Fig. 7 shows the results from the Monte Carlo simulations (10,000 samples) for Case 3. The

confidence bounds indicate how sensitive the probability estimate is to the lack of data. Therefore,

the confidence bounds are widest when only interval data are available. 

 

3. Summary 

In this paper we have demonstrated the application of a Bayesian estimation technique within a

probabilistic framework for applications where only vague interval measurements are available. Key

elements of the framework include: 

1. The avoidance of the selection of a specific PDF for a variable in the absence of specific

knowledge about the variable. A hierarchical model of a continuous family of PDF’s is used

instead.

2. The Bayesian estimation methods are expanded to make use of imprecise interval data. 

3. Each expert opinion (interval data) is interpreted as random interval samples of a parent PDF.

Consequently, partial conflict between experts is automatically accounted for through the

likelihood function. 

4. Future work 

1. Compare and contrast the proposed methodology with recently proposed alternate solutions,

such as probability boxes (p-box), evidence theory, fuzzy randomness, etc. 

2. Explore the merits of alternative prior density functions. 

3. Derive relationships for the relative weight of each expert opinion depending on the interval

width and the degree of conflict. 

4. Expand choice of Beta PDF to more general family of PDF’s (unbounded and multi-modal

distributions). 

5. Apply methodology to large-scale problem utilizing approximate probabilistic methods. 
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