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Abstract. This paper deals with optimal stacking sequence design of laminate composite structures. The
stacking sequence optimisation of laminate composites is formulated as a combinatorial problem and is
solved using Simulated Annealing (SA), an algorithm devised based on inspiration of physical process of
annealing of solids. The combinatorial constraints are handled using a correction strategy. The SA
algorithm is strengthened by embedding Tabu search in order to prevent recycling of recently visited
solutions and the resulting algorithm is referred to as tabu embedded simulated Annealing (TSA)
algorithm. Computational performance of the proposed TSA algorithm is enhanced through cache-fetch
implementation. Numerical experiments have been conducted by considering rectangular composite panels
and composite cylindrical shell with different ply numbers and orientations. Numerical studies indicate
that the TSA algorithm is quite effective in providing practical designs for lay-up sequence optimisation
of laminate composites. The effect of various neighbourhood search algorithms on the convergence
characteristics of TSA algorithm is investigated. The sensitiveness of the proposed optimisation algorithm
for various parameter settings in simulated annealing is explored through parametric studies. Later, the
TSA algorithm is employed for multi-criteria optimisation of hybrid composite cylinders for
simultaneously optimising cost as well as weight with constraint on buckling load. The two objectives are
initially considered individually and later collectively to solve as a multi-criteria optimisation problem.
Finally, the computational efficiency of the TSA based stacking sequence optimisation algorithm has been
compared with the genetic algorithm and found to be superior in performance.
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1. Introduction

Laminated composite construction of panels and other structural elements is currently being used

for many applications in aerospace, automotive, civil and defence industries. Laminated composites

have several advantages over more traditional materials including greater specific strength, specific

stiffness, corrosion and fatigue resistance, and energy absorption among others. Multi-layer and

sandwich construction also offer many opportunities for analysts and designers to tailor their

properties to the specific requirements of a given application. The tailoring is mostly achieved by

optimising the mechanical properties, thereby increasing the load carrying capacity of the structure.

Optimisation of composite laminates with respect to ply angles to maximise the strength is
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necessary to realise the full potential of fiber reinforced materials.

In the past, ply angles are often employed as continuous design variables in the design

optimisation of laminated composites and solved using gradient based methods (Jacoby et al. 1972,

Gurdal and Haftka 1991) to improve performance of the structure. However, these methods found to

have severe limitations as stacking sequence design involves discrete design variables i.e., ply

angles, which must be converted to continuous variables before the problem is solved. Once the

optimal continuous–valued solution is found, it must be rounded to the nearest manufacturable ply

angle, which may result in a design which is either non-optimal or violates certain imposed

constraints. Hence discrete optimisation techniques where discrete ply angles can be considered as

design variables are more relevant for stacking sequence design problems. It is well known that

most practical laminates are restricted to some discrete sets of ply orientation angles 0o, 90o and

±45o because of the availability of experimental data for structural verification of the behaviour.

This practical restriction makes the stacking sequence design problem a combinatorial optimisation

problem, which is not easy to solve. 

For stacking sequence optimisation of laminate composite structures, genetic algorithms (GA)

have been the most widely and popularly used method. A detailed survey of discrete optimisation

and global design optimisation methods applied to stacking sequence optimisation can be found in

the review paper of Venkataraman and Haftka (1999). Even though GA is popularly used method

for stacking sequence optimisation, it is proposed to explore the effectiveness of another popular

metaheuristic algorithm called simulated annealing keeping the following things in view.

i. GA is a population-based algorithm and requires considerable number of generations to

converge, which involve large number of function evaluations (i.e., equal to the population

size × number of generations). Practical engineering problems required detailed finite element

simulations for the evaluation of the objective function, which is computationally very

expensive. It is shown by Venkataraman and Haftka (2002) that rapid increases in computer

processing power, memory and storage space have not eliminated computational cost and time

constraints faced by engineers using structural optimisation for a design. In view of this, it is

highly desirable to explore alternative optimisation algorithms, which can converge faster with

the least number of function evaluations and thereby improve the computational performance

of the stacking sequence optimisation problem.

ii. The No Free Lunch (NFL) theorems (Wolpert and Macready 1997) have established

mathematically that the behaviour of all algorithms when analysed over all possible

optimisation problems defined over some research space is same and no algorithm has

performance advantage. Hence according to NFL theorem, the average behaviour of all

optimisation algorithms is same. However, as shown by Droste et al. (1999), a particular

algorithm performs better over a subset of the entire function set consisting of all optimisation

problems. Hence it is worthwhile to explore alternative algorithms for stacking sequence

optimisation of laminate composites, which can be more effective.

iii. SA is generally more reliable in finding global optimum and unlike GA, simulated annealing

algorithm uses single solution. Several researchers while solving other combinatorial problems

(Lahtinen et al. 1996, Mann and Smith 1996) have established that SA outperforms GA both

in computational performance and also in finding the global optimum solutions. 

In this paper, rather than using SA in it’s traditional form, we preferred to synthesize the

simulated annealing with another metaheuristic algorithm called tabu Search (TS) in order to avoid

recycling and also improve the diversification mechanism, thereby the convergence characteristics.
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The resulting algorithm is referred to as tabu embedded Simulated Annealing (TSA) algorithm. The

proposed TSA algorithm has been employed to solve the combinatorial optimisation problem of

composite laminate stacking sequence for buckling load maximisation of composite panels and

cylindrical shells. Eventhough there are some earlier works on application of simulated annealing

for optimal design of composite laminate (Sadagopan and Pitchumani 1998, Di Sciuva and

Gherlone 2003), the authors are not aware of any efforts in the earlier works towards detailed

investigation on sensitivities of various parameter settings in SA algorithm while applied to laminate

composite design. It is well known that SA is highly sensitive to parameter settings and these

parameter settings are highly specific applications. Keeping this in view, numerical investigations

have been conducted to study the influence of various parameter settings in TSA and also the

influence of several neighbourhood search algorithms. A new adaptive neighbourhood search

algorithm is proposed in the TSA algorithm for combinatorial optimisation. The proposed TSA

algorithm has later been employed for the multi-criteria optimal design of composite cylinder made

of two materials for simultaneously optimising the weight and also cost with constraint on buckling. 

2. Simulated annealing

Simulated annealing (SA) is an iterative search method inspired by the annealing of metals

(Kirkpatrick Jr. et al. 1983, Cerny 1985). Starting with an initial solution and armed with adequate

perturbation and evaluation functions, the algorithm performs a stochastic partial search of the state

space. Uphill moves are occasionally accepted with a probability controlled by a parameter called

temperature (T ). The probability of acceptance of uphill moves decreases as T decreases. At high

temperature, the search is almost random, while at low temperature the search becomes almost

greedy. At zero temperature, the search becomes totally greedy, i.e., only good moves are accepted

(Kirkpatrick Jr. et al. 1983, Cerny 1985). 

Fig. 1 Simulated annealing algorithm
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The basic SA algorithm is shown in Fig. 1. The core of the algorithm is the Metropolis procedure

(Metropolis et al. 1953), which simulates the annealing process at a given temperature T (Fig. 1).

The Metropolis procedure is shown in Fig. 2. The Metropolis procedure receives as input, the

current temperature T, and the current solution Cur_S which it improves through neighbourhood

search. Metropolis must also be provided with the value M, which is the amount of time for which

annealing must be applied at temperature T. The procedure Simulated_annealing simply invokes

Metropolis at decreasing temperatures. Temperature is initialized to a value T0 at the beginning of

the procedure, and is slowly reduced (in a geometric or arithmetic progression). The annealing

procedure gets terminated when temperature, T is reduced to a very small value say, 0.001.

Eventhough SA has been used extensively for solving combinatorial problems, there are certain

problems associated with setting of the cooling schedule of the algorithm, which consists of the

following four components.

i. Initial temperature

ii. Terminating temperature

iii. Temperature decrement

iv. Number of iterations at each temperature

At present there are no known methods to calculate the cooling schedule for a large range of

problems and the values are often set using empirical evidence from experimental runs of the

algorithm. The same approach has been employed here. The details of the cooling schedule adopted

in this paper are presented here. 

Fig. 2 Metropolis algorithm
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Initial temperature
The initial temperature value should be such that it allows virtually all proposed uphill or down

hill moves to be accepted. There are several empirical suggestions to fix the initial temperature. For

example, Rayward-Smith et al. (1996) suggested starting initially with a high temperature and then

cooling it rapidly until about 60% of worst states are being accepted. This temperature is regarded

as the best initial temperature and can be cooled more slowly. Similarly, Dowsland (1995) suggested

to heat the system rapidly until a certain proportion of worse solutions are accepted and then start

cooling slowly. However, in the present work it is preferred to initialise the temperature using a

different procedure as outlined here.

The idea is basically to use the Metropolis function e∆Fitness/T to determine the initial value of the

temperature parameter. Before the start of actual SA procedure, a constant number of moves, say M,

in the neighborhood of the current solution are made, and the respective fitness values of these

moves are determined. The fitness difference for each move i: ∆Fitnessi is given by ∆Fitnessi =

Fitnessi − Fitnessi−1. Let Mu and Md be the number of uphill and downhill moves, respectively

(downhill refers to inferior moves) (M = Mu + Md). The average ∆Fitnessd is then given by 

∆Fitnessd =    (1)

Since we wish to keep the probability, say P0, of accepting downhill moves high in the initial

stage of SA, we estimate the value of the temperature parameter by substituting the value of P0 in

the following expression derived from the Metropolis function:

 

where P0 ≈ 1 (P0 = 0.999)       (2)

Terminating temperature
It is usual to set the terminating temperature as zero. However, it is not necessary to let the

temperature reach zero because as it approaches zero the chances of accepting a worse move are

almost the same as the temperature being equal to zero. Keeping this in view, in the present work,

the simulated annealing algorithm is terminated when at least one of the following criteria is

satisfied.

i. Maximum number of iterations

ii. When the temperature is equal or nearly equal to zero i.e., T < 0.001

iii. When there is no improvement in the solution in the last N consecutive moves 

iv. When there is no change in the solution for the last NC moves, where NC is an user specified

parameter

Temperature decrement

Choosing appropriate temperature decrement is highly critical to the success of the simulated

annealing algorithm. The temperature can be decremented by using either geometric decrement or

arithmetic decrement. 

  (3)

In this paper, studies have been reported using both arithmetic and geometric decrement
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procedures to compare the computational performance of the two procedures while solving the

stacking sequence optimisation problem.

Number of iterations at each temperature

The number of iterations at each temperature can be changed by varying the parameter β in the

simulated annealing algorithm as given in Fig. 1. A constant number of iterations at each

temperature by setting the parameter β to one is an obvious scheme. Alternatively, one can

adaptively change the iterations as the algorithm progresses. At lower temperatures it is important to

have a large number of iterations so that the local optimum can be fully explored. At higher

temperatures, the number of iterations can be less. The third alternative is as suggested by Lundy

and Mees (1986), to perform only one iteration at each temperature, but to decrease the temperature

very slowly. The formula suggested for temperature decrement is

t = t /(1 + γ t)   (4)

where γ is a suitably small value. In the present work, all the three schemes are implemented and

their influence on the computational performance of SA in the optimal stacking sequence design of

the laminate composites is studied.

2.1 Neighbourhood search techniques

Several neighborhood search techniques have been implemented in the SA algorithm to

effectively explore the search space. Before discussing on neighbourhood search techniques, it is

essential to mention the representation of a solution coding, which encodes alternative candidate

solutions for manipulation. The choice of the coding that provides an efficient way of implementing

the moves and evaluating the solutions is essential for the success of the neighbourhood search

heuristic. For laminate lay-up sequence optimization, the candidate solution represents a design, i.e.,

lay-up sequence of a composite laminate. The solution is encoded by arranging all ply angles of the

given composite laminate in an array v (vi : i = 1, 2, …, n), where vi is an encoded value

corresponding to a ply angle and n stands for the number of plies in the laminate composite. The

ply angles are encoded as 1, 2, 3, which stand for the three possible stacks, 0o
2, ±45o, 90o

2

respectively. For example, the laminate [90o
2, ±45o, 90o

2, 0
o
2]s is encoded as 3 2 3 1. The rightmost

1 corresponds to the layer closest to the laminate plane of symmetry. The leftmost 3 describe the

outermost layer. Details of various neighborhood search algorithms implemented in the present work

are as follows:

The neighborhood search technique called Invert assigns each variable a small probability to

switch to any other permissible integer value (except the value before alteration) with higher fitness.

Similarly, the neighbourhood search technique called permutation chooses two locations randomly

in the string of design variables and reverses the order of the variables between the two chosen

locations. Swap is another neighbourhood search technique, which is less disruptive when compared

to permutation. The swap technique is implemented by randomly selecting two unique design

variables in the string and switching their positions. The swap and permutation search techniques

have been used in combination with invert to improve the exploratory characteristics of

neighbourhood search. 

Apart from these neighbourhood search algorithms, a new adaptive search algorithm has been
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proposed in this paper for the combinatorial optimisation using TSA. The idea behind the proposed

adaptive search technique is to disrupt (or alter) the design variables more intensely at the beginning

of the annealing process and it should be least disruptive as annealing process is close to

convergence. For this purpose a parameter related to temperature is used to dictate the number of

design variables to be altered at a particular state. At the beginning of the annealing process, all the

design variables will be permitted to alter with some probability and during the process of

annealing, the number of randomly chosen design variables in the string permitted to alter is

adaptively reduced. This reduction is closely associated with the reduction in the temperature during

the annealing process.

2.2 Performance enhancement techniques

In order to improve the search characteristics and also computational performance, the Tabu

search features are built into the algorithm. Further, the computational performance is enhanced

through the implementation of cache-fetch techniques. 

Fig. 3 Tabu embedded Metropolis algorithm
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Tabu embedding
Tabu search is a heuristic search technique introduced by Glover (1989) and is being used in wide

variety of applications. The tabu search technique uses short-term memory to avoid recycling.

Recycling refers to the process of obtaining the same solution repeatedly several times. This

recycling is quite common in neighbourhood search algorithms, which generates solutions in a

greedy fashion. Recycling ultimately leads the optimisation algorithm to converge to a local

optimum. To circumvent this situation and also to cover a wider solution space, tabu search

technique uses short-term memory to mark the recently visited best solutions through neighbourhood

search techniques that cannot be accepted as the best solution for a certain number of iterations.

These marked solution options are known as tabu active and the number of iterations for which the

move remains tabu active is known as tabu tenure. In the present work, the recently visited best

solutions are recorded in a tabu list and tabu tenure is set as 4. The aspiration criterion, commonly

used in tabu search, is also built into the algorithm. The aspiration criterion overrules the tabu

active status, if the set criterion is satisfied. In the stacking sequence optimisation algorithm, the

aspiration criterion requires that the solution being considered is superior to the best-ever solution

rather than the best among the recently visited solutions. Fig. 3 shows the Metropolis algorithm

embedded with tabu search. 

Cache fetch

The performance of the optimisation algorithm is generally measured by the number of function

evaluations, as the function evaluation is the most time consuming part of the algorithm. In the

present work, an attempt has been made to minimise the number of function evaluations by setting

appropriate parameters for simulated annealing and also by cache-fetch implementation. Already

evaluated string patterns (stacking sequences) during the search and their corresponding objective

values, constraints etc., are stored in a separate location in the memory referred to as cache. These

values are stored in a modular fashion for minimising search during fetching the solution from

cache. Whenever a new string (stacking sequence) is generated in the Metropolis algorithm through

neighbourhood search, and it is not tabu active, then the cache is searched for the matching pattern.

The matching pattern if found in the cache, the objective value and other constraints corresponding

to the newly generated string are directly fetched from the cache instead going through the detailed

function evaluation which is rather expensive than directly fetching from cache. Modularity in the

storage of string patterns in the cache is maintained by employing binary tree data structure, which

helps in minimising the search efforts during cache-fetch.

3. Laminate composite models for numerical studies

In this paper two laminate composite models are considered as case studies to demonstrate the

effectiveness of the proposed lay-up sequence optimisation technique employing the TSA algorithm.

The first case study is thermal buckling of laminate composite panel and the second one is buckling

load optimisation of composite cylindrical shells made of single and multiple materials.

3.1 Formulation details of laminate composites

Composite laminates are formed by stacking different composite materials and/or fiber
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orientations. These composite laminates are used in applications that require axial and bending

strengths. Therefore, composite laminates are treated as plate elements. Several theories exist to

model laminate composites. They are equivalent to single layer theory, classical laminate theory,

shear deformation laminate theory, three-dimensional elasticity theory and finally multiple modal

methods. The details of these formulations can be found in Reddy (2001). In the present

formulation, we use classical laminate theory. Consider a laminate shown in Fig. 4 of total

thickness, h composed of n orthotropic layers with the principal natural coordinates X, Y and Z

directions with Z axis is taken as positive upward at middle plane.

The assumptions made in the formulations based on classical laminate theory include (i) lamina

thickness is uniform and small compared to its lateral dimensions. Therefore, stresses acting on the

interlaminar planes in the interior of the laminate, that is, away from the free edges, are negligibly

small. (ii) There is a perfect bond between any two laminae and therefore, the laminae are not capable

of sliding over each other and displacements are continuous across the bond. (iii) A line originally

straight and perpendicular to the laminate mid plane remains so after deformation. (iv) Finally, the

Kirchhoff assumption which states that in-plane displacements are linear functions of the thickness,

and therefore the interlaminar shear strains, εxz and εyz are negligible. With these assumptions the

laminate behavior can be reduced to a two-dimensional analysis of the laminate mid plane.

Using the constitutive law, the stress-strain relationship in principal natural coordinate directions

(X, Y ) can be given as 

 (5)

where
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Fig. 4 A laminate composite made up of n stacked plies



248 A. Rama Mohan Rao and N. Arvind

T is the transformation matrix and θ is the fiber orientation with respect to X axis. E and ν are

Young’s modulus and poison’s ratio respectively of the laminae in the principle material coordinate

directions, L and T.

Referring to Fig. 4, the displacements at any point in a laminate is given by 

  (7)

where u0, v0 and w0 are the displacements along the coordinate lines of a material point on X Y

plane, where Z = 0 (mid plane). Combining the strain displacement relationships with Eq. (7)

  (8)

 

or   

Here, , and  are the mid plane strains, while κx, κy, and κs are the plate curvatures.

The stresses in any layer ‘k’ can be written as 

  (9)

Let hk be the thickness of layer k, then the total thickness of the composite laminate with n layers

(Fig. 4) can be written as 

   (10)

Since the stresses in a laminated composite vary from ply to ply, it is convenient to define

laminate force (Nx, Ny and Ns) and moment (Mx, My and Ms) resultants. These resultants of stresses

and moments acting on a laminate cross section, provide us with a statically equivalent system of

forces and moments acting at the mid plane of the laminated composite. These force and moment

resultants can be written in compact form as 

  (11)
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These stiffness matrices depend on  and  in turn depends on the orientation angle of each ply.

Hence, the force and moment results vary with the stacking sequence. One can precisely optimise

the stacking sequence of the laminate to improve the structural performance. 

Force resultants due to temperature rise 

The forces developed due to a temperature rise, ∆T, in a symmetric and balanced laminate are

given by Tsai and Hahn (1980):

(13)

where  are the material stiffness coefficients of the single layer defined in Eq. (6), hi is the ith

layer with respect to mid plane and αx, αy and αxy are the thermal coefficients of the ith layer. As

fibers impose a mechanical restraint on the matrix in the longitudinal direction, coefficient αx is

normally small whereas the matrix is forced to expand in the transverse direction, giving larger

transverse coefficient αy. 

R1, R12 and R2 are the loads due to a unit temperature rise, and their sign will decide whether the

buckling is caused by an increase or decrease in the temperature. For example, Kevlar/epoxy

laminates buckle under cooling, whereas graphite/epoxy laminates buckle under heating (Mathew

et al. 1992). From Eq. (13), it is possible to obtain the quantities Ny /Nx = R2/R1 and Nxy /Nx = R12/R1

for a given stacking sequence.

Thermal buckling of simply supported laminate plate

A Simply supported laminate composite plate of rectangular shape (a × b), with symmetrical

stacking sequence is shown in Fig. 5. The laminated composite plate is composed of n layers, each

of thickness hk and subject to a uniform temperature variation ∆T through the thickness. The total

thickness of the laminate is h = .

Assuming that the plate is loaded, in the x-y plane, by the forces λNx, λNy, and λNxy, where λ is a

scalar amplitude parameter, the governing differential equation for the buckling behaviour of the

plate, under the assumption of the classical plate theory (Vinson and Sierakowski 1987) is 

  (14)

where Dij
 are the bending stiffness coefficients and w is the vertical displacement. The laminate will
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value λb given by (Vinson and Sierakowski 1987)
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    (15)

derived from the displacement field 

    (16)

that satisfies all imposed boundary conditions of the plate. The smallest value of λb is the critical

buckling load λcb and can be evaluated from Eq. (15). Once λcb is obtained, the critical temperature

rise ∆tcr is calculated as ∆tcr = λcb/R1.

Strain failure load of laminate composite plate

In order to compute the failure load of a symmetric and balanced composite laminate panel, the

value of corresponding multiplier λcs must be evaluated. The principal strains in the generic ith layer

are related to the loads by the following relations (Le Riche and Haftka 1993).

 (17)
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strains considered. It may be noted that the coupling terms (Bij) are not present in Eq. (17) as the
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the ultimate allowable values , , using a safety factor of 1.5.
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Combinatorial constraints for laminate plate
The laminate is assumed to be made up of 0o, 90o and 45o plies. To enforce the symmetric

condition, we consider only top half of the laminate. Similarly, balanced condition is enforced by

considering stacks of two 0o and 90o plies, and +45o/−45o pair plies. Using this lamination scheme,

N/4 ply orientations are needed to define the stacking sequence of the laminate.

In order to avoid some undesirable stiffness coupling effects in laminated composite structure,

angle plies must be balanced. Apart from that, the maximum number of contiguous plies of the

same orientation is constrained to four, to alleviate large scale matrix cracking and to provide

damage tolerant structures (Le Riche and Haftka 1993). Therefore, the optimisation problem is the

buckling load maximisation by changing their ply orientations in the stacking sequence of the plate

subjected to strain constraints with the ply contiguity and angle ply balance constraints. These

combinatorial constraints are usually treated in evolutionary algorithms by a penalty approach (Le

Riche and Haftka 1993). However, in the present work, it is preferred to deviate from this and a

correction operator is devised to convert infeasible designs (due to constraint violation) into feasible

ones by correcting (or rather repairing) the laminate ply sequences. In the present case study, the

constraints include strain constraints, ply contiguity and angle ply constraints. The strain constraints

if violated will reduce the buckling/failure load multiplier and also will be eliminated during the

annealing process. The angle ply balance constraint is automatically taken care of as only one

symmetric half of the laminate is considered during the optimisation process with ply angles in

stacks of two like 0o
2, ±45o, 90o

2 in the laminate sequence. The ply contiguity constraint however

requires special attention. In order to correct the laminate sequence with more than four contiguous

plies with the same orientation, the laminate sequence is scanned from the outermost ply, and if five

contiguous plies of the same orientation are encountered, the innermost ply code is changed either

by decrementing or incrementing the value of the code. The option of decrementing or incrementing

is decided based on the quality of solution. Similarly, near plane of symmetry, if the laminate

sequence encounters more than two contiguous plies of the same orientation, the code value (i.e.,

the value of the ply immediate to the plane of symmetry) is incremented or decremented as

discussed earlier. 

Fig. 6 Composite cylinder
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3.2 Buckling of composite cylinder

The second case study considered is a composite cylinder subjected to axial compression loading.

The stacking sequences are optimised using the proposed TSA algorithm to maximise the buckling

loads of the composite cylinder. The configuration details of the composite cylinder are shown in

Fig. 6. The practical significance of the problem is that the fuel tanks of the space shuttles are made

of laminated composites and can be modelled as a composite cylindrical shell. The buckling of

cylindrical shell under axial compression is of great relevance for the design of fuel tanks. Since the

tanks are to be designed leak proof, an additional combinatorial constraint that the difference of ply

orientations between contiguous plies should not be greater than 45 degree is imposed. This

additional stacking constraint helps in preventing delamination cracks and thereby fuel leakage in

the tank. The analytical solutions for buckling of composite cylinders under axial compression are

given by Tasi (1966) and are as follows.

 

(i) Axial symmetric buckling (m = 0, n = 1)

 (19)

(ii) Non-axial symmetric buckling (n ≠ 0)

  (20)

where     (21)

    (22)

  (23)

 (24)

 (25)

The elements of matrices [a], [b], and [d ] are defined by

[a] = [A]−1

[b] = [B] · [a]   (26)

[d] = [D] – [b] · [B]

R is the outer radius, L is the length of the cylinder, and t is the thickness of the composite
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laminate. [A], [B] and [D] are the in-plane, coupling and bending stiffness matrices respectively.

While m represents the half wave number of buckling mode in the axial direction, n represents the

circumferential wave number of buckling mode. As mentioned earlier, the elements of B matrix

vanish for the symmetric laminates. 

The axial symmetric buckling load is calculated using Eq. (19). The non-axial symmetric critical

buckling load is taken as the smallest buckling load computed for all combinations of m, n (m = 1,

2, … 20, n = 1, 2,… 20). The objective function for optimal stacking sequence that yields the

maximum buckling load of the composite cylinder is formulated as 

Fitness function F = min      (27)

In the analysis of the buckling load given by Eqs. (19) to (25), the bending and twisting coupling

matrices D16 and D26 will be neglected. The error induced by this assumption is negligible if the

following non-dimensional ratios 

   (28)

satisfy the constraints ξ ≤ 0.20 and ψ ≤ 0.20. A detailed discussion of the condition and its

implications is given in Nemeth (1995), where it is shown that for buckling problems, the

constraints given in Eq. (28) are effective in reducing bending-twisting coupling to a negligible

level. In order to satisfy this constraint, it is preferred to impose penalty on the fitness function.

With this, the fitness function given in Eq. (27) can be modified as:

Fitness function F =  (29)

Where ζ and χ are the penalties imposed for violation of constraints given in Eq. (28) and the

magnitude of ζ and χ is set equal to ξ and ψ respectively.

Combinatorial constraints for composite cylinder

The ply orientations considered for the composite cylinder are 0o, ±45o, 90o. The laminates are

considered to be symmetric and balanced. Similar to the earlier numerical studies, one string of

individuals represents one half of the symmetrically laminated composite cylinder. However, in

order to handle the additional combinatorial constraint related to ply angle difference, we need to

represent each ply with an integer. Each element in the string is an integer between 1 to 4, where 1,

2, 3, and 4 corresponds to 0o, +45o, 90o and −45o respectively. 

As already discussed in the earlier case study, it is preferred to handle the combinatorial

constraints of the problem during improvement through a correction operator. The correction

operator will come into force whenever a particular laminate sequence generated during the

evolutionary process becomes infeasible due to violation of combinatorial constraints related to ply

contiguity, ply balancing and ply angle difference. 

The constraint related to four contiguous plies will be handled in the same way as explained in

the earlier case studies. However, ply balancing condition will not get automatically satisfied as in

the case of earlier case studies because the problem representation is slightly different. Here, each
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ply is represented separately, while in the earlier case studies, a pair of plies of same orientation is

represented together with an integer value. If the laminated plate is unbalanced there exists only a

single unbalanced 45o ply. To correct this unbalance, the correction operator first attempts to replace

one +45o ply by 90o or 0o ply. The 45o ply position chosen to be replaced either with 90o or 0o

plies, should be the inner most 45o ply, so that constraint related to four contiguous plies is not

violated. In case, if it is not possible to effect this correction, the innermost 90o or 0o ply is replaced

by −45o ply. 

The correction operator also helps in maintaining the ply-angle difference rule discussed earlier.

This rule does not permit the ply angle difference between adjacent plies greater than 45o. The

correction operator handles this constraint of ply-angle difference rule similar to the contiguous ply

rule discussed in the earlier sections. The laminate sequence is scanned from outermost ply, and if

the ply angle difference rule between any contiguous plies is violated, the corresponding ply angle

will be incremented or decremented by a flip of a coin.

4. Numerical studies 

Numerical experiments have been carried out to demonstrate the effectiveness of the proposed

TSA algorithm. The performance of the algorithm is first evaluated by optimizing the stacking

sequences of 48-ply and 64-ply laminate composite panels for maximisation of buckling load and

comparing with the best known published results. Later, thermal buckling of composite panels is

taken up as the first case study. Finally, stacking sequence optimisation of composite cylinder made

of single and multiple materials is considered as second case study in this paper. 

4.1 Validation and evaluation of TSA with the best known published results

The TSA algorithm presented in this paper is first evaluated by solving the numerical examples

given in the literature and comparing the results with the best known published results. For this

purpose, simply supported composite panels with 48 (0o, 45o and 90o) and 64 plies (0o, 45o and 90o)

are considered. The plies considered here are made of graphite epoxy with thickness, t = 0.005 in.

(0.0127 cm). The material properties are same as given by Le Riche and Haftka (1993) and are as

follows: E1 = 18.50 E6 psi (127.59 GPa); E2 = 1.89E6 psi (13.03 GPa); G12 = 0.93E6 psi (6.41

GPa); ν12 = 0.30. The ultimate allowable strains are = 0.008, = 0.029, = 0.015. For

evaluation purpose, four load cases as given in Table 1 are considered. These four load cases have

been solved in the literature (Le Riche and Haftka 1993, Kogiso et al. 1994, Soremekun et al.

2001) for the optimum buckling and failure loads using genetic algorithms. The buckling and failure

ε 1

ua
ε 2

ua
γ 12

ua

Table 1 Details of the load cases considered for evaluation

Load case Number of plies a in mm b in mm
Nx

N/cm
Ny

N/cm

1 48 50.8 12.7 1.75 0.22

2 48 50.8 12.7 1.75 0.44

3 48 50.8 12.7 1.75 0.88

4 64 50.8 25.4 1.75 1.75
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load factors obtained using the present model are compared with the results given in Le Riche and

Haftka (1993) and found to be in good agreement. The details are presented in Table 2. 

The optimisation problem is to maximize the critical buckling load λcb by changing the ply

orientations and subjected to strain failure constraints and the combinatorial constraints. The

objective function can be stated as

Maximise λ* = min(λcb, λcs)   (30)

with the combinatorial constraints related to ply contiguity, ply balancing and symmetry. 

where λcb is the critical buckling and λcs is the strain failure load. The design variables are the ply

angles as already described earlier. The critical buckling and failure loads of the simply supported

composite panels can be computed using Eqs. (15) to (18). Several optimal designs exist (multi-

modal solutions) for all these load cases, which are close to optimal buckling and failure loads. The

best known buckling and failure load factors for all the four load cases are compiled from the

literature (Le Riche and Haftka 1993, Kogiso et al. 1994, Soremekun et al. 2001) and are given in

Table 3. 

To evaluate the quality of the solutions obtained using the TSA algorithm, the concept of practical

reliability (Le Riche and Haftka 1993) is used. Practical reliability is given by the percentage of

solutions obtained using the TSA algorithm with the buckling and failure loads greater than or equal

to 99.9% of the optimal solutions. The practical reliability is obtained for each load case by running

100 different instances of TSA and determines the number of final solutions that satisfy the above

requirement. Another measure used in the present numerical experiments to measure the

effectiveness of the TSA algorithm is the normalised price of each run (Le Riche and Haftka 1993).

The price is defined as the number of function evaluations during one complete run of TSA

algorithm. The normalised price is defined as the ratio of the average price of the runs to the

practical reliability. 

The optimal stacking sequences obtained using the proposed TSA algorithm for maximisation of

buckling load and their corresponding buckling and failure load factors are shown in Table 3. In all

Table 2 Validation of the computational model for laminate composites

SNO Stacking sequence

Load factor, λ
(present work)

Load factor, λ
(Le Riche and Haftka 1993)

Buckling 
load factor

Failure 
load factor

Buckling 
load factor

Failure 
load factor

48 ply laminate (Load case-3)

1 [(902, ±452)2, 902, ±45, 902, ±453]S 9997.72 10188.33 9997.60 10187.93

2 [±45, 904, ± 45, 902, ±455, 902, ±452]S 9976.91 10188.33 9976.58 10187.92

64 ply laminate (Load case-4)

3 [±45, 9010, ±45, 908, ±45, 908]S 3973.12 8934.13 3973.01 8935.74

4 [904, ±452, 9016, ±45, 906]S 3973.12 8934.13 3973.01 8935.74

5 [902, ±45, 906, ±45, 908, ±45, 9010]S 3973.12 8934.13 3973.01 8935.74

6 [908, ±45, 902, ±45, 902, ±45, 902, ±456]S 3973.12 14205.94 3973.01 14205.18

7 [±45, 9010, ±45, 908, ±45, 908]S 3973.12 8934.13 3973.01 8935.74
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the tables, the laminate sequences are shown in a coded string form for convenience. It may be

noted that ‘1’ in coded string corresponds to ‘ ’ and similarly ‘2’ and ‘3’ in the string corresponds

to ‘±45o’ and ‘ ’ respectively. A close look at the results presented in Table 3 indicate that the

optimal sequences obtained using the TSA algorithm for buckling load maximisation infact generate

solutions which are superior to the best known bucking load factors from the literature. It can be

observed that for the first load case, the optimum designs are governed by the strain failure load

and not the buckling load. It is interesting to note that the optimal stacking sequences for

maximizing the buckling load predominantly consists of ±45o plies. Since it is ±45o ply, more than

three such plies are permissible, as the resulting stacking sequence solution do not violate the ply

contiguity constraint. One can also notice that the presence of 0o plies in the stacking sequence

improves the failure load and on the other hand the absence of 0o plies in the stacking sequence

improves the buckling load. 

Since the optimal designs for the second, third and fourth load cases given in Table 3 are

governed by buckling load, the optimal stacking sequences predominantly consists of ±45o plies and

limited number of 90o plies. One can notice that 0o plies are completely absent from the optimal

and near optimal stacking sequences.

It may be noted that the first two stacking sequences given in Table 3 for the fourth load case (64

ply laminate) have been obtained with ply contiguity constraint. However, the results reported in the

literature (Le Riche and Haftka 1993, Soremekun et al. 2001) are without ply contiguity constraint.

02

0

902

0

Table 3 Optimal stacking sequences for buckling load factor maximisation using TSA algorithm

Load 
case

Best known results published in 
literature (Le Riche and Haftka 

1993, Kogiso et al. 1994, 
Soremekun et al. 2001)

TSA results

Buckling 
load factor

Failure 
load factor

Stacking sequence
Buckling 

load factor
Failure 

load factor

1 14618.12 13518.66 [2 2 2 2 2 2 2 2 2 2 2 3] S 16119.48 12513.73

14134.76 13518.66 [2 2 2 2 2 2 2 2 3 2 2 2] S 16087.83 12513.73

14013.71 13518.66 [2 2 2 2 1 2 1 2 1 1 3 1] S 14437.30 13518.67

13662.61 13518.66 [2 2 2 2 1 3 1 2 1 1 2 1] S 14329.15 13518.67

2 12725.26 12678.77 [2 2 2 2 3 2 3 2 2 2 2 2] S 13442.04 15779.09

12698.40 12678.77 [2 2 2 2 3 2 3 2 2 2 2 3] S 13441.28 14970.04

12743.45 12678.78 [2 2 2 2 3 2 2 3 3 2 2 3] S 13435.94 13588.68

3 9998.19 10394.81 [3 2 2 3 2 3 2 2 2 2 2 2] S 9998.70 10403.75

9997.60 10187.93 [3 3 2 2 2 2 2 2 2 3 2 2] S 9995.20 10403.74

9976.58 10187.93 [3 2 3 2 2 2 2 3 2 3 2 2] S 9994.61 10192.33

4 3973.01 14205.18 [3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3] S 3957.22* 10733.33*

3973.01 8935.74 [3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 2] S 3956.90* 11620.93*

3973.01 8935.74 [3 3 3 3 3 2 2 3 2 2 2 3 2 2 2 2] S 3977.12 14208.94

3973.01 8935.74 [3 3 3 3 2 3 2 3 2 2 3 2 3 2 2 2] S 3976.60 13361.90

3973.01 14205.18 [3 3 3 3 2 3 2 3 2 3 2 2 2 2 2 2] S 3977.12 14208.94

*Obtained with four ply contiguity constraint.
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In view of this, the buckling load factor for the 64 ply laminate (4th load case) is marginally lower

than the best known values for the first two stacking sequences given in Table 3. The rest of the

stacking sequences for the 64-ply laminate given in Table 3 are obtained without imposing the ply

contiguity constraint and are therefore comparable with the best-known results. It should be

mentioned here that, multiple stacking sequences using the proposed TSA algorithm is obtained by

maintaining a separate memory archive, which stores the user specified number of best solutions,

whose objective value is within 12% of the best-ever objective. These stacking sequences will be

continuously updated with fitter values in the memory archive during the TSA search process.

Finally the price performance of the TSA algorithm has been evaluated by considering 64-ply

composite laminate panel for which normalised price for various GA implementations is given in

the literature (Soremekun et al. 2001). Fig. 7 shows the normalised price of various GA

implementations and the TSA algorithm. It may be noted that TSA can run with various

neighbourhood search options. Here, we prefer to use adaptive neighbourhood search while using

TSA. It can be easily verified from Fig. 7 that the proposed algorithm is relatively faster than GA. 

4.2 Optimal stacking sequences for thermal buckling 

The first case study considered in this paper is thermal buckling of composite laminate panels. For

this purpose, a simply supported composite panel with 48 plies (0o, ±45o, 90o) is considered to

generate optimal stacking sequences for thermal buckling using the TSA algorithm. The material

properties of graphite-epoxy composite lamina (AS/3501) are (http://www.composite.com) : E1 =

20.0e06 psi (138 GPa), E2 = 1.30e06 psi (8.96 GPa), G12 = 1.03e06Psi (7.10 GPa), ν12 = 0.3, t =

0.005 in (0.127 mm). The ultimate allowable strains are taken as  = 0.008,  = 0.029 and 

= 0.015. The coefficients of thermal expansion, αx = 0.03e-06C−1 and αy = 28.1e-06C−1. A safety

factor of 1.5 has been used to reduce these values to allowable values. The plate considered in the

numerical studies is simply supported on all edges, with dimensions a = 20 in (0.508 m) and b = 5

in (0.127 m). The optimisation problem considered is same as the one given in Eq. (30). In order to
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ua
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ν 12
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Fig. 7 Comparative performance of TSA with various GA implementations
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Table 4 Optimal ply sequences for 48 ply composite laminate using enumeration

SNO Sequence
Buckling

λ
Failure

λ
Temperature

oC
Criteria for 
optimisation

1 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Buckling

2 [3 3 2 3 3 2 3 3 2 3 3 1]s 7459.31 5739.80 598.65 Buckling

3 [3 3 2 3 3 2 3 3 2 3 2 3]s 7443.17 7565.97 635.67 Buckling

4 [3 3 2 3 3 2 3 3 2 3 2 2]s 7440.20 8616.26 607.71 Buckling

7 [3 1 3 3 1 3 1 3 1 1 3 1]s 5744.30 14220.40 5332.60 Failure

6 [3 3 1 1 3 1 3 3 1 1 3 1]s 5632.76 14220.40 5332.60 Failure

5 [3 1 3 3 1 1 3 1 3 1 1 3]s 5437.56 14220.40 5332.60 Failure

8 [3 1 3 1 1 3 3 1 1 3 1 3]s 4935.63 14220.40 5332.60 Failure

Table 5 Optimal stacking sequences for 48 laminate ply using TSA with geometric decrement of temperature

SNO α Stacking sequence
Buckling

λcb

Failure
λcs

Temp
oC

Neighbourhood 
search algorithm

Number of 
evaluations

1 0.85 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Adaptive 1720

2 0.85 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Invert 1960

3 0.85 [3 3 2 3 2 2 3 2 2 1 2 2]s 6668.81 9068.74 420.90 Swap 1810

4 0.85 [3 3 2 3 2 2 2 2 1 2 2 1]s 6366.63 12331.6 562.50 Permutation 1390

5 0.85 [3 3 2 3 3 2 3 3 2 3 2 3]s 7443.18 7565.97 564.05 Swap + Invert 2020

6 0.85 [3 3 2 3 3 2 3 3 2 2 3 2]s 7404.56 8616.26 605.57 Perm. + Invert 2080

7 0.88 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Adaptive 2130

8 0.88 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Invert 2710

9 0.88 [3 3 2 3 2 2 3 2 2 1 2 2]s 6668.81 9068.74 420.90 Swap 1720

10 0.88 [3 3 2 3 2 2 2 2 1 2 2 1]s 6366.63 12331.6 562.50 Permutation 1390

11 0.88 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Swap + Invert 2710

12 0.88 [3 3 2 3 3 2 3 2 3 3 2 3]s 7371.90 7565.97 564.05 Perm. + Invert 2290

13 0.9 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Adaptive 2200

14 0.9 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Invert 3250

15 0.9 [3 3 2 3 2 2 3 2 2 1 2 2]s 6668.81 9068.74 420.90 Swap 2290

16 0.9 [3 3 2 3 2 2 2 2 1 2 2 1]s 6366.63 12331.6 562.50 Permutation 1600

17 0.9 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Swap + Invert 2770

18 0.9 [3 3 2 3 3 2 3 2 3 3 2 3]s 7371.90 7515.97 564.04 Perm. + Invert 2290

19 0.99 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Adaptive 9760

20 0.99 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Invert 16990

21 0.99 [3 3 2 3 2 2 3 2 2 1 2 2]s 6668.81 9068.74 420.90 Swap 7690

22 0.99 [3 3 2 3 2 2 2 2 1 2 3 2]s 6389.14 906.74 420.89 Permutation 6580

23 0.99 [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 Swap + Invert 10870

24 0.99 [3 3 2 3 3 2 3 2 3 3 1 3]s 7360.15 5739.81 512.27 Perm. + Invert 9300
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demonstrate the performance of the TSA algorithm for lay-up sequence optimisation, the best

objective values are first identified for 48 ply laminate through an enumerative study and the

optimal stacking sequences are shown in Table 4. The optimal stacking sequences obtained for 48

ply laminate employing the TSA algorithm is shown in Table 5. The optimal values presented in

Table 5 are obtained using various neighbourhood search techniques discussed in the earlier sections

for various values of geometric temperature decrement parameter α. A close look at the results

presented in Table 5 indicates that the proposed TSA algorithm is extremely effective in capturing

the optimal stacking sequences of laminate composites. This fact is clearly evident from the

comparison with the best results obtained through enumerative study and given in Table 4. Further,

it can be observed that the adaptive neighbourhood search technique proposed in this paper is

effective in obtaining consistently optimal solutions with least number of function evaluations. 

Parametric studies have been conducted on 48 ply laminate by varying the following settings in

the TSA algorithm

i. The temperature TSA is controlled using arithmetic decrement instead of geometric decrement

as given in Eq. (3) by varying the value of α using different neighbourhood search algorithms. 

ii. Changing adaptively the number of Metropolis iterations using various values of β ranging

from 1.01 to 1.10.

iii. Using single Metropolis iteration with temperature decrement as given in Eq. (4) and varying

the value of γ. 

iv. Alternative criteria proposed by Johnson et al. (1991) for computing the probability of

accepting a worse move. The criteria proposed by Johnson et al. (1991) is P(∆E) = 1 − ∆E/t   

Table 6 Optimal stacking sequences for 48 laminate ply using TSA with various alternative settings

S.NO

Parameter settings in TSA Neighbour-
hood search 
algorithm

Buckling  
load 

factor

Num. of 
function 

evaluations
Remarks

α β γ M
EXP

(∆E/T )
1 −

 (∆E/T )

1 0.85 1.00 - 30 × Adaptive 7460.99 1720 Geometric temp. decrement

2 0.25 1.00 - 30 × Adaptive 7460.99 5020 Arithmetic temp. decrement

3 1.5 1.00 - 30 × Adaptive 7460.99 3100 Arithmetic temp. decrement

4 2.0 1.00 - 30 × Adaptive 7443.18 2350 Arithmetic temp. decrement

5 0.85 1.03 - 3 × Adaptive 7460.99 5809 Adaptive iterations + 
geometric temp. decrement

6 0.85 1.05 - 3 × Adaptive 7460.99 4160 Adaptive iterations + 
geometric temp. decrement

7 0.85 1.08 - 3 × Adaptive 7460.99 6608 Adaptive iterations +  
geometric temp. decrement

8 0.85 1.00 1e-5 1 × Adaptive 7460.99 5806 Single iteration + 
geometric temp. decrement

9 0.85 1.00 - 30 × Adaptive 7320.03 2140 Alternate acceptance 
criteria + geometric temp. 
decrement

10 0.99 1.00 - 50 × Adaptive 7438.53 4090 Alternate acceptance 
criteria + geometric temp. 
decrement

√

√

√

√

√

√

√

√

√

√
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The criteria proposed by Johnson et al. (1991), actually approximates the exponential in the

Metropolis algorithm given in Fig. 2. Extensive parametric studies have been conducted using the

above four settings by using various neighbourhood search algorithms and also varying the values

of the parameters like α, β, γ and M. However best stacking sequences obtained from these studies

are only presented in Table 6. A close look at the results given in Table 6 indicate that the results

obtained using the conventional acceptance criteria with geometric decrement operator and constant

Metropolis iterations with temperature setting as suggested in Eq. (2) is effective both interms of

obtaining optimal stacking sequence and minimising the function evaluations. 

The optimal lay-up sequences for maximisation of failure load obtained employing TSA algorithm

are given in Table 7 for 48 ply laminate composite panel. The results presented in the tables are

obtained using adaptive neighbourhood search technique with geometric decrement of temperature

with the parameter α as 0.92. A close look at the results presented in Table 7 indicates that different

stacking sequences yield same values of critical failure load multiplier. One can also observe that

the stacking sequences given in Table 7 yields different buckling load multiplier values and critical

temperature rise values for the same failure load multiplier. The reason is that the failure load does

not depend on the stacking sequence, but just depends on the thickness and the orientation of plies.

Hence several optimal or near optimal stacking sequence designs for maximisation of failure load

can be obtained. At the same time, buckling load depends on the stacking sequence and hence

different buckling load multiplier values are obtained for the stacking sequences with the same

failure load multiplier. Hence many practical optimal designs exist, for this problem where a

practical design can be defined as a design giving an objective function very close to the optimal

solution. The TSA algorithm is as effective as genetic algorithm in capturing the multiple optimal

solutions. This is clearly evident from the multiple optimal solutions presented in Table 7. From the

optimal stacking sequences for maximisation of failure load, given in Table 7, one can observe the

presence of 0o plies and at the same time, the 0o plies are completely missing in the optimal

stacking sequences obtained for maximisation of buckling load and given in Table 5. This behaviour

is consistent with the results reported earlier.

Further, it can also be observed that the failure load multiplier values obtained using TSA

algorithm for 48 laminate (Table 7) are comparing very well with results obtained through

enumerative study and shown in Table 4. However, one can notice that the stacking sequences

obtained through enumerative study are different from the TSA results. This can be explained as

follows. While computing the best stacking sequences through enumerative study, the laminate

sequences which have the highest failure load multiplier are compiled and best among them which

are comparatively higher in buckling load multiplier and temperature rise are chosen and tabulated.

Table 7 Optimal ply sequences of 48 ply laminate for maximal failure load using TSA

SNO Sequence
Buckling

λcb

Failure
λcs

Temp.
oC

Criteria for 
optimisation

1 [1 3 1 1 3 1 3 2 3 2 3 1]s 3810.35 14218.43 1417.47 Failure

2 [2 3 1 1 3 1 1 3 2 3 1 3]s 4153.24 14218.43 1500.06 Failure

3 [3 1 3 1 3 1 3 1 1 3 1 3]s 5130.83 14220.40 2667.74 Failure

4 [3 1 3 3 1 1 3 1 1 3 1 3]s 5353.91 14220.41 2667.75 Failure

5 [3 1 1 3 1 3 3 1 3 1 1 3]s 4768.32 14220.41 2667.75 Failure

6 [3 1 1 3 3 1 3 1 3 1 3 1]s 4991.40 14220.41 2667.75 Failure
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However, in the TSA algorithm, the objective function is defined as maximisation of the failure

load multiplier. Hence, TSA could not capture the laminate sequences with higher buckling load

multiplier and temperature rise. In order to capture these best laminate sequences, one has to

invariably resort to multi-criteria optimisation by considering all three objectives (i.e., buckling,

failure and temperature) (Rama Mohan Rao et al. 2003) simultaneously. 

Finally, comparisons have been made with genetic algorithm. For this purpose an elitist genetic

algorithm (Rama Mohan Rao 2001) customised for composite lay-up sequence optimisation

problems is considered. Several GA implementations like simple GA, elitist GA, and multiple elitist

GA are considered for comparison purposes. In the present study, tournament selection with two-

point crossover with crossover probability of 0.60 is considered. Mutation, which is a combination

of simple invert and swap, is considered with probability as 0.05 for the present study. Table 8

shows the comparative performances of the TSA algorithm (with geometric temperature decrement

α as 0.85 and employing adaptive neighborhood search) and genetic algorithm for 48 ply laminate

composite. A close look at the results indicates that the TSA algorithm provides solutions, which

are comparable with various GA implementations. However, the TSA algorithm is found to be

superior in terms of computational performance, i.e., total number of function evaluations.

4.3 Optimal stacking sequences of composite cylinder

The ply orientations considered for the composite cylinder are 0o, ±45o, 90o. The laminates are

considered to be symmetric and balanced. Similar to the earlier numerical studies, one string of

individuals represents one half of the symmetrically laminated composite cylinder. As mentioned

earlier, we need to represent each ply with an integer, in order to handle the additional

Table 9 Material properties for composite cylinder

S.No Composites
EL 

KN/mm2

ET 

KN/mm2 νLT
GLT 

KN/mm2

Mass density 
Kg/mm3

1 Graphite/Epoxy (AS/3501) 140.68 9.13 0.30 7.24 0.01605e-04

2 Boron/Epoxy 204.00 18.50 0.23 5.59 0.02080e-04

3 Kevlar/Epoxy 83.00 5.60 0.34 2.10 0.01000e-04

4
Glass/Epoxy

(Generic S-glass-epoxy)
43.00 9.07 0.27 4.54 0.01992e-04

Table 8 Comparative performance of TSA and GA for 48 plies laminates

SNO Algorithm Stacking sequence
Buckling

λcb

Failure
λcs

Temp
oC

Number of 
Function 

evaluations
(price)

1 Enumeration [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 ----

2 Simulated annealing [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 1720

3 GA without elitism [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 3400

4 GA with elitism [3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 2100

5 GA with multiple 
elitist strategy

[3 3 2 3 3 2 3 3 2 3 3 2]s 7460.99 7565.97 635.67 4300
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combinatorial constraint related to ply angle difference. Each element in the string is an integer

between 1 to 4, where 1, 2, 3, and 4 corresponds to 0o, +45o, 90o and −45o respectively. 

Numerical studies have been carried out by considering a cylinder of L = 0.20 m, R = 0.10 m and

ply thickness as 0.125 mm. In order to study the relative buckling strengths of various composite

materials, the problem is solved using four different composite materials namely graphite, boron,

kevlar and glass. The properties of these materials as given by Kaw (1997) are shown in Table 9.

The optimisation problem is to maximize the critical buckling load by changing the ply orientations.

The objective function can be stated as follows:

 Maximise F = min        (31)

Subjected to the constraints related to bending and twisting coupling terms of D matrix (Eq. (28))

and Combinatorial constraints related to ply contiguity, ply balancing, symmetry and ply angle

difference.

The composite cylinder problem is solved for different materials given in Table 9. The optimal

buckling loads obtained using the proposed TSA algorithm for various composite materials (given

in Table 9) are shown in Fig. 8. A close look at the results given in Fig. 8 indicates that the

composite cylinder made of boron-epoxy has the highest buckling strength followed by graphite-

epoxy and kevlar-epoxy. The composite cylinder made of Glass-epoxy has the least buckling

strength. kevlar is approximately 1.5 times as strong as Glass and similarly the Boron is twice as

strong as kevlar and about 1.4 times of graphite-epoxy. The optimal ply sequences obtained for

graphite-epoxy composite cylindrical shell using the proposed TSA are compared with GA (Rama

Mohan Rao et al. 2001) and are presented in Table 10. It can be easily verified from the results

presented in Table 10 that the optimal sequences obtained for buckling load maximisation of

cylindrical shell are far more superior than genetic algorithm. However, in contrast to earlier studies

on composite plates for maximisation of buckling loads, one can observe the presence of 0o plies in

the optimal stacking sequence designs for maximisation of buckling load of composite cylinders,

N x

t
-------⎝ ⎠

⎛ ⎞

Fig. 8 Optimal buckling load of laminate composite cylinder made of different composite materials
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obtained using both GA and TSA. This is basically due to the additional combinatorial constraint

related to ply angle difference imposed on the optimisation problem and also it’s implementation in

the proposed correction operator. Further, another interesting feature, one can observe from the

stacking sequences given in Table 10 is that there is identical number of 0o, ±45o and 90o plies in

each of the stacking sequences obtained using GA and TSA for 16 ply and 20 ply laminate

composite cylinders and near identical numbers for 24 ply and 36 ply composite cylinders. Still the

stacking sequences obtained using TSA are superior to GA. From this one can conclude that TSA

with adaptive neighbourhood search algorithm has better exploratory search characteristics when

compared to GA. 

4.4 Optimal design of composite cylinder made of two materials

This numerical study is concerned with the design of a hybrid laminate composite cylinder for

optimum layer thickness, cost and ply angle sequence. Hybrid laminates incorporating two or more

fibre composite materials in their construction can offer improved designs and better tailoring

capabilities, as it is possible to combine the desirable properties of the two materials. In the present

example, we considered two different materials. One is graphite-epoxy, which is expensive, but has

high stiffness properties and the other is the glass-epoxy, which is not as stiff but is relatively

cheaper.

Numerical studies have been carried out by considering a cylinder of L = 0.20 m, R = 0.10 m and

ply thickness as 0.127 mm. The material properties of the two composite materials are given in

Table 9. The stiffness-to-weight ratio of graphite-epoxy is about four times higher than that of glass-

epoxy. However, it is also more expensive, with a cost per unit weight is 8 times higher than that of

glass-epoxy. The ply orientations are considered as 0, ±45o and 90o. The laminates are considered to

be symmetric and balanced. 

Similar to the earlier case study, one string of individuals represents one half of the symmetrically

laminated composite plate. Each element in the string is an integer between 0 and 8, where 0

represents a pair of empty plies, 1, 2, 3 and 4 represents 0o, +45o, 90o and −45o
 plies of graphite

epoxy. Similarly 5, 6, 7 and 8 represents 0o, +45o, 90o
 and −45o plies of glass epoxy. We have to

introduce 0 to represent empty plies in the string, as the number of individuals in a string is

constant where as the number of plies in a laminate is not. 

The objective functions for weight and cost minimisation can be stated as follows:

Table 10 Optimal laminate sequences for buckling load maximisation of a graphite-epoxy composite cylindrical
shell using TSA and GA

TSA Genetic Algorithm

Stacking sequence Layers
Buckling 

load 
MPa

Stacking sequence
Buckling 

load 
MPa

1 [2 1 4 4 3 3 2 3]S 16 751.70 [1 4 3 4 3 2 3 2 ]S 715.40

2 [4 4 1 2 2 3 4 3 2 3]S 20 966.98 [4 1 4 4 3 2 2 3 3 2]S 958.19

3 [2 2 1 4 4 3 4 4 3 2 2 3]S 24 1164.09 [4 4 1 2 2 3 4 4 3 2 2 1]S 1114.07

4 [4 4 1 4 4 1 2 2 3 2 2 3 4 3 2 3]S 32 1548.89 [4 4 1 4 1 1 2 3 4 3 2 3 2 3 2 3 ]S 1485.94

5 [2 2 1 2 2 1 4 4 3 4 4 3 4 4 3 2 3 3 2 3]S 40 1927.79 [1 1 4 4 1 4 1 2 3 4 1 4 3 2 3 2 2 3 2 3]S 1841.75
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 Minimise, Weight = 2πRL (ρch + ρg(h − hc))  (32)

 Minimise, Cost = 2πRL (ρch Cc + ρg(h − hc) Cg)   (33)

subjected to Constraint related to (i) minimum buckling load (ii) bending and twisting coupling

terms of D matrix (Eq. (28)) (iii) ply contiguity, ply balancing, symmetry and ply angle difference

where ρc is material density of the graphite-epoxy layers, ρg is the material density of glass-epoxy

layers, h is the total thickness of the laminate and hc is the thickness of the graphite-epoxy plies in

the laminate. R is the radius of the mid surface of the composite cylinder and L is the length of the

cylinder. Cc and Cg are the cost factors of graphite-epoxy and glass-epoxy respectively. 

First, an attempt has been made to optimise with a single objective and later multi-objective

situation is considered. Table 11 shows the optimal weight of the hybrid laminate composite

cylinder with a constraint on maximum buckling load. Similar to the earlier case study, the laminate

stacking sequences in all the tables (i.e., Table 11 to Table 13) are shown in coded string form. A

close look at the Table 11 indicates that the minimum weight of the laminate sequence is 2.00 N for

the buckling load constraint of 350 MPa. The minimum weight increases with the increase in the

value set as a buckling load constraint. It can be observed that the composite laminate panel

consists of only graphite-epoxy plies, as they are relatively lighter than the glass-epoxy plies. 

Next the cost minimisation of the hybrid laminate is attempted with buckling constraint. Table 12

shows the optimal laminate sequences for minimum cost with various buckling constraints. A close

Table 12 Optimal ply sequences of bi-material composite laminate cylinder for minimal cost with constraint
on buckling load

SNO
Buckling load 

constraint
MPa

Sequence
Number of 

plies
Cost

Weight
(N)

Buckling 
load
MPa

1 250 [5 8 8 7 6 7 6 7]s 16 0.50 4.94 272.64

2 300 [4 8 7 6 7 6]s 12 0.72 3.60 312.12

3 400 [4 4 5 6 7 6 7]s 14 1.13 4.09 415.56

4 550 [1 4 3 2 7 8 5 6]s 16 1.875 4.46 556.41

5 600 [2 2 3 4 3 7 8 7]s 16 2.22 4.34 614.79

6 700 [1 2 2 3 4 3 4 5]s 16 2.90 4.10 708.19

Table 11 Optimal ply sequences of bi-material composite laminate cylinder for minimal weight with constraint
on buckling load

SNO
Buckling load 

constraint
MPa

Sequence
Number of 

plies
Cost

Weight
(N)

Buckling 
load
MPa

1 350 [2 1 4 3]s 8 1.63 2.00 372.66

2 425 [1 1 2 3 4 ]s 10 2.04 2.50 437.70

3 550 [4 4 1 2 2 3]s 12 2.44 2.99 574.75

4 600 [2 3 2 1 4 3 4]s 14 2.84 3.49 613.21

5 750 [2 1 4 4 3 3 2 3]s 16 3.25 3.98 751.70
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look at the ply sequences given in the table indicate that the outer layers of the laminates are of

graphite-epoxy whose stiffness is much higher than the glass-epoxy plies and core layers are of

glass-epoxy plies. It is quite understandable as the graphite-epoxy plies are much expensive when

compared to glass-epoxy plies. 

Finally, laminate ply sequence optimisation of hybrid composite panels has been attempted for

simultaneous optimisation of both weight and cost. The weighted sum method has been employed

to solve the multi-criteria optimisation problem, where two objective functions are combined into

one overall objective function and is given as:

Objective function = β × Weight + (1 − β ) Cost    (34)

where β is the weight factor. The optimisation problem is to minimise the weighted sum of the total

weight and cost of the hybrid composite laminate cylinder as given in Eq. (34) subjected to the

constraints given in Eqs. (32) and (33).

Table 13 summarizes trade-off results obtained for various values of β. The results furnished in

the table include the stacking sequences, number of plies and their corresponding weight, cost,

buckling load. The buckling constraint is set for this problem as 900 MPa. A close look at the

results indicates that, the minimum weight of the hybrid laminate is 4.96 N. It is obtained when all

plies are made of graphite-epoxy. The corresponding cost is 4.05. The minimum cost is found to be

2.64, which is about 65% of the cost of stacking sequence corresponding to the optimal weight. The

optimum ply sequence corresponding to the minimum cost consists of major number of glass-epoxy

plies. It’s weight is found to be 8.59 N which is approximately 73% heavier than the optimum

weight laminate sequence. 

Fig. 9 shows the Pareto front obtained by employing the TSA algorithm with weighted sum

approach of multi-criteria optimisation. The solid line shows the Pareto trade-off curve generated

through the points corresponding to the optimal values obtained for different values of β. This

Pareto front is the set of all the non-dominated solutions, which corresponds to lower envelope of

all the feasible design points in the cost/weight plane. This confirms the effectiveness of the TSA

Table 13 Trade-off solutions of bi-material laminate composite for multi-objective optimization of both weight
and cost using TSA with constraint on buckling

β Stacking sequence
Number of 

plies
Weight

(N)
Cost

Buckling load
Mpa

0.0 [4 4 1 2 3 6 7 8 7 8 5 6 7 6 5 ]s 30 8.59 2.64 925.26

0.10 [1 1 2 4 3 6 5 8 8 7 6 7 8 7 6]S 30 8.59 2.64 900.49

0.20 [4 4 3 2 1 2 6 7 6 7 8 8 7]S 26 7.26 2.86 917.91

0.30 [2 1 4 1 4 3 2 6 7 7 8 7]S 24 6.54 3.14 923.73

0.40 [2 2 3 4 1 4 4 5 6 6 7 8]S 24 6.54 3.14 910.99

0.50 [2 1 4 1 4 3 2 3 6 7 8]s 22 5.81 3.42 905.12

0.60 [4 1 4 1 2 2 3 4 7 6 7]S 22 5.81 3.42 922.22

0.70 [1 2 1 4 4 3 2 3 4 5 6]S 22 5.69 3.76 947.72

0.80 [2 2 1 4 3 4 1 3 3 6 8]S 22 5.69 3.76 914.33

0.90 [2 2 1 4 4 3 4 3 3 2]S 20 4.96 4.05 964.99

1 [4 1 4 4 3 2 2 3 2 3]S 20 4.96 4.05 960.22
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algorithm in obtaining optimal solutions for simultaneous cost/weight minimisation. The Pareto

trade-off curve can be used by the designer to determine the optimal configurations for his problem.

The final choice of the best design will depend on additional information that will enable him to

evaluate all the points on the Pareto curve and prioritise these values depending on the application

on hand. 

5. Conclusions

In this paper a tabu embedded simulated annealing (TSA) algorithm has been presented and

applied for stacking sequence optimisation of laminate composite structures. A new technique for

temperature initialization is proposed and found to be effective for composite laminate design. Apart

from this, several parameter settings like temperature decrement techniques, convergence criteria,

alternative solution acceptance criteria in Metropolis algorithm, adaptive iteration scheme and

finally several neighbourhood search techniques have been examined and their relative

performances have been evaluated. The computational performance of the algorithm is enhanced by

cache-fetch implementation. Two case studies have been conducted to evaluate the proposed TSA

algorithm for stacking sequence optimisation of composite laminates. The first one is the thermal

buckling of composite laminate panels. The second case study is buckling load optimisation of

composite cylinder. Following are some of the conclusions based on the studies carried out in this

paper

i. Among all the neighbourhood search techniques presented, adaptive neighbourhood search

technique proposed in this paper for combinatorial optimisation found to be effective in

obtaining optimal stacking sequences and also maintaining relatively higher computational

efficiency. 

ii. The geometric temperature decrement operator is found to be superior for stacking sequence

optimisation of laminate composite panels and value of α ranging from 0.88 to 0.92 can be

employed to obtain optimal sequences without compromising on the computational performance. 

iii. Convergence of adaptive iteration scheme in the Metropolis algorithm found to be too slow

Fig. 9 Pareto optimum trade-off solutions obtained using TSA for the bi-material composite laminate cylinder



Optimal stacking sequence design of laminate composite structures 267

when compared to the constant number of iterations.

iv. TSA algorithm is as effective as genetic algorithm in obtaining multiple near optimal

solutions as is evident from the studies presented in Tables 3 and 7. Further, numerical studies

indicate that the optimal ply sequences obtained using simulated annealing are either

comparable or superior to most of the GA implementations. The computational performance

of SA is also found to be relatively superior for the problems solved in the paper.

v. It can be observed from the optimal stacking sequences presented in this paper that the

stacking sequences with maximum buckling load are dominated by 45o plies and 0o plies are

either minimum or completely absent. This indicates that 45o plies have major influence in

improving the buckling characteristics of the composite panels. 

vi. Numerical studies on buckling strength of composite cylinder indicate that boron and graphite

are more superior when compared to kevlar and glass. Buckling strength of boron-epoxy is

approximately four times higher when compared to glass-epoxy. 

vii. Tabu search (TS) and simulated annealing diversify the search in order to escape from local

optima in contrasting styles. While TS works in a deterministic way so that its exploring trail

is fixed, SA does so in a non-deterministic way and its exploring trails vary in different tries.

The proposed meta-heuristic algorithm called TSA has been devised by synthesizing the

exploring features of both SA and TS in order to enhance the diversification mechanism. The

exploring characteristics of the TSA algorithm are clearly evident from the results given in

Table 10. 

viii.The proposed TSA algorithm is employed to solve a multi-objective optimisation problem of

a hybrid laminate composite by simultaneously optimizing weight and cost using weighted

aggregating approach. Numerical studies indicate that the trade-off solutions (Pareto-front) can

be obtained for the multi-objective problem employing the proposed TSA algorithm. When

cost is a primary consideration glass-epoxy can be used and when weight is a primary

consideration, graphite-epoxy can be preferred. Compromise designs can easily be selected

from the trade-off solutions. 
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