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Abstract. Dynamic behaviors of the contact surface between ball and raceway in a guideway
mechanism vary with the applied loads and hence affect the mechanical responses of machine tools. The
study aims to investigate the nonlinear characteristics of dynamic behaviors at the rolling contact interface
in linear guideway mechanisms. Firstly, analytical method was introduced to understand the contact
behaviors based on Hertz contact theory in a point-to-point way. Then, the finite element approach with a
three-dimensional surface-to-surface contact model and appropriate contact stiffness was developed to
study the dynamic characteristics of such linear guideways. Finally, experiments with modal test were
conducted to verify the significance of both the analytical and the numerical results. Results told that the
finite element approach may provide significant predictions. The study results also concluded that the
current nonlinear models based on Hertz’s contact theory may accurately describe the contact
characteristic of a linear guideway mechanism. In the modal analysis, it was told that the natural
frequencies vary a little with different loading conditions; however, the mode shapes are changed
obviously with the magnitude of applied loads. Therefore, the stiffness of contact interface needs to be
properly adjusted during simulation which may affect the dynamic characteristics of the machine tools. 

Keywords: linear guide; Hertz theory; contact stiffness.

1. Introduction

Recently, the requirement of precision machine technology in the field of modern science and

industry is appreciable. For purpose of achieving high-speed and precise positioning, it is necessary

to fully understand the mechanical charcateristics of the driving mechanisms. The lower frictional

force and higher performance than traditional linear slide rail, ball-type linear guideway is now most

widely applied as a driving mechanism. In such systems, force transferred between carriage blocks
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and guideway is performed via ball bearing. In the analysis of static and dynamic behaviors, a linear

spring is generally used to simulate the behavior of contact between balls and carriage. However,

from the viewpoint of Hertz’s contact theory, the deformation at the contact point of raceway

groove is highly nonlinear related to the contact loading applied to the balls. This characteristic may

cause the contact stiffness of the balls within guidway to vary with the acting loads. In addition,

when the carriage block of a linear guide system withstands moments, the deformation of ball

groove of the carriage may affect the contact stiffness and dynamic behavior of the guideway

structures. Therefore, the influence of moments upon the dynamic behavior of linear guideway is

worthy for further investigation. 

In the past, there were numerous applications with Hertz’s contact theory, of which Lynagh (2000)

and Hernot (2000) discussed respectively the vibration and stiffness matrix of ball bearings via

nonlinear relationship of Hertz. In addition, Pimsarn and Kazerounian (2002) also put forward the

theory of PISE (pseudo-interference stiffness estimation) based on Hertz’s theory, which was used to

estimate the stiffness of gears. Through the study of a ball-type linear guideway, (Ohta 1999) (Ohta

and Hayashi 2000) derived the governing motion equations by Lagrange’s approach and utilized

finite element method to identify the dynamic behavior of the carriage of a linear guideway, and the

mode shapes were characterized as the lower rolling, yawing, pitching, vertical, higher rolling

vibration. In their studies, the contact status between rolling balls and raceway groove of carriage

and rail was modeled as an one-dimensional point-to-point contact model and the ball was

substituted by an axial spring. However, the contact configuration of a guideway is actually a type

of surface contact module and hence can not be fully described by such a spring element. 

The study was aimed to investigate the nonlinear contact characteristics at the rolling interface in

linear guide mechanisms. The Hertz’s contact theory was employed and the nonlinear characteristics

of the contact interface between ball and raceway groove of the carriage and rail was described.

Taking the normal stiffness and tangent stiffness of two-dimensional point-to-point contact into

account, we firstly derive the governing equations and vibration frequency of the guideway system

by Lagrange’s approach. In order to simulate the ball-type linear guideway in a realistic way, a

surface-to-surface contact mode associated with the interface element was introduced at the rolling

interface of a guideway finite element model. The dynamic characteristics under different loading

conditions were predicted by analytical approach and the finite element approach, respectively, for

comparison. As a validation, experiments with modal tests were carried out on a linear guideway

and the measured data were compared with the previous calculating results. 

2. Contact characteristic at rolling interface

2.1 Contact stiffness

According to the Hertz’s contact theory, there is a nonlinear relationship between the local

deformation at the contact point and the applied load when two objects are tightly forced to each

other. For a ball type linear guideway, the deformation of the groove will increase with the load

applied on the balls and the contact stiffness of the interface rises. Such a variation in contact

stiffness will affect the dynamic behavior to a different extent. Therefore, in order to obtain the

correct dynamic characteristic of a guideway, the contact stiffness must be suitably defined. From

Johnson (1985) and Goldsmith (1960), the Hertzian contact stiffness is defined as shown in Fig. 1,
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where the relation between the deformation and the applied load are clearly described. In the figure,

when a compression force F is applied, the contact boundary of two objects will deform a small

amount of α with the contact area of ellipse shape. The relationships are given by the following

formulas:

(1)

(2)

(3)

(4)

(5)

where α is the elastic deformation of the contact area, δi is the material properties of Hertz’s contact
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Fig. 1 Loadings and deformed shapes at contact boundary

Fig. 2 Contact mode between sphere and cylindrical cup
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theory, E is Young’s modulus, µ is Poisson’s ratio of material, a is the semi-major and b is the

semi-minor of the contact ellipse. Constants A, B, qa, qb, and qk were determined according to

Goldsmith in 1960 where the contact configuration of a linear guideway can be simplified as a

sphere with radius R1 contacting to a cylindrical cup with radius R2 (see Fig. 2), and

(6)

(7)

From Eq. (1), the normal stiffness can then be obtained as:

(8)

As was revealed in Hwang and Gahr (2003), the stiffnesses in normal and tangential direction are

governed by the material properties of the bodies in contact, normal load, lubricant and surface

roughness. In this study, the tangential stiffness KS associated with frictional effect was therefore

correlated with the normal stiffness Kn following the Columb’s friction law.

3. The analytical method

3.1 The two-dimensional point-to-point contact model

The linear guideway analyzed in this paper is shown in Fig. 3 and the coordinate system

describing the motion mode of the carriage is illustrated in Fig. 4, in which the origin of the XYZ

coordinates is located at the mass center of the carriage and the x-axis is along the sliding direction

of the carriage, β is the contact angle, d and e are the distances from the x-y plan and x-z plan to the

contact point between the rolling ball and the carriage, respectively. Since the linear guide was

designed with the contact geometry of an offset Gothic arc groove, a two point contact at the
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Fig. 3 Schematic of a linear guide system
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contact angle of 45 degree was formed between the balls and the carriage and the rail, respectively.

To simplify such a two point contact mode, a series of spring elements with adequate spring

constant are introduced at the raceway groove (Fig. 4). According to Ohta and Hayashi (2000), the

spring constant per unit length of a distributed normal spring kn in loading zone can be expressed as

(9)

where ZL is the average number of balls running in the loading zone, lL is the length of the loading

zone and Kn is normal contact stiffness. It is worth noting that the term Kn in Eq. (9) is determined

based on Hertzian theory, while the one used in Ohta and Hayashi (2000) is related to the vertical

stiffness of the linear guideway, which is usually available in product menu provided by the

manufacturer (NSK Ltd). 

In addition, the contact force acting on the raceway groove of rail or carriage can be decomposed

into positive normal force component and tangential force component. Therefore, it is

understandable that the simulation of a point-to-point contact model with a spring element in

contact normal direction can not fully describe the contact characteristics of the rolling interface and

kn

ZLKn

2lL

------------=

Fig. 4 Coordinate system describing the motion mode of carriage, in which β is the contact angle, u and v are
the displacements in the y-axis and z-axis, respectively. φ, θ and y are the angular displacements about
the x-axis, y-axis and z-axis, which are termed pitching, rolling and yawing motion, respectively (NSK
Ltd.) 
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another spring element with tangential stiffness was thus introduced in the tangential direction (see

Fig. 4 and Fig. 5). The tangential stiffness kS per unit length of the loading zone can finally be

expressed as

(10)

3.2 Natural frequency of a linear guideway with rigid-body carriage

Here, for purpose of deriving the governing motion equation of the linear guideway system, the

guidway and carriage are considered as rigid bodies and connected with a series of spring elements

at the raceway groove. The kinetic energy EK of the system in motion is given by

(11)

where M is the mass of carriage, Jx, Jy and Jz are the moment of inertia about the x-axis, y-axis and

z-axis, respectively.  and  are the velocities along the y-axis and z-axis, respectively.  and

 are the angular velocity about the x-axis, y-axis and z-axis, respectively. 

Since the carriage is supported by distributed normal springs and tangential springs, the potential

energy Ep can then be given by

(12)

 (13)
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Fig. 5 Modeling of the rolling contact by using a spring element with normal stiffness kn and another spring
element with tangential stiffness ks
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 (14)

where EP1 and EP2 are the potential energy of the system contributed by normal spring elements

and tangential spring elements, respectively, l is the distance between the location of the

distributed springs to the x-y plane. Then through the Lagrange’s approach, we have the equations

of motion as

(15)

(16)

(17)

(18)

(19)

From Eq. (16) of the displacement v along the z-axis, (18) of the angular displacement θ about y-axis

and (19) of the angular displacement ψ about z-axis, the frequencies can be obtained as follows:

The natural frequency of the carriage at vertical vibration mode is

(20)

The natural frequency of the carriage at pitching vibration mode is

(21)

The natural frequency of the carriage at yawing vibration mode is

(22)
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Eq. (15) of the displacement u along the y-axis and (17) of the angular displacement ϕ about x-axis

are coupled. We may assume the solutions of the form:

(23)

where ω is the angular frequency, , U and Φ are the amplitude of u and φ, respectively.

Substituting Eq. (23) into Eqs. (15) and (17), yielding

(24)

where

 (25)

Let the determinant of the coefficient of U and Φ be zero, we have the characteristic equation.

(26)

The two solutions  and  can be obtained by solving above equation.

(27)

The natural frequency of the carriage at different vibration mode can be written as the following

Eqs. (28) and (29). 

The natural frequency of the carriage at lower rolling vibration mode is

(28)

The natural frequency of the carriage at higher rolling vibration mode is

(29)
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contact loading, which in turn induces different normal stiffness kn and tangential stiffness kS at the

rolling interface and hence affect the vibration characteristic of the guideway. To consider the

moment effect on the natural frequency of the rigid-body carriage, we therefore derive the

equilibrium equation for the carriage subjected to moment loading MX, which is applied on carriage

block along x-axis direction, and the kinetic energy EK can be expressed as:

(30)

And, the potential energy Ep can be given by

 (31)

(32)

(33)

where EP1 is potential energy stored in the left and right spring elements with normal stiffness kn1

and kn2, EP2 is potential energy stored in the left and right spring elements with tangential stiffness
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Eqs. (30) and (31), that is 
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(35)

(36)

(37)

(38)

Eqs. (34) and (35) show the angular displacements θ about the y-axis and ψ about the z-axis are

coupled. To discuss the two interrelated variables, the variables in Eqs. (34) and (35) are assumed as:

(39)
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Where 

(41)

The characteristic equation can be obtained by letting the determinant of factors Θ and Ψ be zero,

that is

(42)

At last, two solutions  and  are derived

(43)

Since this coupled vibration is contributed by the displacement components Θ and Ψ, the vibration
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mode can be found in the following Eqs. (44) and (45). 
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Substituting Eq. (46) into (36), (37) and (38), the following equation can be obtained

(47)

Where 

(48)

Again, the characteristic equation can be obtained by making the determinant of factors U, V and Φ
be zero which yields.

(49)

(50)

Finally, three solutions  and  are obtained

c4 Mω
2

–   c5  c7

c5  c6 Mω
2

–   c8

c7  c8  c9 Jxω
2

–

U

V

Φ

0=

c4 kn1lLcos
2
β kn2lLcos

2
β ks1lLsin

2
β ks2lLsin

2
β+ + +=

c5 kn1lLsinβcosβ– kn2lLsinβcosβ ks1lLsinβcosβ ks2lLsinβcosβ–+ +=

c6 kn1lLsin
2
β kn2lLsin

2
β ks1lLcos

2
β ks2lLcos

2
β+ + +=

c7 kn1lLesinβcosβ– kn2lLesinβcosβ– ks1lLesinβcosβ ks2lLesinβcosβ+ +=

kn1lLdcos
2
β– kn2lLdcos

2
β– ks1lLdsin

2
β– ks2lLdsin

2
β–

c8 kn1lLd
2
cos

2
β 2kn1lLd esinβcosβ kn1lLe

2
sin

2
β+ +=

 kn2lLd
2
cos

2
β 2kn2lLdesinβcosβ kn2lLe

2
sin

2
β+ + +

 ks1lLd
2
sin

2
β 2ks1lLd esinβcosβ– ks1lLe

2
cos

2
β+ +

 ks2lLd
2
sin

2
β 2ks2lLd esinβcosβ– ks2lLe

2
cos

2
β+ +

c9 kn1lLdsinβcosβ kn2lLdsinβcosβ– ks1lLdsinβcosβ– ks2lLdsinβcosβ+=

 kn1lLesin
2
β kn2lLesin

2
β– ks1lLecos

2
β ks2lLecos

2
β–+ + ⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

ω
6

a1ω
4

a2ω
2

a3+ + + 0=

a1

c4MJx c6MJx c8M
2

+ +

M
2
Jx

-------------------------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞
–=

a2

c7

 2
M c9

 2
M c5

 2
Jx c6c8M– c4c8M– c4c6Jx–+ +

M
2
Jx

--------------------------------------------------------------------------------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞
–=

a3

c4c6c8 2c5c7c9 c7

 2
c6– c9

 2
c4– c5

 2
c8–+

M
2
Jx

-------------------------------------------------------------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞
–=

⎭
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎫

ω3

2
ω4

2, ω5

2
ω3

2
ω4

2
ω5

2< <( )



Characterization of the dynamic behavior of a linear guideway mechanism 13

(51)

where 

(52)

The natural frequencies corresponding to various rolling vibration modes can then be obtained

from Eq. (51) as shown in following Eqs. (53), (54) and (55).

The natural frequency of the carriage at lower rolling mode is

(53)

The natural frequency of the carriage at medium rolling mode is
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Table 1 Specifications of the linear guide system

Carriage length 0.0659 m

Carriage width 0.059 m

Carriage height 0.022 m

Guideway length 0.5 m

Guideway width 0.02 m

Guideway height 0.0155 m

Ball diameter 4.763 × 10−3 m

Total number of balls 50

Number of row 2

Contact angle β 45o

Preload 665 N

Load zone length lL 0.043 m
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(54)

The higher rolling frequency of the vibration of the carriage is 

(55)

The detailed specifications of linear guide system are listed in Table 1. With introduction of

constants β, lL in Table 1 and constants M, Jx, Jy, Jz, d, e, kn, ks in Tables 2 and 3 into the equation

of section 3.2 we can then calculate the natural frequencies fRL, fYPL, fYPH, fRM and fRH of carriage

block under different MX (x-axis force moment).

4. The finite element approach

Fig. 6 shows the 3-D finite element model of a linear guideway mechanism. The contact

configuration between balls and raceway and carriage is depicted in Fig. 7, in which the two rows

of the rolling balls are modeled with brick elements (Fig. 8). To model the contact characteristic at

the rolling interface, the contact elements of zero thickness are introduced at upper and lower side

of each ball. There are two rows, 18 balls located within the loading zone, which were meshed into

144 elements and 36 contact interface elements. The carriage block and end cap at both sides were

meshed with 3830 elements and 480 elements, respectively, while the base of the guideway was

modeled using 2158 elements. There are totally 6648 elements and 9396 nodes. The main

components such as ball, carriage and guideway are made of steel with the material properties:

Young’s modulus E = 206 GPa, Poisson’s ratio ν = 0.305, density ρ = 7800 Kg/m3, while the end

fRM

ω4

2π
------=

fRH

ω5

2π
------=

Table 2 Constants of the linear guide system

M 0.313 kg

Jx 9.938 × 10−5 kg-m2

Jy 6.136 × 10−5 kg-m2

Jz 1.394 × 10−4 kg-m2

d 7.37 × 10−3 m

e 10.3 × 10−3 m

kn 2.28 GPa

ks 0.228 GPa

Table 3 Normal stiffness kn and tangential stiffness ks of a linear guideway

MX 

(N-m)

Left row Right row

kn (GPa) ks (GPa) kn (GPa) ks (GPa)

0 2.28 0.228 2.28 0.228

2.38 2.17 0.217 2.38 0.238

4.75 2.04 0.204 2.48 0.248

7.13 1.89 0.189 2.57 0.257
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caps have the properties: E = 206 GPa, Poisson ratio ν = 0.305, density ρ = 1400 Kg/m3. 

Besides, the stiffnesses kn and ks of the contact element were calculated according to the method

described in section 2.1. The stiffness KC was assigned between the carriage block and ball bearing,

and the stiffness KR was between steel balls and guideway. The same properties were assumed for

all contact interfaces as KC = KR = Kn. 

Fig. 8 Simulation of the steel balls row by row

Fig. 7 Finite element mesh of transverse cross section, showing the contact configuration between carriage
and guideway

Fig. 6 The finite element model of a linear guide system, including guideway, carriage, rolling balls and end
cap
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5. The experiment verification

To understand the significance of current methods, modal tests on workshop supplied guideways

were conducted in this study. Fig. 9 shows the experimental configuration for measuring the

vibration of the linear guide system. The accelerometer was attached to different position on the

carriage, in which the accelerometer A was used to measure the vertical vibration of carriage,

accelerometer B mainly was for rolling, pitching vibrations and vertical vibration and accelerometer

Fig. 9 Configuration of modal experiment and accelerometer positions (A, B, C) for measuring various
vibration mode

Fig. 10 Vibration spectra measured at different positions, representing the possible vibration modes of a
carriage, respectively
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C was for yawing and rolling vibrations. For investigation of the effect of the contact stiffness in

the dynamic behaviors, two linear guideways with different preload, one for high preload of 665 N

and low preload of 190 N, for another, were employed during test. In experiment, the vibration

amplitudes were recorded and stored in a digital spectrum analyzer after hammering the carriage at

the measured direction. 

From above measurements, the vibration spectra corresponding to the three measuring points A, B

and C were depicted in Fig. 10. The main peaks of each measurement point to obtain the

fundamental frequency were generalized, and the associated vibration modes can be identified by

comparing to the mode shapes predicted by the finite element approach (Table 4). Experimental

results are depicted in Fig. 11 comparing with the numerical results obtained from theoretical and

finite element analysis. 

Fig. 11 Comparison of the natural frequencies obtained from experimental measurements, analytical and finite
element prediction. Bold symbols in figure represent the experimental data at different mode,
respectively.
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6. Results and discussion

The natural frequencies of carriage block estimated by proposed analytical method and finite

element approach are listed in Table 4. It can be found that both approaches predicted the same

vibration modes. It is worthy to note that all the components of linear guideway mechanism are

assumed to be rigid in the analytical method. Therefore, the analytical method may give higher

frequencies than those obtained by the finite element approach (Table 4).

To study the effect of the loading conditions on the vibration mode, some specific modes are

listed in Table 4. It is found that when the carriage block is without moment loadings, it will vibrate

with natural frequency fRL, fY, fP, fV and fRH (see before). However, if a moment loading Mx is

applied to the carriage block, it will vibrate at frequency fRL, fYPL, fYPH, fRM and fRH. As observed in

Table 4, the carriage block behaves different mode shapes under the absence of moment or in the

event of presence of moments. In the second and the third modes, for example, when carriage block

is not subjected to external moments, the natural frequencies fY and fP of carriage block are only

related to the variable ψ rotating around z-axis and variable θ rotating around y-axis, respectively. In

case where carriage block subjects to external moments, the natural frequencies fYPL and fYPH of the

carriage block are related to both displacement components of ψ and θ. Besides, when carriage

block in fourth mode is not subjected to moment, the natural frequency fV of carriage block is only

related to variable v shifting along z-axis. While under moment loadings, the natural frequency fRM

of carriage block is related to displacement components u shifting along y-axis, φ rolling about x-

axis and v shifting along z-axis.

On the other hand, results listed in Table 4 indicate that the 2-D point-to-point contact model may

Table 4 Natural frequencies at different vibration mode of a linear guide system

(a) Analytical approach : 2-D point-to-point elastic contact

MX = 0 MX = 4.75 N-m

Degree of 
freedom

mode
Frequency

(kHz)
Degree of 
freedom

mode
Frequency

(kHz)

φ, u Lower rolling 0.73( fRL) φ, u, v Lower rolling 0.72( fRL)

ψ Yawing 1.73( fY) ψ, θ Lower Yawing-Pitching 1.71( fYPL)

θ Pitching 2.61( fP) θ, ψ Higher Yawing-Pitching 2.60( fYPH)

v Vertical 2.95( fV) v, u, φ Medium rolling 2.90( fRM)

φ, u Higher rolling 4.00( fRH) φ, u, v Higher rolling 4.00( fRH)

(b) Finite element approach

MX = 0 MX = 4.75 N-m

Degree of 
freedom

mode
Frequency

(kHz)
Degree of
freedom

mode
Frequency

(kHz)

φ, u Lower rolling 0.59( fRL) φ, u, v Lower rolling 0.59( fRL)

ψ Yawing 1.49( fY) ψ, θ Lower Yawing-Pitching 1.48( fYPL)

θ Pitching 2.14( fP) θ, ψ Higher Yawing-Pitching 2.14( fYPH)

v Vertical 2.63( fV) v, u, φ Medium rolling 2.62( fRM)

φ, u Higher rolling 3.64( fRH) φ, u, v Higher rolling 3.63( fRH)
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predict higher frequencies than the finite element method. This can be ascribed to that the guideway

is assumed as an elastic material in the finite element approach and hence possess a lower structural

stiffness than a rigid one in the analytical method. Actually, it can be realized from Hertz’s contact

theory that the material stiffness plays an important role on contact stiffness at the rolling interface.

For carriage with sufficiently higher Young’s modulus, it will behave as rigid body and give

vibrational behaviors with higher frequencies. In addition, the guideway system discussed in this

study is designed with the offset Gothic arc groove, which enables the rolling ball to contact with

carriage and raceway simultaneously, and hence only two rolling interfaces are formed. One is

between the rolling ball and the groove of carriage and another is between the rolling ball and the

groove of rail. The interface elements with normal and tangential stiffness are thus introduced at

upper and lower interfaces of the rolling ball in the finite element model. In the late of 2005, a new

production with heavy-duty guideway has been designed in workshop with symmetric Gothic arc

grooves to sustain a great deal of axial and radial force, which gives a four-point contact

configuration at various contact angles. Under such condition, the simulation of contact

characteristic at the rolling interface also can be achieved by introducing the interface element at the

four contact points. The contact stiffness at each interface can be calculated according to the contact

configuration formed within the guideway. Besides, preload on the rolling element also plays an

important role in either improvement of the rigidity or accuracy of a guideway (NSK Ltd.).

However preload also initiates another problem such as significant friction and contact deformation

at the raceway groove. It follows that bring the initial contact stiffness of the rolling ball to a

different value. The influence of preload on the dynamic characteristic of a linear guideway is

investigated through modal experiments. 

As a validation, a series of model tests have been conducted on guideway mechanisms. It is

apparent from Fig. 10 that the experimental results agree well with the finite element prediction, but

have a little bit lower than the analytical results. As stated in previous sections, the linear guideway

is modeled as an elastic structure in the finite element approach, rather than a rigid one assumed in

analytical method; therefore, the finite element approach may present like a real guideway

mechanism than the analytical method. In addition, results of modal tests indicate that a guideway

with high preload has a higher vibration frequency than that with low preload. It illustrates that

different extents of preload set in guideway induce a change of contact stiffness at rolling interface

and hence results in the variation in vibration frequencies. Especially, such an effect can be

demonstrated by the finite element simulation.

In summary, the 3-D surface-to-surface finite element model offers better results than 2-D point-

to-point contact model. In addition, some differences in simulation of the contact mode of a

guideway also can be emphased. In analytical method, the contact configuration between balls and

raceway groove of carriage and guideway is considered as a point-to-point contact mode and the

rolling balls are simulated by a series of spring elements connecting the carriage and guide rail

along the direction of contact angle. While in the finite element approach, the rolling interfaces

between balls and raceway groove of carriage and guideway are considered as a surface-to-surface

contact mode. The contact stiffness at each interface is simulated by interface elements introduced

on the top and bottom surface of the rolling balls. In addition, the effect of the stiffness of a rolling

ball can be raised in finite element approach, whereas this effect was not considered in the

analytical method. However, comparison of the results obtained from experiment and numerical

prediction have told the distinctiveness of the finite element approach. In a word, the presented

finite element method based on Hertz’s contact theory can accurately describe the contact
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characteristic of a rolling interface and provide a reliable way to investigate the dynamic

characteristic of a linear guidway mechanism.

7. Conclusions

The following conclusions are drawn from analytical method, the finite element approach and

experiment of modal tests. 

1. The dynamic behavior of linear guide system has been shown to be closely related to the

structure stiffness, especially, the contact stiffness at the rolling interface between the steel balls

and the Gothic groove of the carriage and guideway. While the contact stiffness can be

accurately obtained based on the Hertz’s contact theory, which can further be used to model the

contact characteristic under different loading conditions.

2. The introduction of the contact element with Hertzian contact stiffness can predict the influence

of loading condition on the dynamic characteristic such as natural frequencies and modal shapes

in more realistic issues. 

3. In this paper, the proposed finite element method has shown that the vibration behaviors of a

linear guideway can be characterized (a) with the lower rolling natural frequency of the

vibration, (b) with the lower yawing-pitching natural frequency of the vibration, (c) with the

higher yawing-pitching natural frequency of the vibration, (d) with the medium rolling natural

frequency of the vibration, and (e) with the higher rolling natural frequency of the vibration.
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