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The effects of uncertainties in structural analysis 
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Abstract. Model-based predictions of structural behavior are negatively affected by uncertainties of
various type and in various stages of the structural analysis. The present paper focusses on dynamic
analysis and addresses the effects of uncertainties concerning material and geometric parameters, mainly
in the context of modal analysis of large-scale structures. Given the large number of uncertain parameters
arising in this case, highly scalable simulation-based methods are adopted, which can deal with possibly
thousands of uncertain parameters. In order to solve the reliability problem, i.e., the estimation of very
small exceedance probabilities, an advanced simulation method called Line Sampling is used. In
combination with an efficient algorithm for the estimation of the most important uncertain parameters, the
method provides good estimates of the failure probability and enables one to quantify the error in the
estimate. Another aspect here considered is the uncertainty quantification for closely-spaced
eigenfrequencies. The solution here adopted represents each eigenfrequency as a weighted superposition of
the full set of eigenfrequencies. In a case study performed with the FE model of a satellite it is shown
that the effects of uncertain parameters can be very different in magnitude, depending on the considered
response quantity. In particular, the uncertainty in the quantities of interest (eigenfrequencies) turns out to
be mainly caused by very few of the uncertain parameters, which results in sharp estimates of the failure
probabilities at low computational cost. 

Keywords: uncertainty modeling; uncertainty quantification; model uncertainties; structural reliability;
Monte Carlo simulation.

1 Introduction - Uncertainties in structural analysis and design 

Favored by the unarrestable progress in the field of computer hardware, predictive models are

enormously powerful tools in the hands of the structural analyst. One of the major nuisances arising

in the use of these models, is the uncertainty associated with all the assumptions necessary for the

construction of the model. This relates in particular to the parameters of the models, but not

exclusively: fundamental assumptions of the model such as the structure of the governing equations,

constitutive models constitute additional sources of uncertainty. 

The unavoidable presence of uncertainties in structural engineering is particularly obvious when

the loading conditions are analyzed, to which structures are exposed. Observations of the underlying

natural phenomena such as wind (storms), earthquakes or sea states immediately reveal their
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inherent spatial and temporal variability. Usually with a smaller magnitude, but often equally or

even more important in terms of the resulting effects, the structure itself is affected by uncertainties,

which cannot be reduced significantly, either due to their inherent nature or due to practical

limitations (limited access, cost, etc.). 

Traditional structural analysis and design procedures by and large still rely on a deterministic view

of the uncertainty problem. For instance, uncertainties in loading conditions are “enveloped” on the

basis of extreme events. These envelopes are determined in a quite arbitrary way, i.e., based on

extreme observations of the past. In contrast to this well-established yet possibly wasteful and sub-

optimal practice stand rational approaches to the quantification of uncertainties. The probability-

based approach has been proposed several decades ago (Freudenthal 1947), whereas alternative

approaches have been proposed more recently, such as that based on fuzzy logic (Möller and Beer

2004). What the approaches surely have in common, is that they are active topics of research and

that they imply a significantly increased computational cost, as the uncertainty expands the model in

the direction of an additional “dimension”. 

The most widely accepted framework for modeling the uncertainties and for propagating their

effects on the quantities of interest makes use of the well-developed theory of probability. It is

based on describing uncertain parameters by random variables, stochastic processes (time domain),

random fields (spatial domain) or random waves (time and spatial domain). Typical examples of

quantities suitable for probabilistic modeling are earthquake ground motions, sea waves, wind

turbulence, road roughness, imperfections of shells, fluctuating properties in random media, etc. The

choice of the respective probabilistic models depends both on physical aspects and statistical

evidence, respectively. Consequently, the fields of mathematical statistics and estimation theory

clearly play a key role in uncertainty modeling, as they allow to move from observations to the

probabilistic model. The observed data themselves are, of course, not yet associated with

uncertainties. Only under the assumption that a data point constitutes a sample of an independently

identically distributed random variable, it is theoretically sound to use a probabilistic model to

describe the underlying uncertainties. 

Independently of the approach selected to take into account the uncertainties in structural analysis

and design, two aspects should be kept in mind: 

(1) The accuracy and quality of the mechanical modeling should be up to the current standards of

deterministic analysis - but not more. For instance, no benefits result from excessively fine

discretizations, besides “fictitious” accuracy, when significant uncertainties affect some

parameters of the model. On the other hand, poor mechanical models will in most cases lead

to poor results of the uncertainty quantification. 

(2) The procedures should allow to analyze higher dimensional problems - i.e., allow the efficient

treatment of a large number of uncertain parameters - as generally encountered in engineering

practice. 

 

2. Quantification and processing of uncertainties 

2.1 Introductory remarks 

The basis for a realistic and possibly predictive quantification of uncertainties consists in

observations of particular parameters or functions, i.e., the statistical data items of sample points or
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sample functions, etc. With the formalisms of probability theory and with statistical estimation, the

description of the uncertainties affecting the behavior of the structural systems can then be

undertaken, in the form of random variables, processes and fields. Once the uncertainties in the

input (loading conditions) and in the system characteristics itself have been described in

probabilistic terms, the propagation of these uncertainties through the structural system is required,

in order to obtain probabilistic information on the output (response), for subsequent design

purposes. 

Numerous methods for uncertainty propagation have been proposed and developed. Most methods

focus on capturing the mean value and the covariance function, i.e., the second moment

information, of the response, rather than the full set of joint probability distributions characterizing

the random response. For instance, the perturbation method (Liu et al. 1986, Kleiber and Hien 1992,

Babu ka and Chatzipantelidis 2002) approximates the stochastic response with the aid of Taylor

expansions of the random quantities about their mean values. In the Neumann expansion method

(Bharrucha-Reid 1959, Yamazaki et al. 1988)  the inverse of the stochastic system matrices are

approximated by its Neumann series. A comprehensive representation of the response in terms of its

coordinates in a suitable Hilbert space is afforded by the chaos expansion, leading to the so-called

Spectral Stochastic Finite Element method (see e.g., Ghanem and Spanos 1991). 

Needless to say, the computational efforts associated with uncertainty propagation are considerably

larger when compared to traditional deterministic analysis. This is particularly the case for high-

dimensional problems, i.e., those involving large numbers of random variables, and when the task

consists in estimating the likelihood of low-probability events. 

In the present paper the focus is on simulation-based methods, mainly due to their robustness,

versatility and to their fitness for dealing with high-dimensional problems, as they frequently arise

in the context of large-scale structural systems. 

2.2 Simulation-based uncertainty quantification and reliability estimation 

Monte-Carlo simulation (MCS) procedures to assess uncertainty propagation consist in the

generation of sample populations that are consistent with the probability distribution of the input

data (loading) and/or of the system properties (structural parameters). Some of the main advantages

of MCS have been already mentioned. From a practical and computational point of view two

additional major assets are the following: (i) the non-intrusive nature of MCS facilitates its use in a

black-box fashion, in combination with general-purpose finite element codes (Pellissetti and

Schuëller 2006); (ii) the MCS algorithm is, due to the generation of independent samples,

particularly well suited for parallel processing and can hence take full advantage of high-

performance computing facilities that are becoming increasingly affordable and widespread. 

Leaving aside low-probability events for the moment, the estimation of the response distributions

with Direct MCS method, in particular of the response cumulative distribution function (CDF),

FR(r), is very efficient. Samples of the input random vector X are generated, such that the ensemble

 matches the required CDF of the input vector, FX(x). For each sample X(k) of the input

vector the corresponding sample response R(k) is evaluated and from the ensemble the desired

response CDF can be estimated, typically in the form of fractiles Rp, which indicate the response

level associated with a given probability level p. In other words, P[R < Rp] = p. These fractiles can

be approximated as follows: 

Let  be the ensemble of responses obtained by performing N MCS runs and let

s

ê

X
k( ){ }k 1=
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 contain the elements of , but in increasing order, 

(1)

Then, 

, (2)

where the operator round [·] rounds the argument to the nearest integer. 

The efficiency of Direct MCS deteriorates dramatically when the CDF is to be estimated

accurately in the tails, i.e., when low failure probabilities are to be estimated. The estimator of the

failure probability  is then given by the ratio of the number of samples leading to failure over the

total number of samples N, 

(3)

where the binary indicator function  evaluates to 1 in case the i-th sample leads to failure

and to 0 otherwise. The key to the poor efficiency consists in the form for the variance of this

estimator, expressed by the coefficient of variation of , 

(4) 

which is independent of the number of uncertain parameters, but implies that a very large number

(proportional to 1/pF) of samples is required for an accurate estimate of small failure probabilities

pF. In order to elude this drawback, variance-reduction techniques have been proposed, that get by

with significantly smaller (and usually feasible) numbers of samples (see e.g., Schuëller et al. 2003). 

2.3 Uncertainties in modal analysis of structures 

The generalized eigenvalue problem associated with the linear elasto-dynamic equation of motion

is given by, 

(5)

where  and  are the sets of eigenfrequencies and normal modes, respectively,

resulting from the solution of the above eigenvalue problem. 

Modal analysis, i.e., the act of determining the eigenfrequencies and the associated modes of

deformation, is of fundamental importance in the construction of predictive FE-models of structures

subjected to dynamic excitation. Indeed, the validation of such FE-models is typically based on the

correlation of experimental and numerical results. More specifically, the modal properties predicted

by the FE model and those emerged in experimental testing campaigns are correlated (see e.g.,

Ewins 2000, Calvi 2005). 

The representation of the uncertainties in the structural parameters in a probabilistic framework,

results obviously in the propagation of these uncertainties (according to Eq. (5)) to the
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eigenfrequencies and eigenmodes. When attempting to correctly capture the uncertainties in the

modal content by analyzing the modal scatter observed in the MCS, it is indispensable to avoid the

intermixing of eigenfrequencies from one simulation to the next, which correspond to modes that

are physically unrelated. One way to accomplish this is to express the eigenvalues of each

simulation as a weighted superposition, 

(6)

where  denotes the modified eigenvalue associated with the i-th eigenmode and  is the

set of sample eigenvalues. Qualitatively, the weight  may be viewed as a measure of the

correlation between the j-th eigenvector of sample k with the i-th eigenmode of the nominal system.

Eq. (6) constructs a population for the eigenvalue  associated with the i-th eigenmode of the

nominal system, with the following property: for each sample k, the strongest contribution to the

sample eigenvalue  does not necessarily come from the eigenvalue associated with the i-th

eigenmode of this sample, but rather from the eigenvalue associated with the eigenmode that

resembles most the i-th eigenmode of the nominal system. 

In mathematical terms, the weights  are given by the following expression, 

(7)

where the superscript 0 indicates the nominal case. The meaning of the matrix Ψ(k) may also be

grasped by considering that, 

(8) 

where n is the number of DOFs of the FE model and m is the dimension of the modal basis, i.e.,

the number of modes that are retained. Hence, the matrix Ψ(k) transforms (approximately) the

nominal eigenvectors Φ0 to the eigenvectors of the sample k. 

It should be noted that the described methodology is very much related to the so-called Modal

Assurance Criterion (MAC), commonly used in aerospace and mechanical engineering for

comparing pairs of mode shapes (Ewins 2000). For instance, the MAC is used to correlate

numerically predicted modes with experimentally measured ones. 

2.4 Reliability of structures with large numbers of uncertain parameters 

2.4.1 General remarks 

The main purpose of uncertainty analysis is on one hand to be able to assess the effects of

uncertainties on the analysis in a rational way and, on the other hand, to quantify the reliability of

the analyzed structures. As mentioned in the introduction, the ability to analyze high-dimensional

reliability problems bears remarkable importance for a productive use of stochastic procedures in

engineering design. Recently, important developments have taken place in this respect (Schuëller

and Pradlwarter 2006, Schuëller et al. 2005) with the introduction of novel methods such as Subset

Simulation (Au and Beck 2001) and Line Sampling (Schuëller et al. 2003, 2004). 
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2.4.2 Line sampling 

The Line Sampling method is a robust sampling technique particularly suitable for high-

dimensional reliability problems, in which the considered response quantity exhibits moderate non-

linearity. The key step consists in the identification of a direction in the high-dimensional input

parameter space, pointing to regions which strongly contribute to the overall failure probability. An

excellent candidate for this direction is typically the gradient at the nominal point (usually the

mean) of the random input parameter space. It should be noted that in this context of uncertainty

analysis the components of the used gradient definition are not simply the partial derivatives, but

the partial derivatives scaled by the standard deviation of the considered uncertain parameter (see

Eq. (10) in section 3.4). Recently introduced procedures for efficient gradient estimation

(Pradlwarter et al. 2005a) are most useful in this respect, as they allow to identify the most

important components of the gradient with a highly reduced number of response evaluations. 

Once such an important direction has been identified, samples are then evaluated along this

direction from randomly selected starting points and the intersection of each of these lines with the

failure region is determined. The intersection points then lead to the desired estimate of the failure

probability. This is visualized in Fig. 1, where the important direction is denoted by eα and the

failure region is shaded. The intersection of each line l ( j) with the failure region, denoted by ,

supplies a sample for the failure probability , where Φ denotes the Gaussian

cumulative distribution function. Repeating this procedure for a number N of lines, the estimator 

of the probability of failure and the associated variance are then, 

(9)

c
j( )

pF

j( )
Φ c

j( )
–( )=

pF

pF
1

N
---- pF

j( )
, σ p

F

2

j 1=

N

∑
1

N 1–

------------- pF

j( )
pF–( )

2

j 1=

N

∑= =

Fig. 1 Schematic sketch for Line Sampling procedure (Schuëller et al. 2003)
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With the above approach the variance of the estimator of the probability of failure  can be

considerably reduced. In general a relatively low number N of lines have to be sampled to obtain a

sufficiently accurate estimate. 

 

2.5 Non-parametric approach for assessment of model and data uncertainties 

The consideration of uncertainties in the parameters of a given numerical model of a structural

system greatly improves the credibility of the predictive model. A different source of uncertainty is

however constituted by the numerical model itself and by the underlying assumptions with respect

to the governing equations, boundary conditions, etc. This type of uncertainties are usually referred

to as model uncertainties and their effect on the predicted response can be massive (Menezes and

Schuëller 1997, Oden et al. 2003, Babuska and Oden 2004). 

Recently, a so-called non-parametric approach has been proposed by Soize (2000, 2001, 2005),

which allows the introduction and propagation of model uncertainties in dynamical systems. The

mathematical foundation of the method is the construction of ensembles of random matrices with

given properties; clearly the model uncertainties that can be captured by the methodology must be

compatible with the underlying ensemble. A detailed review of the method is beyond the scope of

the paper and the interested reader is referred to (Soize 2000, 2001, 2005, Capiez-Lernout et al.

2006). 

 

3. Applications 

3.1 Introductory remarks 

In the present section it is intended to show the application of the methodologies described thus

far to the analysis of real-life, large-scale problems of engineering interest. The main goal is to

pF

Fig. 2 Satellite finite element model (courtesy of ESA/ESTEC) 
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demonstrate that the methods are indeed scalable with respect to the size and the complexity of an

analysis task. 

More specifically, the effects of uncertainties on complex structural systems are analyzed in the

context of the INTEGRAL satellite of ESA (European Space Agency). Due to its complexity the

studied structure is representative of large-scale problems of industrial interest. The FE mesh is

shown in Fig. 2. In total, the FE model of the satellite involves 120,000 DOFs. (For details on the

modeling aspects it is referred to (Notarnicola et al. 1998, Moreno 1998, Oxfort 1997)) 

In this example, the quantity of interest under consideration are the eigenfrequencies of the

structure, resulting from the modal analysis. The importance of modal analysis - and consequently

of the associated uncertainties - in the finite element modeling process has been already emphasized

in section 2.3. 

3.2 Uncertainty modeling 

A frequently adopted simplifying assumption consists in considering a limited number of

parameters as sources of uncertainty. This choice is often dictated by the lack of robustness or

efficiency of many stochastic methods in the presence of large numbers of uncertain parameters.

Unfortunately for complex structural systems the distinction between essential parameters and less

important ones is usually not obvious or intuitive. Restricting the uncertainty modeling to a limited

subset of the parameters could lead to the underestimation of the response uncertainty, particularly if

parameters with an unexpected, strong influence on the response are treated as deterministic. 

To avoid this hazard, no effort has been made in the applications reported here to limit the

number of uncertain parameters. On the contrary, the goal pursued in the modeling was to capture

as much uncertainty in the structural properties as possible. Practically speaking, this has been

achieved by treating most of the parameter types arising in the input files of the FE model as

uncertain, i.e., in a systematic fashion. For instance, all Young’s moduli specified in any of the input

files are considered as uncertain (see also Pradlwarter et al. 2005b). Here it should suffice to

mention that the assumed coefficients of variation (σ /µ) range from 4% to 12%, with the mean

values set equal to the nominal values of the deterministic FE model and that the uncertain

parameters are assumed to be Gaussian distributed. It should be noted here that the assumptions

about the type and magnitude of the uncertainty in the FE model parameters are based on data

available in the literature (Esnault and Klein 1996, Klein et al. 1994, Székely et al. 1998, Simonian

1987). Due to the scarcity of statistical information on the spatial correlation of the uncertainties,

this effect has not been considered at this stage, i.e., the various uncertain parameters have been

assumed to be mutually uncorrelated. 

3.3 Direct Monte-Carlo simulation of the eigenfrequencies 

3.3.1 Introductory remarks 

The first step taken in this case study on the effects of uncertainties consists in a direct Monte-

Carlo simulation of the eigenfrequencies of the satellite structure. The associated results serve as the

reference solution for the analysis and discussions presented in the remaining sections. 

3.3.2 Separated modes 

Based on the discussion in section 2.3, a straightforward synthesis of the simulation results is
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Fig. 4 Mode shapes with fringe plot of displacements, modes 1 through 4 

Fig. 3 Histograms of eigenfrequencies, modes 1-4, based on Direct MCS (200 samples)



320 M. F. Pellissetti and G. I. Schuëller

possible only if the eigenfrequencies are well separated from each other. This is the case for the first

four modes, as the histograms of the first four eigenfrequencies in Fig. 3 show. Hence, in this case

the order of these eigenvalues can be assumed not to vary among different realizations and no

reordering on the basis of the modal assurance criterion is necessary. 

The mode shapes associated with the first four eigenfrequencies are depicted in Fig. 4. The modes

represent essentially bending modes in x-direction (modes 1 and 3) and y-direction (modes 2 and 4).

In fact, modes 3 and 4 exhibit a slight diagonal component, which distinguishes them from modes 1

and 2, respectively. 

3.3.3 Modal assurance 

A different, more complex scenario manifests itself in the frequency band [35,55] Hz (Fig. 5),

where the PDF’s of different modes overlap with each other. In this range the population of the

modal frequencies must not be obtained by simply ordering the modes based on their

eigenfrequency. Instead, for a given mode number, which is assigned on the basis of the nominal

system, the population of the eigen-frequencies must be assembled by applying the procedure

described in section 2.3. This ensures the correspondence of modes of the same population. 

The main observation suggested by Fig. 5 is that the effect of the uncertainties in the structural

properties on the eigenfrequency associated with the various natural modes is highly variable in

magnitude. Indeed, some modes are completely insensitive to the uncertainties, such as mode 6,

while others (e.g., mode 8) exhibit significant variability. This information on the effect of the

various uncertainties on the modal properties is of great interest for the analyst, at least in two

respects: (i) in the assessment of the structural design (strong sensitivities may be undesired) and (ii)

in the assessment of the FE model itself (unexpectedly strong or weak sensitivities of the modes

may indicate inappropriate modeling). 

 

Fig. 5 Approximate Probability Density Functions (PDF’s) of the eigenfrequencies, modes 5-15 (Schuëller
2006)
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3.4 Relative importance of uncertainties 

3.4.1 Introductory remarks - relative importance profile 

The scatter in the eigenfrequencies, represented graphically in Fig. 3, is clearly the result of the

simultaneous scatter in all the parameters modelled as uncertain quantities (cf. Pradlwarter et al.

(2005b) for the details on the uncertainty modelling). In the great majority of the problems arising

in practice, the influence of each parameter on a given output quantity of interest can be quite

different. A recently introduced methodology (Pradlwarter 2006, Pellissetti et al. 2006a), aiming at

the quantification of the relative importance of the uncertain parameters has been shown to be

extremely efficient and scalable and hence applicable to large-scale structural systems. The

methodology is based on the following definition of the relative importance sk of the k-th uncertain

parameter, 

(10)

where x = [x1 x2 ... xn] is the vector containing the uncertain parameters, g(x) is the response

quantity of interest, with respect to which the relative importance is sought,  is the standard

deviation of the k-th uncertain parameter. Basically, the measure corresponds to the first order

approximation of the standard deviation of the quantity of interest, if only the k-th parameter is

uncertain. As mentioned in section 2.4.2, the vector of the relative importance measures s = [s1 s2 ... sn]

is referred to as gradient in this uncertainty-based setting. 

Fig. 6 shows the set of relative importances  of the uncertain parameters for the first

sk
∂ g x( )

∂ xk
---------------σxk

=

σxk

sk{ }k 1319=

1

Fig. 6 Relative importance profile of the full set of uncertain parameters (1319), for the first four
eigenfrequencies λi{ }i 1=

4
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four eigenfrequencies . For each parameter, indexed on the abscissa, the length of the

vertical bar indicates the relative importance. While these “profiles” of the relative importance are

somewhat similar for the various eigen-frequencies λ1 through λ4, the figure confirms the fact that

the relative importance changes with the quantity of interest.

λi{ }i 1=

4

Fig. 7 Relative importance profile of the first 130 uncertain parameters, for the first four eigenfrequencies
λi{ }i 1=

4

Fig. 8 Components of the FE model to which selected parameters (23, 24, 28, 53, 61) apply 
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3.4.2 Physical properties associated with the most important parameters 

Given the large number of parameters of the satellite model, the indexing of the uncertain

parameters has been performed in an automated fashion, independently of the physical properties

corresponding to the various parameters. 

The aim of this subsection is to convey the physical meaning of some of the most relevant

parameters, namely those highlighted in Fig. 7. This figure shows the left-most portion of the

relative importance profile in Fig. 6, in which an accumulation of important parameters can be

noticed. The highlighted parameters 23, 24, 28 and 61 are particularly important for the first

eigenfrequency, whereas parameter 51 refers to a property that is important for the second, third and

fourth eigenfre-quency, but not for the first one. 

To reveal the physical meaning of these parameters, the components of the FE model, to which

each one of these parameters applies, are indicated in Fig. 8. Furthermore, Table 1 specifies the

physical properties corresponding to the selected parameters. 

 
Table 1 Physical meaning of some of the most important parameters

Parameter # Physical property 

23 Young’s modulus of aluminum thermal doubler (isotropic) 

24 Young’s modulus of aluminum bottom skin (isotropic) 

28 Young’s modulus of aluminum (isotropic) 

53 Young’s modulus (longitudinal) of orthotropic panel material (CFRP) 

61 Young’s modulus (longitudinal) of orthotropic panel material (CFRP) 

Fig. 9 Histograms of the eigenfrequencies, modes 1-4, uncertainty limited to 25 most important parameters 
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3.5 Stochastic model reduction 

3.5.1 Introductory remarks 

The information on the relative importance of the various uncertain parameters can be used to

perform a reduction of the stochastic model, i.e., to reduce the number of uncertain parameters.

More specifically, the uncertainty modelling can be limited to those parameters which turn out to

contribute significantly to the uncertainty in the quantity of interest. 

3.5.2 Monte-Carlo Simulation with most important parameters 

In order to demonstrate the equivalence of a reduced stochastic model, a Direct Monte-Carlo

simulation has been performed, in which only the 25 most important parameters (according to

Fig. 6) have been used. It is important to stress that the importance assessment refers to the first

eigenfrequency as quantity of interest. 

Fig. 9 shows the histograms of the first four eigenfrequencies resulting from these MC-

simulations. Compared with Fig. 3, it is clearly seen that not only the histogram of the first

eigenfrequencies matches very well, but also the remaining ones. This is clearly due to the fact, that

the relative importance profiles of the first four eigenfrequencies are not too dissimilar, as Fig. 6

revealed. In other words, the various eigenfrequencies share some of the most important parameters. 

3.5.3 Monte-Carlo Simulation with arbitrary parameters 

In contrast, Fig. 10 shows the histograms associated with Monte-Carlo simulations based on

confining the uncertainty to a completely arbitrary set of 25 parameters. In other words, the

parameters are selected completely independently of their relative importance. Clearly, the resulting

Fig. 10 Histograms of the eigenfrequencies, modes 1-4, uncertainty limited to an arbitrary set of 25
parameters
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scatter in the eigenfrequencies is basically negligible, not surprisingly since by randomly picking a

small set of parameters the odds of picking some of the important ones are very low. 

These results also emphasize the importance to assess the effects of the uncertainty in as many

parameters as possible. Expressed in another way, they show that limiting the uncertainty

assessment to few parameters may indicate a fictitious robustness of the model to uncertainties, with

possibly dangerous consequences. 

3.6 Reliability estimation 

As mentioned in section 2.4, the assessment of the reliability of structures with many uncertain

parameters is a particularly arduous task. Analyzing this aspect - perhaps the most critical one - of

the effects of uncertainties on the structural response, namely the unlikely but possible scenario of

failure of the structure to meet one of its requirements, is particularly challenging from the

computational point of view. One of the few robust methods applicable to this kind of problems is

the Line Sampling method briefly reviewed in section 2.4.2. 

In the present section the application of the line sampling to the reliability problem, i.e., the

estimation of small failure or exceedance probabilities is discussed for the satellite structure

introduced previously. The quantity of interest consists again in the first eigenfrequency of the

satellite. In this case the common practice of using the relative importance measures to define the

important direction, denoted by eα in Fig. 1, has been adopted. In other words, the important

direction is defined as follows, 

(11) 

where the importance measures sk are defined as in Eq. (10) (see also Pradlwarter 2006, Pellissetti

et al. 2006a). Considering the first eigenfrequency as the quantity of interest, the corresponding

relative importance profile is the top portion of Fig. 6. 

e
α

s1s2…sn[ ]/ s=

Fig. 11 Left: Line Sampling; Right: Exceedance probability estimates  and error bars  vs. threshold
level
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Fig. 11 shows the results of the line sampling procedure. The left portion depicts the trend of the

first eigenfrequency for the collection of lines. Each curve corresponds to one line l ( j) in Fig. 1. For

each line the response (i.e., the first eigenfrequency) has been evaluated at five support points

(denoted by c1, c2, etc. in Fig. 1). Between the support points, the response has been interpolated

using cubic splines. A total of 48 lines have been sampled. 

The resulting estimates for the exceedance probabilities are shown in the right portion of the

figure. Each bar shows the exceedance probability (on the abscissa, in logarithmic scale) for a given

threshold level of the first eigenfrequency (on the ordinate). For instance, the probability that the

first eigenfrequency will exceed the value of 16.6 Hz is approximately one in ten thousand (pF =10−4).

On the vertices of the bars the error bars are indicated, which delimit the interval , where

 is the standard  deviation of the estimate  of the exceedance probability. The small interval

size shows that in this case a highly accurate estimate of the exceedance (failure) probability could

be obtained, at a modest computational cost (240 simulations), which demonstrates the high

efficiency of the Line Sampling procedure in the present case. 

In summary, the results show that the described reliability problem is amenable to the analysis

with Line Sampling, thanks to the moderate degree of non-linearity of the quantity of interest (first

eigenvalue), with respect to the uncertain input parameters. Clearly, this situation is not always

encountered in practical applications - in such cases alternative methods may perform better. The

interested reader is referred to Schuëller et al. (2004) for a critical appraisal and to Schuëller and

Pradlwarter (2006) for a comparative studies of various analysis procedures, as well as to Pellissetti

et al. (2006b) for a more detailed discussion of the application of line sampling to large scale

problems. 

3.7 Effects of data and model uncertainties on the frequency response analysis 

The assessment of the effects of uncertainties on the modal analysis of the satellite, presented in

the previous section, covers exclusively uncertainties in the parameters of the given model. 

p̂F σ̂ p̂
F

±

σ p̂
F

p̂F

Fig. 12 Uncertain frequency response (displacement, in dB) in low-frequency band [5, 100]Hz.
Left: parametric probabilistic model. Right: non-parametric probabilistic model. Dash-dotted line:
full-size, nominal model. Dotted line: Mean of probabilistic model. Gray region: 96%-confidence
region (Capiez-Lernout et al. 2006)
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As mentioned in section 2.5, the effects of model uncertainties are often significant, in addition to

the parametric (or “data”-) uncertainties. This is visualized in Fig. 12 (see also Capiez-Lernout et al.

2006), which compares the uncertainty in the frequency response considering: i) only parametric

uncertainties (left portion of Fig. 12), and ii) parametric and model uncertainties (right portion of

Fig. 12). The main observations related to the parametric model, are that the 96%-confidence

interval (gray area) is very narrow over the first half of the frequency range and that the mean

stochastic response (weak dotted line) shows generally little deviation from the response predicted

by the full size, nominal FE model (strong dash-dotted line). In contrast, the frequency response

ensemble predicted by the non-parametric model matches that of the parametric one only in the

frequency range of the first few eigen-frequencies, i.e., [15,25] Hz. In this range the structure is

clearly not sensitive to model uncertainties, as the confidence interval is very narrow. In the

remaining frequency ranges the effect of model uncertainties is felt quite heavily, as indicated by the

following two facts: (i) the significant width of the confidence intervals, and (ii) the strong deviation

of the mean stochastic response from the nominal frequency response, especially in the upper half

of the spectrum. 

In summary, the present example shows that significant additional uncertainty propagates to the

frequency response when model uncertainties are considered in addition to parametric uncertainties,

by means of a non-parametric model. 

 

4. Conclusions 

The present paper addressed from various different angles the effects of uncertainties on the

analysis of structures, with special attention to the modal dynamic analysis. A frequently arising

problem in this case is how to deal with the uncertainty in modes that are closely spaced. The

approach here presented, based on the weighted superposition of the eigenfrequencies, turns out to

be capable to avoid the problem of mode intermixing and hence to adequately propagate the

uncertainty from the parameters to the eigenfrequencies. 

Concerning the estimation of small exceedance probabilities, advanced simulation based methods,

such as the Line Sampling described in this paper, are well suited for the reliability analysis of large

scale structures. This is due to their excellent scalability, which preserves the performance also in

the presence of large numbers of uncertain parameters. 

One more aspect that this paper has touched is that of model uncertainties. Clearly, this type of

uncertainty has an important effect, too, on the structural analysis. The non-parametric approach,

briefly reviewed in this paper, can be used to analyse the effect of the model uncertainties, in the

context of structural dynamics. The appealing feature of this approach is that it has been shown to

match well with experimental observations, which can indeed be used in its calibration. 

The described methodologies have been demonstrated in the context of a complex satellite

structure, leading to the following conclusions: 

• With the exception of the first few modes, which are very well separated, the analysis revealed

the necessity of postprocessing the population of modal quantities. In this case this has been

done using a weighted expansion that is reminiscent of the modal assurance criterion used for

comparing measured and predicted modes. 

• The relative importance of the various uncertain input parameters varies greatly, depending both

on the considered parameter and on the quantity of interest. In general it could be observed, that
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the effects on the quantities of interest (eigen-frequencies in this case) are typically induced by

few of the uncertain parameters. 

• The challenging problem of estimating low-probability events - for the sake of reliability

analysis - has been tackled with the help of the Line Sampling method. The results confirm that

using this procedure the effect of uncertainties in the structural properties on the failure

probability can be analysed accurately and hence controlled. 

• The analyses performed in this study were limited to uncertainties in the parameters of a given

model. In this respect it should be noted that recent analyses, based on a non-parametric

approach, have revealed a significant effect of model uncertainties, in particular for the higher

frequencies of the considered band (5-100 Hz). 
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