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An efficient three-dimensional fluid hyper-element for 
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Abstract. The accurate dynamic analysis of concrete arch dams relies heavily on employing a three-
dimensional semi-infinite fluid element. The usual method for calculating the impedance matrix of this
fluid hyper-element is dependent on the solution of a complex eigen-value problem for each frequency. In
the present study, an efficient procedure is proposed which simplifies this procedure amazingly, and
results in great computational time saving. Moreover, the accuracy of this technique is examined
thoroughly and it is concluded that efficient procedure is incredibly accurate under all practical conditions.
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1. Introduction

The dynamic analysis of concrete dams can be approached using several different techniques

(Camara 2000, Dominguez and Maeso 1993, Maeso et al. 2002) However, the rigorous analysis of

concrete arch dam-reservoir system is based on the FE-(FE-HE) method. This means, the dam is

discretized by solid finite elements, while, the reservoir is divided into two parts, a near field region

(usually an irregular shape) in the vicinity of the dam and a far field part (assuming uniform channel),

which extends to infinity. The former region is discretized by fluid finite elements and the latter part is

modeled by a three-dimensional fluid hyper-element. The analysis is carried out in frequency domain

either by direct approach (Lotfi 2004), or sub-structuring techniques (Hall and Chopra 1983, Fok and

Chopra 1986, Tan and Chopra 1995a, b). Regardless of the option selected among these rigorous

techniques, a major portion of the numerical calculation time spent is due to the solution of a complex

eigen-value problem related to fluid hyper-element, which must be solved at each frequency.

In this paper, an efficient procedure is proposed for the required impedance matrix calculation of

the fluid hyper-element, which greatly reduces the computational time. In the following sections, the

analysis technique (i.e., FE-(FE-HE) method) is reviewed briefly, while the fluid hyper-element

impedance matrix theoretical background is described in detail. Subsequently, the efficient fluid

hyper-element is introduced and its formulation is presented. Thereafter, a special purpose program

(Lotfi 2001) is modified based on the proposed theory, and the response of Morrow Point arch dam

is obtained for various conditions. This is utilized to investigate the accuracy of the efficient

procedure thoroughly.
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2. Method of analysis

The analysis technique utilized in this study is based on the FE-(FE-HE) method, which is

applicable for a general concrete arch dam-reservoir system. 

The formulation can be explained much easier, if one concentrates initially on a dam with finite

reservoir system (basically the same as a model of dam and reservoir near field), and subsequently

add the effects of reservoir far field region for the general case. For this purpose, let us begin with

this simpler formulation and then complete the formulation for the more general case on that basis.

2.1 Dam with finite reservoir system

This is the problem, which can be totally modeled by finite element method. It can be easily

shown that in this case, the coupled equations of the system may be written as (Lotfi 2002):

(1)

M, C, K in this relation represent the mass, damping and stiffness matrices of the dam body, while

G, L, H are assembled matrices of fluid domain. The unknown vector is composed of r, which is

the vector of nodal relative displacements and the vector p that includes nodal pressures. Moreover,

J is a matrix with each three rows equal to a 3 × 3 identity matrix (its columns correspond to unit

rigid body motion in cross-canyon, stream, and vertical directions) and ag denotes the vector of

ground accelerations. Furthermore, B in the above relation is often referred to as interaction matrix.

For harmonic ground excitations ag(t) = ag(ω)eiωt with frequency ω, displacements and pressures

will all behave harmonic, and Eq. (1) can be expressed as:

(2)

In this relation, it is assumed that the damping matrix of the dam is of hysteretic type. This

means:

(3)

where βd is the constant hysteretic factor of the dam body. Relation (2) is the coupled equations of a

dam with finite reservoir system in frequency domain. It should be also noted that the system of

equation is made symmetric by multiplying the lower partition matrices by a factor of ω−2.

2.2 Reservoir near field boundary conditions

Apart from water surface boundary condition (which is easily applied), there are three possible

boundary condition types for the reservoir near field region. The condition of type I, is considered

for the contact of fluid with flexible solid, such as the dam-reservoir interface. The second type of

condition is the so-called approximate boundary condition. This can be imposed at the reservoir

bottom and sidewalls. The last type of condition (III) is referred to as Sommerfeld boundary
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condition. This is usually applied at the reservoir near field upstream boundary (in cases which far

field region is not modeled), as a substitute for a precise transmitting boundary. However, when a

fluid hyper-element is utilized, this condition is not required and waves are transmitted exactly

through that semi-infinite element. The exact relations and detailed explanation about these

conditions can be found in other studies (e.g., Lotfi 2004).

2.3 Fluid hyper-element

As mentioned, the three-dimensional fluid hyper-element is utilized to model the reservoir far-

field region for the more general case. This part of the water domain, is assumed to be a uniform

channel with an arbitrary geometric shape in the vertical plane which includes x, z-axes (see Fig. 1(b)

for a typical discretization), and extends to infinity in the upstream direction (negative y-direction).

Although, this is a three-dimensional semi-infinite fluid element, its discretization is performed in

the vertical plane perpendicular to channel axis, which is referred to as the reference plane (y = 0).

Fig. 1(b) Discretization of water domain (fluid finite elements ( L/H = 0.2), and the fluid hyper-element)

Fig. 1(a) Finite element mesh of the dam body
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Therefore, the element consists of several sub-channels, which extend to infinity and all the nodes

of the hyper-element are located on that reference plane. The formulation of this element is

presented as follows:

Assuming water to be linearly compressible and neglecting its viscosity, the small amplitude,

irrotational motion of water due to harmonic excitation is governed by Helmholtz equation;

 (4)

where P is the amplitude of the hydrodynamic pressure (in excess of hydrostatic pressure) and C is

the velocity of pressure waves in water.

By seeking solutions of the form eky in the stream direction, Eq. (4) becomes,

 (5)

with the following definition of λ.

(6)

By applying the variational method on Eq. (5), the following matrix relation is obtained at each

sub-element level:

(7)

where Pe is the vector of nodal pressure amplitudes for each sub-element with nodes located on the

hyper-element reference plane (i.e., y = 0). Furthermore, matrices Ae, Ce and vector Re are defined

below:
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Fig. 1(c) Discretization of water domain (fluid finite elements ( L/H = 1.0), and the fluid hyper-element) 
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(8b)

(8c)

In the above relations, N is the vector of shape functions, and Nx, Nz denote derivatives of this

vector with respect to x, z coordinates, respectively.

As for boundary conditions: neglecting gravity waves, one can write the condition

p = 0  (9)

for the water surface. The condition at reservoir-foundation contact boundaries can be expressed by

the approximate relation,

(10)

which allows for refraction of hydrodynamic pressure waves into the reservoir bottom materials or

foundation rock medium. The admittance or damping coefficient q in this relation is related to a

more meaningful wave reflection coefficient α, 

which is defined as the ratio of the amplitude of the reflected hydrodynamic pressure wave to the

amplitude of a propagating pressure wave incident on the reservoir boundary, in the perpendicular

direction (Fenves and Chopra 1984).

Imposing condition (10) on relation (8c) for sub-elements adjacent to the foundation contact

surface, yields:

(11)

with the following definitions:

(12a)
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(12c)

nx, nz are the components of a unit outward normal vector for the fluid sub-element boundary.

Taking into account relations (9), and (11), the corresponding relation (7) for the hyper-element, is

obtained by assembling contributions from different sub-elements:
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P in this relation, is the vector of nodal pressure amplitudes. It includes all nodes of the fluid hyper-

element below the water surface, which are located on the reference plane (i.e., y = 0). 

Considering homogeneous boundary conditions in (13) corresponding to zero ground acceleration,

leads to the following eigenvalue problem:

(14)

 are the jth eigenvalue and eigenvector of the fluid hyperelement.

There also exists particular solutions for relation (13) which corresponds to uniform unit

acceleration of reservoir boundary in the l-direction (x, or z-direction). In these case, the solution is

independent of y-direction (k = 0), and considering relation (6), it yields:

(15)

The general solution for the amplitude of hydrodynamic pressures vector at an arbitrary y-

coordinate is obtained by combinations of the eigenvectors and the particular solutions calculated

from relations (14), (15). Considering the exponential form of the individual solutions in y-direction,

one has:

(16)

In this relation, γj is the participation factor for the jth mode, and  are included

because unit vertical accelerations were assumed initially for calculation of particular solutions.

For the hyper-element reference plane (i.e., y = 0) which is denoted by h, the vector of pressure

amplitudes (16) becomes:
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It can also be written in a more convenient matrix form,
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pressure in that direction (i.e., ). Thus:

 (19)

For the reference plane, this vector becomes;

  (20)

where Kh is a diagonal matrix with the jth diagonal element being equal to kj.

Solving for the participation vector from (18) by employing orthogonality condition of modal

matrix and substituting in (20) yields:

  (21)

Multiplying both sides of this relation by −A, one obtains:

(22)

by employing the following definitions:

(23a)

 (23b)

(23c)

In relation (22), Rh represents a consistent vector equivalent to integration of inward horizontal

acceleration (negative of stream component) for the hyper-element, and this vector contains

essentially similar quantities as the components of the right hand side vectors of usual fluid finite

elements (Lotfi 2004).

2.4 Dam-reservoir system

The formulation for a dam with finite reservoir was already presented. For the case where the

reservoir extends to infinity, a hyper-element must be used along with the fluid finite elements

utilized for reservoir near-field. Moreover, the governing relation for hyper-element was derived in

previous section (relation (22)). Therefore, if the matrices of the hyper-element are assembled with

the fluid finite elements, Eq. (2) becomes:

(24)
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related to hyper-element are ordered first in the unknown pressure vector, then these matrices have

the following form:

(25a)

(25b)

The relation (24) is the equation to be used instead of (2), when the reservoir is extended to infinity

and one is considering the direct approach in frequency domain. 

2.5 Fluid hyper-element (efficient procedure)

This element is basically formulated in the same manner as the usual fluid hyper-element.

However, the main required matrix (i.e., ) is calculated based on an efficient method. The

fundamental concepts of this technique is presented below:

Let us consider the formula, which is utilized to define matrix :
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solution of the above-mentioned eigenvalue problem (14), which may be rearranged as:
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(29a)

(29b)

Similarly, in the general case of (26), the orthogonality relations are written as:

(30a)

(30b)

with the following matrix definitions:

(31a)

(31b)

By comparing relations (29) and (30), it is easy to see that  is frequency independent and

equal to , if the following operation results in a diagonal matrix:

(32)

Let us investigate the conditions under which this is possible. By employing (29b), relation (32)

can be written as:
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(37)

Therefore, it can be claimed that  is also the j-th eigen-vector of the following eigen-problem:

(38)

which is very similar to the original relation (26) except that Lh is replaced by an approximate form,

. The orthogonality relations corresponding to (38) may be written as:

(39a)

(39b)

Comparing relations (35), and (39b), it yields:

(40)

The equality (40) may be presented in a different form taking into account the definitions (28b),

and (31b):

(41)

Moreover, the wave number kj, can be found from (6) by employing (41):

(42)

Based on the above discussion and following the same procedure, which leads to (23b), one can

obtain the following equation:
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It must be emphasized that  in this relation is frequency-independent, and corresponds to the

modal matrix for the unique case of ω = 0. The only frequency dependent matrix is Kh, which is a

diagonal matrix and its elements are calculated easily by Eq. (42) for any frequency ω. This

incredibly simplifies the calculation of main contributing matrix of fluid hyper-element (i.e.,

). In this manner, it is not required any more to solve a complex eigen-value problem for

each frequency. In other words, the procedure depends on the solution of the initial eigen-problem

(i.e., the one corresponding to ω = 0). Note-worthy, this can be solved by standard eigen-solution

routine, and it doesn’t involve any complex number arithmetic.

3. Modeling and basic parameters

A computer program (Lotfi 2001) was enhanced based on the theory presented on the previous

section. The program is based on the FE-(FE-HE) concept. This means, the dam is treated by solid
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finite elements, while the reservoir is divided into two parts, the near-field region in the vicinity of

the dam, which is discretized by fluid finite elements, and the far-field part is modeled by a three-

dimensional hyper-element. The program was initially relying on the exact method of fluid hyper-

element impedance matrix calculation. However, a second alternative is also introduced to the

program in the present study, which calculates this impedance matrix by the above-mentioned

efficient procedure.

3.1 Models

An idealized symmetric model of Morrow Point arch dam is considered. The geometry of the

dam may be found in (Hall and Chopra 1983). 

The dam is discretized by 40 isoparametric 20-node solid finite elements (Fig. 1(a)). The water

domain is divided into two regions (Fig. 1(b), or 1(c)). The near-field part is considered as a region,

which extends to a specified length L, which is measured in upstream direction at dam mid-crest

point. The far-field region starts from that point and extends to infinity in the upstream direction.

Both these regions combined are assumed to form a uniform reservoir shape as in a previous study

(Lotfi 2004). Two alternatives are considered as it can be observed in Figs. 1(b) and 1(c). These

cases correspond to the specified length L = 0.2 H and H, respectively. H being the dam height or

maximum water depth in the reservoir. The near-field region of these cases, is discretized by 80 or

200 (for L/H = 0.2 or 1.0) isoparametric 20-node fluid finite elements, while the far-field region in

both cases is modeled by a fluid hyper-element which itself is constructed from 40 isoparametric 8-

node sub-elements.

3.2 Basic parameters

The dam concrete is assumed to be homogeneous with isotropic linearly viscoelastic behavior and

the following main characteristics:

Elastic modulus (Ed) = 27.5 GPa

Poisson’s ratio = 0.2

Unit weight = 24.8 kN/m3

Hysteretic damping factor (βd) = 0.05

The impounded water is taken as inviscid, and compressible fluid with unit weight equal to

9.81 kN/m3, and pressure wave velocity C = 1440 m/sec.

4. Results

The responses of dam crest are obtained due to upstream, vertical and cross-stream excitations for

several values of wave reflection coefficient α, and L/H ratios. Initially, L/H ratio is kept constant

and is taken equal to 0.2 (Fig. 1(b)). At this stage, α is varied as 0.75, 0.5, and 0.0. Later on, a final

case is also considered, which corresponds to α = 0.0, and L/H = 1.0. 

It should be mentioned that the response quantities plotted are the amplitudes of the complex

valued radial accelerations for two points located at dam crest (Fig. 1(a)). This is either the mid-

crest point (θ = 0o) selected for upstream or vertical excitations or a point located at (θ = 13.25o)

which is used for the case of cross-stream excitation. This is due to the fact that radial acceleration



694 Vahid Lotfi 

is zero at mid-crest for the cross-stream type of ground motion. 

In each case, the amplitude of radial acceleration is plotted versus the dimensionless frequency for

a significant range. The dimensionless frequency for upstream and vertical excitation is defined as

 where ω is the excitation frequency and  is the fundamental frequency of the dam on rigid

foundation with empty reservoir for a symmetric mode. For the cross-stream excitation cases, the

dimensionless frequency is defined as , where  is the fundamental resonant frequency of

the dam on rigid foundation with empty reservoir for an anti-symmetric mode.

As mentioned above, several values of α, and L/H ratios are considered. The results for all these

cases are obtained for different types of excitations and they are presented in Figs. 2-5. In each of

these cases, the response based on the efficient procedure is compared against the exact method. 

The first three cases is a very challenging test for the efficient procedure which correspond to a

very small value of L/H = 0.2. The α value is varied as 0.75, 0.5, 0.0 for these cases, respectively

(Figs. 2-4). In the first case (α = 0.75, L/H = 0.2), it is observed that there is practically no

difference in response between the efficient procedure and the exact method of analysis for all three

types of excitations (Fig. 2). For the second case (α = 0.50, L/H = 0.2), one notices small differences

in response especially in the vicinity of the first major peak of the response for upstream ground

motion (Fig. 3). In the third case (α = 0.0, L/H = 0.2), the difference in response becomes more

ω/ω1

S
ω1

S

ω/ω1

a
ω1

a

Fig. 2 Response at dam crest due to different excitations (α = 0.75, L/H = 0.2)
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significant, except for cross-stream excitation where the difference in response is still negligible

(Fig. 4).

To make a more quantitative comparison, the percentage error is calculated at the frequency

corresponding to the first major peak of the response in each case, and they are presented in Table 1. It

is noticed that although a very small value of L/H = 0.2 is considered, the efficient procedure gives

excellent results for all practical values of wave reflection coefficient (i.e., α ≥ 0.5), and the

maximum error in response for all these cases is below 5%. The error becomes significant only for

the very impractical case of α = 0.0, which is about 10%, and this is merely for the upstream

excitation. Furthermore, it should be also emphasized that there are no difference in response

between the efficient procedure and the exact method when α = 1.0 (for any L/H ratio), which is

also included in Table 1. 

Finally, a last case is considered which corresponds to (α = 0.0, L/H = 1.0). This case is

introduced to examine the effect of L/H ratio on the response. Although, α = 0.0 is a very

impractical value of wave reflection coefficient, this is selected because it was noticed that it gave

the maximum error in response in combination with a L/H ratio of 0.2. Therefore, this would be a

more challenging test to examine the reduction in the error in response for such a case by increasing

the L/H ratio. The results for this case are depicted in Fig. 5, and the percentage error at the first

Fig. 3 Response at dam crest due to different excitations (α = 0.50, L/H = 0.2)
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major peak of the response is given in Table 1. It is noticed that difference in response becomes

negligible again, and the maximum percentage error in response is less than 1% for all three types

of excitation considered for this case. 

This means that even for the very low value of α = 0.0 which is an impractical value, the efficient

method produces excellent results for moderate values of L/H ratio (e.g., L/H = 1.0). It should be

mentioned that in many cases, one has to consider a near-field region, which is much larger than

this moderate value considered. Furthermore, α < 0.5 are relatively impractical values of wave

reflection coefficient for real cases occurring in the field.

Fig. 4 Response at dam crest due to different excitations (α = 0.0, L/H = 0.2)

Table 1 Percentage error at the first major peak of response

α L/H Upstream Vertical Cross-stream

 1.00 Any 0.00 0.00 0.00

 0.75 0.2 0.65 1.13 0.30

 0.50 0.2 4.31 1.43 0.66

 0.0 0.2 9.79 5.03 1.65

 0.0 1.0 0.25 0.23  0.001
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5. Conclusions

The formulation based on FE-(FE-HE) procedure for dynamic analysis of concrete arch dam-

reservoir systems, was explained briefly. An efficient procedure was proposed for the calculation of

the impedance matrix of the three dimensional fluid hyper-element. A computer program was

enhanced based on this methodology and the response of Morrow Point arch dam was studied for

various combinations of wave reflection coefficient α, and L/H ratio for different excitations. In

each case, the accuracy of the efficient procedure is examined against the exact method.

Overall, the main conclusions obtained by the present study can be listed as follows:

• Initially, the L/H ratio was selected as a small value of 0.2 to make the test for the efficient

procedure very challenging. It was noticed that under this condition, the efficient procedure gave

excellent results for all practical values of wave reflection coefficient considered (i.e., ).

The maximum error in response for all these cases is below 5%. The error becomes significant

only for the very impractical case of α = 0.0, which is about 10%, and this is merely for the

upstream excitation.

α 0.5≥

Fig. 5 Response at dam crest due to different excitations (α = 0.0, L/H = 1.0)
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• A case was considered with α = 0.0, L/H = 1.0. It is noticed that difference in response becomes

negligible again, and the maximum percentage error in response is less than 1% for all three

types of excitation considered for this case. This means that even for the very low value of

α = 0.0 which is an impractical value, the efficient method produces excellent results for

moderate values of L/H ratio (e.g., L/H = 1.0). It should be mentioned that in many cases, one

has to consider a near-field region, which is much larger than this moderate value considered.

Furthermore, α < 0.5 are relatively impractical values of wave reflection coefficient for real

cases occurring in the field.

• The efficient procedure is proven to be a very accurate method under all practical conditions. 
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