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Abstract. The problem related to the computation of bounds on plastic deformations for structures in
plastic shakedown condition (alternating plasticity) is studied. In particular, reference is made to structures
discretized by finite elements constituted by elastic perfectly plastic material and subjected to a special
combination of fixed and cyclic loads. The load history is known during the steady-state phase, but it is
unknown during the previous transient phase; so, as a consequence, it is not possible to know the
complete elastic plastic structural response. The interest is therefore focused on the computation of bounds
on suitable measures of the plastic strain which characterizes just the first transient phase of the structural
response, whatever the real load history is applied. A suitable structural model is introduced, useful to
describe the elastic plastic behaviour of the structure in the relevant shakedown conditions. A special
bounding theorem based on a perturbation method is proposed and proved. Such theorem allows us to
compute bounds on any chosen measure of the relevant plastic deformation occurring at the end of the
transient phase for the structure in plastic shakedown; it represents a generalization of analogous bounding
theorems related to the elastic shakedown. Some numerical applications devoted to a plane steel structure
are effected and discussed.
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1. Introduction

As it is well known, structures, for the greater part (sometime the whole) of their lifetime, are

subjected to the so-called load serviceability conditions which are usually slightly variable, while for

short periods (often during just a few dozen seconds) they can suffer very high intensity loads

characterized by great variability.

In the framework of the structural analysis or design problems, the analytical representation of a

load condition as above described is often very difficult. On the other side, the scientific and

practice engineering interest is substantially related to the possibility of ensure suitable safety factors

for the structure with respect to prefixed mechanical and/or kinematical limit conditions.

As a consequence, very often structures are considered as subjected to (variable) actions which

are usefully described as a simple combination of fixed loads and cyclic loads arbitrarily varying
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within given limits. Such a representation is near enough to the real loading condition and,

furthermore, it is related to a very special structure behaviour. Actually, in this condition, structures

are characterized at first by a transient (short-term) response, and eventually by a steady-state (long-

term) response, the latter being independent of the initial conditions and possessing the same

periodicity features as the acting cyclic loads (Zarka and Casier 1979, Zarka et al. 1990, Polizzotto

et al. 1990, Polizzotto 1994a,b).

In many cases of practical interest, structures are constituted by elastic plastic material possessing

suitably wide ductility properties, so they can be usefully required to operate beyond their elastic

limit when they are subjected to the action of a load combination as above described. Under such

conditions, and for load intensities not exceeding suitable limits, the elastic shakedown theory

provides useful tools in studying the behaviour of the relevant structure; in particular, the so-called

shakedown limit load multiplier provides an effective safety factor for the structure (see, e.g., Melan

1938a,b, Koiter 1960, Polizzotto 1978, König 1987), as well as the so-called bounding techniques

provide limits on suitably chosen measures of the plastic deformations related to the transient phase

of the elastic shakedown response of the structure (see, e.g., König 1979, Capurso et al. 1979,

Polizzotto 1982, Giambanco and Palizzolo 1997).

Furthermore, if the load multipliers exceed the elastic shakedown limit, then the structure is

addressed towards a collapse condition, either due to a plastic shakedown behaviour (oligocyclic

fatigue or alternating plasticity) or to a ratchetting behaviour (incremental collapse). Finally, for

increasing values of the load multipliers the structure is eventually addressed towards an

instantaneous collapse.

Therefore, depending on the load multiplier values a structure can exhibit: an elastic behaviour, an

elastic shakedown behaviour, a plastic shakedown behaviour, a ratchetting behaviour, or it can be

exposed to instantaneous collapse. In the space of the fixed and cyclic load multipliers it is very

useful to make reference to the graphical representation of these behaviour zones on the so called

Bree-like diagram (Fig. 1), whose knowledge is of crucial importance to establish if the assigned

structure/load system safely operates with potentially different load conditions.

Obviously, above the elastic shakedown limit (and below the instantaneous collapse limit) it is

Fig. 1 Typical Bree-like diagram for: (a) mechanical cyclic loads, (b) thermal cyclic loads
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preferable that the structure behaves in condition of plastic shakedown, rather than in condition of

ratchetting; actually, in such condition, the structure is able to suffer a greater number of load cycles

without loosing its functionality and usually the second order geometrical effects due to the

occurring plastic strains can be considered as negligible.

As above stated, the plastic shakedown steady-state structural response possesses the same

periodicity features as the loads and it can be determined by solving a sequence of linear

complementarity problems related to the given load condition. The kinematical part of such a

response provides the steady-state plastic strain history during the cycle and, as a consequence, it is

possible to compute any chosen measure of such deformations, but, unfortunately, the same

response does not provide any information about the plastic deformations occurring during the

initial transient phase, and, as a consequence, the knowledge of such a response does not allow to

check the respect of some ductility limits and/or functionality limits for the structure.

However, there are infinite admissible load histories through which the steady-state load condition

is reached and, obviously, it is not possible to effect the elastic plastic analysis for each of them. If

an admissible load path is arbitrarily chosen, then it is possible to effect a stepwise analysis and,

furthermore, to compute the transient and steady-state elastic plastic response of the structure to the

relevant load, but such a results can not be considered exhaustive about the structural behaviour in

the defined load condition.

Since the knowledge of the elastic plastic structural behaviour during the transient phase plays an

important role on the check related to some prefixed ductility limits and/or functionality limits for

the structure, then, in order to obtain at least rough information about the plastic deformations

occurring at the end of the transient phase, it is necessary to make reference to other analytical and/

or numerical procedures and, in the relevant case, to suitable bounding techniques. These techniques

allow us to evaluate bounds on some prefixed measures of the plastic deformations which the

structure suffers at the end of the transient phase response, whatever the loading history is during

the unknown transient phase load path.

To the author’s knowledge, studies devoted to the formulation of bounding principles analogous to

the above referred ones related to the elastic shakedown but holding for the present case of

structures behaving in condition of plastic shakedown have never been effected; previously, (see,

e.g., Giambanco and Palizzolo 1996) just a particular case of bounding technique has been treated,

but related to the special case of load intensities slightly above the elastic shakedown limit.

The present paper, therefore, is mainly devoted to the formulation of a bounding principle useful

in order to compute bounds on suitably chosen measures of the plastic deformations which

characterize the transient phase response of an elastic perfectly plastic structure in condition of

plastic shakedown.

Actually, if for structures behaving in condition of elastic shakedown it can be useful to have

information, although rough, about the extent of the plastic deformations occurring during the

transient phase, then such information is even more decisive when structures behave in a steady-

state condition of alternating plasticity, due to the simultaneous presence of transient and steady-

state phase plastic deformations.

In particular, the structure will be considered as subjected to a combination of fixed and perfect

cyclic loads adopting the restrictive hypothesis of mechanical fixed loads and mechanical perfect

cyclic loads, being the cyclic load a perfect one if for each value of the load intensity the opposite

one occurs after half a cycle.

At first the structural model and the related elastic plastic behaviour will be described, making
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reference to the finite element discretized structure; then the steady-state response related to the

cyclic loads will be described. In particular, the problem related to the determination of the

bordeline between (elastic/plastic) shakedown domains and incremental/instantaneous collapse

regions on the Bree diagram (see, e.g., Polizzotto et al. 2001, Ponter and Haofeng 2001, Giambanco

et al. 2002, 2004) will be appropriately formulated.

Furthermore, a suitable bounding theorem based on a perturbation method will be formulated and

proved, adopting for the load multipliers appropriate and quite general time functions, so as any

admissible load history can be represented, and making use of the particular features related to the

elastic plastic steady-state response of the structure subjected just to the perfect cyclic load. This

theorem, devoted to structures behaving in condition of plastic shakedown, represents a

generalization of other bounding principles, previously referenced and related to structures in

condition of elastic shakedown, which can be deduced by the proposed one as suitable

specialization through appropriate positions related to the load multiplier values.

Finally, some numerical applications related to a steel structure will be described; the obtained

results will be reported in order to emphasize the features and the applicability of the proposed

bounding technique.

2. Structural model and elastic plastic behaviour

Let us consider a structure discretized into n finite elements. Let us assume that the elements

exhibit an elastic perfectly plastic behaviour and that, for each element, plastic deformations can

occur just at the plastic nodes (i.e., Gauss points), which are conceived as sources from which

plastic strains spread within the element volume, according to fixed shape functions (see, e.g.,

Corradi 1983). It is worth noticing that plastic nodes and element nodes are generally not

coincident. The elastic plastic behaviour of the typical structural element can be usefully described

in terms of generalized variables (generalized stresses and strains). Let us suppose that the loads

acting on the structure, F = F(t), are variable in time quasi-statically and that they are defined

within the time interval . The time t is not the physical time, but just some monotonically

increasing parameter aimed at correctly specifying the loading sequence.

In the hypothesis of small displacements and homogeneous kinematical initial conditions,

assuming that the elastic domain of the typical element is a convex and temperature-independent

hyperpoliedric function, the elastic plastic behaviour of the structure at time t is described by the

following equations:

(1a)

(1b)

(1c)

(1d)

(1e)
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where u is the structure node displacement vector, p the generalized plastic strain vector evaluated

at the strain points,  the external stiffness matrix with C compatibility matrix and De

block diagonal element internal stiffness matrix,  the pseudo-force matrix, being Gp a

matrix which applied to plastic strains provides element nodal displacements,  the

equivalent nodal load vector with  representing the vector of the loads directly acting upon the

structure nodes and F* representing the nodal load vector equivalent to the actions applied upon the

elements, P the generalized stress response vector evaluated at the strain points, P* the generalized

stress response vector evaluated at the strain points but due just to the loads directly acting upon the

structural elements,  the block diagonal stiffness matrix related to the strain points, ϕ

the yield function vector which also plays the role of plastic potential, N the block diagonal matrix

of unit external normals to the yield surface, R the plastic resistance vector and, finally,  the

plastic activation vector.

Substituting Eq. (1a) in Eq. (1b) and the modified version of Eq. (1b) in Eq. (1c), taking into

account Eq. (1e) the solving set, that must be satisfied for all t , is obtained in the

following form:

(2a)

(2b)

where just the independent unknown vectors ϕ and  appear.

Problem (2) refers to a structure discretized into finite elements and with a discrete yield surface,

but it is yet continuous with respect to the time t. At least in principle Eqs. (2), plus the appropriate

initial conditions at t = 0, can be integrated with respect to time t in order to obtain the unknown

vectors ϕ and , and therefore, through Eqs. (1), the elastic plastic structural response. Anyway, in

practice, in order to obtain a numerical solution to problem (2), it is necessary to discretize the

problem also with respect to the time, for example subdividing the time axis into m time

subintervals with the same width . During the typical subinterval k (and, namely

) the unknown time function , , is modelled

in such a way it can be expressed in terms of a time independent unknown nonnegative vector Y k, i.e.:

(3a)

where  is a suitable square dimensional matrix with nonnegative time function entries and such

that

(3b)

being I the identity matrix. Y k is often called the plastic activation intensity vector.

Due to the plastic activation intensity modelling described by Eqs. (3), elastic unloading can occur

just at the m prescribed discretization instants; namely, every element will remain either in the

elastic regime or in the elastic plastic one during each step, and the last of Eq. (2b) becomes

meaningless. Although Eqs. (2) can not be satisfied at some instant , however, they must

be satisfied in the following integrated, holonomic form:
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(4a)

(4b)

Very often, in order to simplify the plastic activation modelling, a stepwise constant shape for 

is chosen, i.e.,  is suitably assumed. In such a case, it results:

(5a)

(5b)

where −S is a time independent symmetric structural matrix which transforms the plastic activation

intensities Y k into the plastic potentials ϕ k, b k is a known vector depending on the pertinent loading

at step k, on the increments of the plastic activation intensity vectors accumulated at step , and

on the known constant plastic resistance vector R. In virtue of the effected time discretization,

problem (2) transforms into the following sequence of linear complementarity problems:

(6)

In the present case matrix S is positive semi-defined (see, e.g., Maier 1968), and as a

consequence, neither the existence of a bounded solution Y k, nor its uniqueness is ensured (see, e.g.,

Cottle 1992). If Eqs. (6) admit an unbounded solution Y k (at least somewhere in the structure),

instantaneous collapse occurs; if they admit a vanishing solution Y k, the full structure is elastic;

finally, if they admit a finite no vanishing solution Y k, the structure exhibits an elastic plastic

behaviour. In this last case, any two solutions to the same problem can differ at least by a stressless

(i.e., compatible, corresponding to a mechanism) set of plastic deformations (see, e.g., Maier 1968).
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k
Z

k≥≥ 0 k 1 2 … m, , ,=( )=

Fig. 2 Typical fixed and cyclic load history
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3. Cyclic loads and steady-state structural response

Very often engineering practice structures are subjected to the contemporaneous action of fixed

and cyclic loads. Therefore, let us suppose that the acting load , is

represented by the combination of a reference mechanical fixed load  and a reference

mechanical cyclic load  of period ∆t (Fig. 2).

In addition, let us assume that the cyclic load identifies with a convex polygonal shaped loading

path with vertices corresponding to an even number b of mutually independent load vectors,

denoted with Fci, . Furthermore, let us assume the hypothesis that the cyclic

load is a perfect one, namely for each basic load condition an opposite one exists in the load space.

Finally, let us introduce the two scalars  and , which represent the fixed and the cyclic

load multipliers, respectively, so that  and  are the amplified fixed and cyclic loads.

For an assigned loading history (as for example, applying at first the fixed load and successively

the cyclic load starting from an arbitrary vertex) the elastic plastic response of the structure can be

obtained by a step-by-step analysis effected for a given number of cycles, following the same

procedure as in the previous section.

As it is well known (see, e.g., Zarka and Casier 1979, Zarka et al. 1990, Polizzotto et al. 1990,

Polizzotto 1994a,b), in the described load condition the response of the relevant structure follows

two subsequent phases: first a transient (short-term) response and eventually a steady-state (long-

term) response. The latter exhibits the same periodicity features as the cyclic loads and it is

independent of the initial conditions and of the special chosen load path. On the contrary, for each

cycle of the loading history, the steady-state response just depends on the sequence of the b

amplified basic load conditions, , obtained as combination of the

amplified fixed and cyclic loads.

As a consequence, the elastic plastic steady-state response of the structure in the cycle can be

obtained by an analysis effected just for the b basic load conditions, i.e.:

(7a)

(7b)

where

(7c)

and Yi is the vector of plastic activation intensities related to the i-th basic load condition.

The increment of plastic strain in the cycle (ratchet strain) can be expressed as:

(7d)

According to a terminology previously introduced in (Polizzotto et al. 1990), the plastic strain

process related to the long-term response is referred to as the Plastic Accumulation Mechanism

(PAM), that is a plastic strain rate cycle resulting in a compatible plastic strain field (the ratchet

strain ∆p). Depending on the type of PAM and for loads above the purely elastic limit, three

different types of steady-state responses are usually distinguished:
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(i) elastic shakedown (or simply shakedown), when the PAM is a trivial one, i.e., the plastic strain

rates vanish identically and the structural response is eventually elastic ;

(ii) plastic shakedown (or alternating plasticity collapse, or oligocyclic fatigue), when the PAM is

a non-trivial one, but the plastic strain field resulting in the cycle is nought ;

(iii) ratchetting (or incremental plastic collapse), when the PAM is a non-trivial one, and the

ratchet strain is non-vanishing, at least somewhere in the structure volume, causing the plastic

strain to progressively increase.

For the purposes of the present paper it is very useful to consider the steady-state elastic plastic

response of the structure subjected just to the amplified perfect cyclic loads , , and

separately the purely elastic response of the same structure to the amplified fixed loads ;

moreover, in order to describe the shakedown behaviour of the structure it can be useful to

determine, on the Bree diagram (Fig. 3), the borderline between the (elastic/plastic) shakedown

domains (zones S + F of the Bree-diagram) and the incremental/instantaneous collapse regions

(zones R + I of the Bree-diagram) of the relevant structure, solving the following problem (see, e.g.,

Giambanco et al. 2004):

(8a)

(8b)

(8c)

(8d)

(9a)

(9b)
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Fig. 3 Borderline (thick line) between the elastic/plastic shakedown domains (zones S + F ) and the
incremental/instantaneous collapse regions (zones R + I )
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subject to (9c)

(9d)

for a suitably chosen number of assigned cyclic multiplier values , such that , being

 the limit cyclic load multiplier value above which the structure subjected just to the amplified

perfect cyclic loads instantaneously collapses (Fig. 4).

In Eqs. (8)-(9), besides the already defined symbols, Pci and uci are the purely elastic response just

to the i-th reference cyclic load in terms of generalized stresses evaluated at the strain points and in

terms of structure node displacements, being  the generalized stress response vectors evaluated

at the strain points due to the i-th cyclic load directly acting upon the structural elements, while ϕci

and Yci are the analogous of ϕi and Yi but related to the purely cyclic load. Furthermore, P0, u0 and

 are the analogous of Pci, uci and , but related to the reference fixed load,  is the vector of

plastic potentials for the structure at the limit state of (elastic/plastic) shakedown (depending on

value of ) related to the i-th basic load condition, while Y0 is a time independent vector of plastic

activation intensities related with the selfstress field at the (elastic/plastic) shakedown limit.

If  is assumed, being  the elastic shakedown limit load multiplier for the structure

subjected just to the cyclic load (Fig. 4a), then Eqs. (8) admit the vanishing solution ,

, and in the steady-state phase the whole structural behaviour is eventually elastic. In this

case the couple of values , deduced solving problem (9), represents a point of the

borderline between the elastic shakedown domain and the incremental/instantaneous collapse

regions. Otherwise, if  is assumed (Fig. 4b), then Eqs. (8) admit a non-vanishing

solution, Yci, at least for some , and the structure eventually exhibits a steady-state elastic

plastic behaviour, so that the couple of values  represents a point of the borderline

between the plastic shakedown domain and the incremental/instantaneous collapse regions. Anyway,

in this last case, the increment of plastic strain in the cycle is nought, i.e.:
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a,[ ]

Fig. 4 Determination of the shakedown boundary: (a) elastic shakedown, (b) plastic shakedown
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(10)

The results obtained by means of the previously described analyses are very consistent but,

unfortunately, they are not complete enough in order to give a definitive judgement on the structural

safety with respect to some appropriate prefixed ductility and/or functionality limits. Actually, as

already stated, the solution of the above described problems can not provide any information about

the elastic plastic response which the structure exhibits during the transient phase; however, such an

information can not be determined even making recourse to a step by step analysis because, usually,

the load path is unknown. As a consequence, in order to obtain at least some rough indication about

such a response, it is possible to make reference to the bounding techniques.

In the following section a special bounding theorem, based on a perturbation method and devoted

to structure in plastic shakedown, is proposed and proved; it represents a generalization of other

known bounding principles formulated in the context of the elastic shakedown.

4. Bounding principle

As previously stated the unknowledge of the loading path through which the steady-state load

condition is reached makes impossible the determination of the actual elastic plastic transient

response of the structure which depends just on the loading history. However, it must be noticed

that the unknowledge of the loading path is usually due to the unknowledge of the load multiplier

intensity variation, being the reference basic load intensities generally given.

Therefore, let us suppose that the cyclic load multiplier ξc can vary as unknown function of the

time t, and let us denote with  its maximum assigned value. Furthermore, let us assume that

. This last simplifying hypothesis can be accepted accounting for the very smooth

expected variability of the relevant fixed loads. Obviously,  and  have to be considered as

known values; actually, they represent the safety factors with respect to some prescribed limit

conditions for the relevant structure. As a consequence, any load history is characterized by the load

multipliers defined as follows:

p∆ NYci

i 1=

b

∑ 0= =

ξc

ξ0 t( ) ξ0= t∀ 0≥
ξ0 ξc

Fig. 5 , : plastic shakedown load multipliers; , : plastic shakedown limit load multipliersξ0 ξ c ξ0

l

ξ c
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, (11a)

, (11b)

where t1 is a suitably chosen instant such that for each  the loads become steady-state.

Furthermore, in order to prescribe the desired structural behavior, let us assume that the couple of

multiplier values  identifies a point belonging to the plastic shakedown region of the Bree

diagram of the structure (Fig. 5). As it will be shown hereafter, it can be useful to identify the

instant t1 as a multiple of the load period ∆t, i.e., , being n1 a suitably chosen integer.

Keeping in mind Eqs. (8)-(9), making reference to the cyclic load as a known function of time t

as previously described, taking into account definitions (11a,b), remembering that the maximum

values of the load multipliers  and  characterize the plastic shakedown condition for the

structure and denoting with > t1 a suitably chosen subsequent instant such that for 

the structural response is steady-state, the following relations hold true:

(12a)

(12b)

(12c)

(12d)

(12e)

(12f)

(12g)

(12h)

where Eq. (12e) ensure the vanishing of the plastic strain increment in the cycle, according to the

cyclic load path previously described and to the assigned value of the cyclic load multiplier.

Furthermore, in Eqs. (12), besides the already defined symbols,  and  are the

purely elastic response of the structure, subjected just to the cyclic loads , in terms of node

displacements and generalized stresses, respectively;  are the plastic activation vector

and the generalized plastic strains related to the plastic shakedown behaviour of the structure

subjected just to the amplified cyclic loads , respectively, while ϕc and  represent the

plastic potential related to the structure subjected just to the amplified cyclic loads in a steady-state

condition of alternating plasticity and the analogous plastic potential of the same structure but

related to the full presence of the acting (amplified fixed and cyclic) loads, respectively, according

with the described load history.

Vector Y0, appearing in Eq. (12h), can be deduced by the solution to the following maximum

problem:
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(13a)

(13b)

subject to (13c)

(13d)

Actually, taking in mind Eqs. (9), vector Y0 deduced by the solution to problem (13) ensures the

satisfaction of Eq. (13d) for  and  (Fig. 5). As a consequence, remembering

positions (11), Eq. (13d) implies that even the following relation holds true:

(14)

It is worth noticing that relation (12h) can be easily deduced from this last inequality as

specialization through suitable position related with  and for .

As previously stated, Eqs. (12)-(14) do not provide any information about the elastic plastic

structural response during the transient phase. Therefore, taking in mind the unknowledge of the

history which describes the load multiplier value variation, and with the aim of obtaining at least

some indication about the elastic plastic response which the structure exhibits during the transient

phase, it is possible to make reference to a suitable bounding theorem based on a perturbation

method. The bounding technique here proposed and proved, which represents a special

generalization of analogous principles formulated in the context of the elastic shakedown (see, e.g.,

Polizzotto 1982), is devoted to the computation of a bound on a chosen measure of the plastic

deformations which eventually occurr at the end of the transient phase.

With this aim, let us consider the relevant finite element elastic perfectly plastic structure

subjected to the described combination of amplified fixed and cyclic loads. For each  the

elastic plastic response is governed by the following equations:

(15a)

(15b)

(15c)

(15d)

where P0 is computed by means of Eqs. (12f,g) and  is the actual plastic deformation

vector.

Let us assume now that  can be computed as sum of the plastic strain rates due to the

amplified cyclic load  , plus a new unknown plastic strain vector, , substantially related to

the transient phase, i.e.:
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(16a)

that, in terms of plastic activations, is analoguos to the following relation:

(16b)

where  is related to the purely cyclic loads while  is a new unknown function of

the time t.

Since  is a known history of plastic activations, as a consequence of positions (16), Eq. (15c)

transform into:

(17a)

(17b)

Basing, as previously stated, on the perturbation method of the bounding theory, let us introduce

the linear perturbation mode vector  and the related perturbation multiplier ω > 0 (see, e.g.,

Polizzotto 1982).

It is worth noticing that suitably choosing the perturbation vector  it is possible to obtain

bounds on different quantities related to the actual process, while the value of ω influences the

stringentness of the bounds to be computed.

Introducing the perturbation quantities in Eqs. (14), the following relations hold:

, , (18)

where  is the perturbed yield function, while vector  can be deduced by the solution to the

following maximum problem:

(19a)

(19b)

subject to (19c)

, ,  (19d)

It is worth noticing that Eqs. (15) and (17) concern the actual elastic plastic response of the

structure, while Eqs. (18) represent the fictitious plastic shakedown conditions related to the

perturbed plastic potential.

Utilizing Eq. (17b) and taking in mind that the opposite of the perturbed plastic potential (Eq.

(19d)) must be nonnegative, as well as the introduced unknown , the following inequality holds:

,  (20)
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If into inequality (20) the plastic potential vectors ϕ and  are expressed through their relevant

form deduced by Eqs. (17) and (18), the following inequality can be written :

(21)

which, with appropriate simplifications, reduces to:

(22)

Vector  is time independent, so that its time derivative  is certainly nought. As a

consequence, the inequality (22) can be rewritten in the following analogous form:

(23)

Integrating inequality (23) from the initial instant t = 0 to the selected time , in

correspondence of which the structural response is eventually steady-state

(24)

one obtains:

(25)

Remembering that on  homogeneous initial conditions have been imposed and that ,

inequality (25) can be simplified as follows:

(26)

Finally, on the grounds of the positivity of the quadratic form depending on , the

bounding inequality (26) can be reinforced as follows:

(27)

Inequality (27) represents the searched bounding principle on the chosen measure of the plastic

deformations produced during the transient phase: whatever the real load history during the transient

phase, the measure of the real plastic deformation related to the actual elastic plastic response, on

the left hand side in inequality (27), results not greater than the bounding quantity, on the right hand

side of the same inequality, related to the fictitious elastic plastic process.

It is worth noticing that inequality (27) holds in both cases of elastic and plastic shakedown;

actually, in the first case the previous proof can be easily effected assuming ,
 in order to obtain the same relation (27).
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Ŷ0 Ŷ
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Appropriate choices of the perturbation vector  provide bounds on any measure of the plastic

deformations related to the structure transient response as function of . It is worth noticing that

the choice of the time  ensures the measure of quantities related to the transient phase;

actually, the structure behaves in condition of plastic shakedown and, as a consequence, the plastic

strain increment in the cycle is nought at every  .

5. Application

As an application the steel frame plotted in Fig. 6 has been studied, where its geometry and load

condition is represented.

The frame is subjected to a fixed uniformly distributed vertical load q0 = 35 kN/m acting on the

beams and to perfect cyclic horizontal loads applied at each floor, represented in Fig. 6, and

considered in the computational stage, as concentrated nodal forces , whose

intensities, deduced according to the Italian technical rules, are given as follows: F1 = ±4.74 kN,

F2 = ±9.74 kN, F3 = ±14.6 kN, F4 = ±19.46 kN.

The structure is discretized into beam-type finite elements, constituted by elastic perfectly plastic

R̂

Ŷ0

t2 n2 t∆=

n t∆ n n2≥( )

Fj j 1 2 3 4, , ,=( )

Fig. 6 Steel frame: geometry and load conditions
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material. In particular, two rigid perfectly plastic hinges are located at the extremes of all elements,

which are considered as purely elastic, while an additional rigid perfectly plastic hinge is located in

the middle point of each beam (Fig. 7a). The material is characterized by the following mechanical

properties: Young modulus E = 20600 kN/cm2, yield stress σy = 23.5 kN/cm2.

The interaction between the bending moment M and the axial force N has been taken into account

and in Fig. 7(b) the relevant dimensionless rigid plastic domain of the typical rigid perfectly plastic

hinge is plotted in the plane (N/Ny , M/My), being Ny and My the yield axial force and bending

moment, respectively.

The elements of the frame are characterized by a rectangular box cross-section as represented in

Fig. 7(c). All the frame elements (beams and columns) have the same width, B = 200 mm, and the

same height, H = 400 mm. On the contrary, the constant thickness of each element is provided by

the solution of an appropriate (minimum volume) plastic shakedown design problem previously

effected and reported in (Benfratello et al. 2006).

Fig. 7 Typical structural element: (a) elastic portions and rigid perfectly plastic hinge location, (b)
dimensionless rigid perfectly plastic hinge domain, (c) rectangular box cross-section 

Table 1 Limit load multiplier values and optimal element thicknesses (mm)

s1 s2 s3 s4

1 4 5.66 4.00 7.39 10.78

s5 s6 s7 s8 s9 s10

9.37 19.21 8.22 14.50 14.02 4.00

s11 s12 s13 s14 s15 s16

5.59 6.15 6.68 6.65 12.66 14.29

s17 s18 s19 s20 s21 s22

14.96 4.00 7.16 13.79 14.72 14.02

ξ0 ξ c
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In particular, the referenced optimal design of the structure plotted in Fig. 6 has been determined

assuming  and  as fixed load multiplier and cyclic load multiplier values,

respectively. The obtained optimal thicknesses, sn, are reported in Table 1, together with the limit

load multiplier values.

First of all, the Bree diagram of the optimal structure has been determined and plotted in Fig. 8. It

is worth noticing that the couple of values  individuates a limit plastic shakedown

condition as required by the imposed design constraints. Furthemore, in order to investigate about

the complete elastic plastic response, a stepwise elastic plastic analysis of the structure has been

worked out, assuming that the steady-state referred limit values of the load multipliers are reached

following the history represented in Fig. 9. It is worth noticing that the path plotted in Fig. 9

represents just one among the infinite admissible paths through which the steady-state condition is

reached. Finally, in order to determine a check parameter related to the ductility behaviour of the

structure in such a limit load condition, the residual horizontal displacement of the fourth floor,

related to the transient phase, has been computed: . Such a parameter (plastic

displacement) has been chosen as suitable measure of the plastic deformations occurring during the

transient phase to be bounded utilizing the proposed principle.

Assuming  and, therefore, moving within the plastic shakedown domain, four

different values have been alternatively assigned to the chosen bound, and in particular: b = 20 mm;

50 mm; 100 mm; 150 mm, obtaining four different values of the fixed load multiplier related to the

relevant perturbed plastic shakedown limit condition, i.e., 0.349; 0.599; 0.647; 0.723,

respectively, solving the following problem:

(28a)

(28b)

(28c)

ξ0 1= ξ c 4=

ξ0 1= ξc 4=,( )

u4

res
53.2 mm=

ξc ξc 4= =

ξ̂ 0 =

Kuci Fci– 0= i∀ I b( )∈

Pci B̃uci Pci

*
+= i∀ I b( )∈

ϕci– R ξcÑPci– SYci+= i∀ I b( )∈

Fig. 8 Bree diagram of the minimum volume plastic
shakedown design

Fig. 9 Load multiplier history
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(28d)

(29a)

(29b)

subject to (29c)

(29d)

(29e)

(29f)

It is worth noticing that ω = 5 has been chosen in all the effected computations, resulting such a

value the optimal one (in order to maximize ) among a discrete set of prefixed suitably chosen

values.

The results obtained by the analyses related to the four different new couples of load multiplier

values are summarized in Table 2, always in terms of residual horizontal displacement of the fourth

floor occurring during the transient phase.

ϕci– 0, Yci 0, Ỹciϕci≥≥ 0= i∀ I b( )∈

Ku0 F0– 0=

P0 B̃u0 P0

*
+=
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– R ωR̂– ξcÑPci– ξ0ÑP0– SYci SŶ0+ + 0≥≡ i∀ I b( )∈

Ŷ0 0≥

Ŷ
˜
0SŶ0 2ωb≤

ξ̂ 0

Table 2 Imposed bound values (mm) and obtained load multipliers and residual displacements (mm)

b --- 150 100 50 20

ξ0 1 0.723 0.647 0.599 0.349

ξ
c

4 4 4 4 4

53.20 27.05 18.95 8.06 7.74u4

res

Fig. 10 Bree diagrams obtained taking into account the four assigned bound values (mm)
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In order to provide more complete information about the elastic/plastic behaviour of the structure

in the above referred perturbed conditions, in Fig. 10 the borderlines related to the elastic/plastic

shakedown limit with constraints on plastic deformation, obtained taking into account the four

previously assigned bound values, are plotted.

6. Conclusions

In the present paper a special formulation of a bounding principle devoted to compute bounds on

suitable measures of the plastic deformations which characterize the transient phase response of

elastic perfectly plastic structures subjected to a combination of fixed and perfect cyclic loads in

condition of plastic shakedown, has been proposed.

At first, the utilized structural model and the related elastic plastic behaviour have been described

in an appropriate form, as well as the problem to be solved in order to determine the borderline

between elastic/plastic shakedown domains and incremental/instantaneous collapse regions on the

Bree diagram has been suitably formulated. In particular, the latter maximum problem has been

solved by determining, separately, the elastic plastic response of the relevant structure subjected just

to the amplified perfect cyclic loads and, successively, the purely elastic response of the same

structure to the amplified fixed loads.

Furthermore, the relations describing and governing the elastic plastic steady-state response of the

structure in condition of plastic shakedown have been reported, assuming suitably chosen special

time functions for the load multipliers. Due to the unknowledge of the load multiplier history

through which the steady-state condition is reached, such a response can not provide any useful

information regarding the transient phase response of the structure and, as a consequence, in order

to have although rough evaluation of this response, it has been necessary to make reference to the

bounding theory.

So, a suitable bounding theorem has been proposed and proved; it allows to compute bounds on

any chosen measure of the plastic deformations related to the transient phase of an elastic perfectly

plastic structure subjected to the described load conditions and exhibiting a steady-state plastic

shakedown behaviour. It represents a generalization of analogous bounding theorems related to the

elastic shakedown theory and based on a perturbation method.

Finally, in the framework of the numerical applications, reference has been made to steel

structures. A four floor frame, with element constituted by rectangular box cross-section and

subjected to a combination of fixed and perfect cyclic loads amplified by assigned values of the

load multipliers, has been studied in order to compute bounds on a suitable measure of the plastic

deformations which characterize the transient phase response of the structure. In particular, the

chosen quantity to be bounded has been the maximum horizontal residual displacement of the

fourth floor. The effected numerical application confirmed the theoretical expectations.
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