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Magnetothermoelastic stress in orthotropic hollow
cylinders due to radially symmetric thermal

and mechanical loads
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Abstract. In the paper, a direct method of solution of the Navier equation is presented. An orthotropic
thick hollow cylinder under a one-dimensional steady-state temperature distribution and a uniform
magnetic field with general types of thermal and mechanical boundary conditions is considered. The
Navier equation in terms of displacement is derived and solved analytically by the direct method, and
magnetothermoelastic responses and perturbation of the magnetic field vector in the orthotropic thick
hollow cylinder is described. The present method is suitable for orthotropic thick hollow cylinders placed
in an axial magnetic field with arbitrary thermal and mechanical boundary conditions. Finally, numerical
examples are carried out and discussed.
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1. Introduction

The increased use of orthotropic material in engineering applications has results in considerable

research activity in this area in recent years. Nowinski (1957) generalized the Galerkin’s problem to

an orthotropic tube subjected to any axisymmetric temperature field. By means of employing the

Frobenius series method, Mirsky (1964) was the first to study axisymmetric free vibrations of

orthotropic cylindrical shells with infinite length based on three-dimensional elastic theory. Srinivas

and Rao (1970) exactly investigated the bending, vibration and buckling of simply supported thick

orthotropic rectangular plates and laminates based on a three-dimensional elasticity theory. Kalam

and Tauchert (1978) investigated stresses in an orthotropic elastic cylinder due to a plane

temperature distribution. The interaction between deformation and magnetic fields in a conducting

orthotropic cylinder was considered by adding a Lorentz’s electromagnetic force (Kraus 1984) into

the equation of thermoelastic motion of an orthotropic cylinder in an axial magnetic field.

Upadhyay and Mishra (1988) dealt with the non-axisymmetric dynamic behavior of buried

orthotropic cylindrical shells excited by a combination of P-, SV- and Sh-waves. The elastodynamic

solution for the thermal shock stress in an orthotropic thick cylindrical shell was presented by Cho

et al. (1998). Abd-Alla et al. (1999) studied the transient thermal stresses in a rotating non-
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homogeneous cylindrically orthotropic composite tube and in a non-homogeneous spherically

orthotropic elastic medium with spherical cavity, respectively. Dai and Wang (2004) presented an

analytical solution for the interaction of electric potential, electric displacements, elastic

deformations and mechanical loads, and described electromagnetoelastic responses and perturbation

of magnetic field vector in a piezoelectric orthotropic hollow cylinder subjected to sudden

mechanical load. The thermoelectroelastic responses were investigated by Dai et al. (2005) in

orthotropic piezoelectric hollow cylinders subjected to thermal shock and electric excitation. To

date, investigations on the magnetothermoelastic stress in orthotropic hollow cylinder due to radially

symmetric loads have been few. 

Finally, through numerical examples, it is concluded easily that stresses of an orthotropic thick

hollow cylinder placed in an axial magnetic field, subjected to radially axisymmetric loads are not

only dependent upon the thickness of the orthotropic hollow cylinder but also dependent on the

magnetic field vector and the magnetic permeability in the orthotropic hollow cylinder.

2. Derivations

A long, orthotropic thick hollow cylinder placed initially in an axial magnetic field  is

shown in Fig. 1. Consider a long, radial polarized thick hollow cylinder of inside radius a and

outside radius b. We denote by r, the radial, θ, the circumferential, and z, the axial coordinate.

Considering a generalized plane strain problem, the constitutive relations for the orthotropic thick

hollow cylinder in cylindrical polar coordinate  system are expressed as 

 (1a,b)

(1c,d)

H 0 0 Hz, ,( )

r θ z, ,( )

σr c11
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Fig. 1 A long orthotropic thick hollow cylinder



Magnetothermoelastic stress in orthotropic hollow cylinders 701

where cij (i = 1, 2; j = 1, 2) and αi (i = r, θ ) are elastic constants and thermal expansion coefficients,

respectively, u and αi (i = r, θ ) are the radial displacement and the component of stresses,

respectively. T(r) is temperature distribution determined from the heat conduction equation.

Assuming that the magnetic permeability, µ, (Ezzat 1997) of the orthotropic hollow cylinder

equals the magnetic permeability of the medium around it, the governing electrodynamic Maxwell

equations (Kraus 1984, Dai and Wang 2004) are given by

 (2)

Applying an initial axial magnetic field vector  in cylindrical coordinate 

system to Eq. (3), yields

 (3)

The magnetothermoelastic equilibrium equation of the orthotropic thick hollow cylinder is

expressed as 

(4)

where fz is defined as Lorentz’s force (Kraus 1984, Dai and Wang 2004), which can be written as

 (5)

Substituting Eqs. (1) into Eq. (4) and utilizing Eq. (5), the Navier equation in term of the

dissplacement is

(6)

where  and .

3. Heat conduction problem

Consider the orthotropic thick hollow cylinder with temperature Ta at the inside at the inside

surface, Tb at the outside at the outside surface. The heat conduction equation in the steady-state

condition for the one-dimensional problem in polar coordinates and the thermal boundary conditions

for the orthotropic thick hollow cylinder are given, respectively, as (Obata 1994, Jabbari 2002)

 (7)
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 (9)

Using the boundary conditions (8) to determine the constants A1 and A2, yields

 (10)

4. Solution of the Navier equation

Substituting Eq. (9) into Eq. (6), yields 

(11)

where

 (12)

Eq. (11) is the Euler differential equation with homogeneous and inhomogeneous solutions. It is

obvious that the homogeneous solution to Eq. (11) can be obtained by assuming

 (13)

where C is an arbitrary constant. Substituting Eq. (13) into Eq. (11) and omitting the right-hand

side, one obtains

(14)

Eq. (14) has two real roots β1, β2:

(15)

Thus the homogeneous solution is 

(16)

The nonhomogeneous solution  is assumed to be of the form

(17)

Substituting Eq. (17) into Eq. (11), yields

 (18)

T r( ) A1lnr A2+=

A1

Tb Ta–

lnb lna–

---------------------- , A2

Talnb Tblna–

lnb lna–

---------------------------------= =

∂
2
u

∂ r
2

---------
1

r
---

∂ u

∂ r
------- M

1

r
2

----u–+ A3

1

r
--- A4

lnr

r
-------+=

A3 N λ1A1 λ1 λ2–( )A2+[ ], A4 N λ1 λ2–( )A1==

u Cr
β

=

β
2

M– 0=

β1 2,

M±=

u
h

r( ) B1r
β
1

B2r
β
2

+=

u
n

r( )

u
n

r( ) D1r D2rlnr+=

D1

A3 1 M–( ) 2A4–

1 M–( )2
---------------------------------------- , D2

A4

1 M–

--------------= =



Magnetothermoelastic stress in orthotropic hollow cylinders 703

The complete solution for  is the sum of the homogeneous and nonhomogeneous solution as

(19)

Substituting Eq. (19) into Eqs. (1a,b) and the last term of Eq. (3), the stresses and perturbation of

magnetic field vector of the orthotropic thick hollow cylinder are obtained as 

(20a)

(20b)

(20c)

To determine the constants B1 and B2, consider the boundary conditions for stresses given by

(21)

Substituting the boundary conditions (21) into Eq. (20), the constants of integration become

(22a)

(22b)

where

(23)

5. Numerical examples and discussions

In the numerical calculations, the material constants for orthotropic thick hollow cylinders are

taken as (Dai and Wang 2004): 
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The internal boundary condition for temperature is assumed as Ta = 10oC, 100oC, 200oC, and 500oC,

respectively, and the external boundary condition for temperature is taken as Tb = 10oC. The

orthotropic thick hollow cylinder has pressure on its inner surface so the boundary conditions for

stresses are taken as σa = −50 MPa and σb = 0 MPa. The internal radius of orthotropic cylinders is

taken as a = 0.01 m.

Example 1: The ratio of internal radius to external radius is taken as b/a = 2, and the

dimensionless radial coordinate is taken as . Fig. 2 shows temperature

distribution at Ta = 10oC, 100oC, 200oC and 500oC along the radial direction of the orthotropic thick

hollow cylinder. From the curve of the figure, it is seen easily that temperature show weakly non-

linear distribution with the increasing of temperature along the radial direction of the orthotropic

hollow cylinder. Figs. 3-5 show stresses and perturbation of magnetic field vector distribution at

R r a–( )/ b a–( )=

Fig. 2 Radial distribution of temperature at Ta =
10oC, Ta = 100oC, Ta = 200oC and Ta = 500oC,
where R = (r − a)/(b − a) and b/a = 2

Fig. 3 Radial distribution of radial stress at Ta =
10oC, Ta = 100oC, Ta = 200oC and Ta = 500oC,
where R = (r − a)/(b − a) and b/a = 2

Fig. 4 Radial distribution of hoop stress at Ta = 10oC,
Ta = 100oC, Ta = 200oC and Ta = 500oC, where
R = (r − a)/(b − a) and b/a = 2

Fig. 5 Radial distribution of perturbation of magnetic
field vector at Ta = 10oC, Ta = 100oC, Ta =
200oC and Ta = 500oC, where R = (r − a)/(b − a)
and b/a = 2



Magnetothermoelastic stress in orthotropic hollow cylinders 705

Ta = 10oC, 100oC, 200oC and 500oC along the radial direction of the orthotropic thick hollow

cylinder, respectively. From Fig. 3, it is seen that the radial stresses at the boundaries R = 0, 1

satisfy the given boundary conditions with different temperatures, and the magnitude of value

becomes large with the increasing of temperature. When Ta = 500oC, the maximum radial stress −2.09

occurs at the neighborhood of R = 0.3. It is seen easily from Fig. 4 that the hoop compression stress

become tensile stress with the increasing of temperature in the orthotropic hollow cylinder, and the

amplitude of the hoop stress is larger than the amplitude of the radial stress in the orthotropic

hollow cylinder. From the curve, it is also seen that hoop stresses show weakly non-linear

distribution with the increasing of temperature along the radial direction of the orthotropic hollow

cylinder, and the peak value of hoop stress occur at the internal wall of orthotropic hollow cylinder.

From Fig. 5, it is shown that the values of perturbation of magnetic field vector increase gradually

from the inner-wall to the outer-wall, and the values become larger at the same point with the

increase of temperature.

Example 2: The ratio of internal radius to external radius is taken as b/a = 21, and the

dimensionless radial coordinate is taken as . Figs. 6-9 show temperature, stresses and

perturbation of magnetic field vector distribution at Ta = 10oC, 100oC, 200oC and 500oC along the

radial direction of the orthotropic thick hollow cylinder, respectively. From Fig. 6, it is seen easily

that the temperature distribution are the similar as example 1. From Fig. 7, it is seen that the radial

stresses at the boundaries R = 0, 1 satisfy the given boundary conditions with different temperatures.

It is also seen from the curve that the radial tensile stress become compression stress with the

increasing of temperature in the orthotropic hollow cylinder, and the peak value of radial stresses

occur at the neighborhood of S = 1.4 with different temperatures. When Ta = 500oC, the peak value

of radial stress is −4.86, it is about two times larger than that of example 1. From Fig. 8, it is seen

easily that the hoop stresses are the similar as example 1. It is also seen from the curve that the

heap value is smaller than that of example 1. From Fig. 9, it is shown that the values of

perturbation of magnetic field vector decrease gradually from the inner-wall to the outer-wall, and

the heap values occur the internal wall of the orthotropic hollow cylinder with different

temperatures. 

S r a–( )/a=

Fig. 6 Radial distribution of temperature at Ta = 10oC,
Ta = 100oC, Ta = 200oC and Ta = 500oC, where
S = (r − a)/a and b/a = 21

Fig. 7 Radial distribution of radial stress at Ta = 10oC,
Ta = 100oC, Ta = 200oC and Ta = 500oC, where
S = (r − a)/a and b/a = 21
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6. Conclusions

(1) The article presents an analytical solution for the calculation of the axisymmetric

magnetothermoelastic stresses in orthotropic thick hollow cylinders. In contrast to the tradition

potential function method, which exhibits some limitations in choosing the boundary

conditions for stresses and displacements, the direct method presented in the paper does not

have any limitation to handle the general types of mechanical and thermal boundary

conditions.

(2) Comparing two numerical examples, it can be concluded that different thickness of wall have

great effect on the stresses distribution in the orthotropic thick hollow cylinder due to radially

symmetric load, so it can tailor the design of engineering.
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Notation

: displacement vector and radial displacement [m]
cij : elastic constants [N/m2]
σi : the component of stresses [N/m2]
fz : Lorentz’s force [kg/m2s2]
r : radius [m]
a, b : inner and outer radii of the orthotropic hollow cylinder [m]
µ : magnetic permeability [H/m]

: magnetic intensity vector 
: perturbation of magnetic field vector 
: electric current density vector
: perturbation of electric field vector
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