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Nondestructive damage evaluation of a curved thin beam 
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Abstract. A vibration-based nondestructive damage evaluation technique for a curved thin beam is
introduced. The proposed method is capable of detecting, locating, and sizing structural damage
simultaneously by using a few of the lower natural frequencies and their corresponding mode shapes
before and after a small damage event. The proposed approach utilizes modal flexibilities reconstructed
from measured modal parameters. A rigorous system of equations governing damage and curvature of
modal flexibility is derived in the context of elasticity. To solve the resulting system of governing
equations, an efficient pseudo-inverse technique is introduced. The direct inspection of the resulting
solutions provides the location and severity of damage in a curved thin beam. This study confirms that
there is a strong linear relationship between the curvature of modal flexibility and flexural damage in the
selected class of structures. Several numerical case studies are provided to justify the performance of the
proposed approach. The proposed method introduces a way to avoid the singularity and mode selection
problems from earlier attempts. 

Keywords: damage detection; flexural damage index; curvature of mode shape; modal flexibility;
curved thin beam; circular arch.

1. Introduction

Structures are often exposed to unexpected hostile environments that may cause structural

damage. Since the accumulation of structural damage may result in catastrophic failure, the periodic

inspection of the load carrying capacity of a structure is a necessity. To periodically monitor the

integrity of structures, a nondestructive, non-intrusive, and inexpensive damage evaluation technique

is necessary. Vibration-based Nondestructive Damage Evaluation (NDE) methods draw special

attention for such applications.

The vibration-based NDE method has evolved over the last two decades, and is based on the

concept that changes in local stiffness are reflected by changes in eigenvalues (Cawley and Adams
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1979). The promising features of the sensitivity-based frequency approach proposed by Stubbs

(1985) are as follows: (1) few measurement points are required, since frequency information is

independent of the probing position; (2) low input energy levels are sufficient to produce

measurable responses (Salawu 1997); (3) a frequency shift has less statistical variation than other

modal parameters (Mottershead and Friswell 1993); (4) the method can be implemented to

structural health monitoring because the resonance frequencies can easily be extracted from ambient

vibration responses induced by normal traffic or winds. However, there are also some drawbacks to

the frequency approach. For instance, the site’s air temperature, humidity, mean air pressure, and

mean rainfall on the day preceding the test may affect resonant frequencies (Farrar et al. 2000).

Also, the changes in natural frequency caused by damage at two symmetric locations in symmetric

structures are exactly the same. Furthermore, an inverse problem arises if the number of measurable

frequencies is less than the number of unknown damaged locations. 

Related to the drawbacks of earlier attempts, the utilization of mode shapes in the vibration-based

NDE method is fairly common. The Mode Shape Curvature (MSC) method proposed by Pandey et al.

(1999) reveals that the amount of damage in a structure can be obtained from the magnitude of

changes in mode shape curvature before and after damage. In their numerical studies, the changes in

resonant frequencies, modal assurance criterion, and displacement mode shapes did not indicate the

presence of damage. Only changes in mode shape curvature indicated the location of damage. Still,

the MSC method has the following shortcomings: (1) the singularity problems near the inflection

points of mode shapes is an obstacle to damage detection (Chen and Swamidas 1994); (2) the

estimated results can be different if more than one mode is used (Doebling et al. 1996); (3) the

method requires a sufficient restricted spatial resolution of sensors (Chen and Swamidas 1994); (4)

the method cannot predict such damage as a uniform reduction in global stiffness (Salawu and

Williams 1994); (5) the method is not valid for axial modes because the method is based on the

flexural formula of an Euler-Bernoulli beam. Among the difficulties presented, the third, fourth, and

fifth shortcomings are considered to be minor obstacles to damage detection for the following

reasons: (1) a few of the lower flexural modes, instead of the relatively higher axial modes, are

most important in practice, (2) the most probable location of damage is the place that maximum

deflection occurs, and (3) high resolution in sensor locations is achievable but costly. The major

difficulties of the MSC method lie in the singularity and mode selection problems. Wahab and

Roeck (1999) attempted to resolve the mode selection problems by proposing a curvature damage

factor, or an arithmetic mean of changes in the mode shape curvature for all modes. However, the

absolute severity of damage relative to an intact structure could not be achieved due to the lack of a

physical interpretation of the proposed factor. 

The Damage Index (DI) method proposed by Stubbs et al. (1995) can be considered as another

notable effort to localize damage using mode shapes. The underlying assumption of the DI method

is that the sensitivity of factional modal strain energy of a potential damaged element is invariant

before and after a small damage event. The element-wise factional modal strain energy is

approximated by the numerical integration of curvature mode shapes. A Spline interpolation

between two sensor locations is a prerequisite to achieving a good curvature profile of measured

mode shapes with typically coarse sensor intervals. Such an interpolation step is not a component of

the MSC method. The DI method was originally developed for an Euler-Bernoulli beam and was

later specialized for plates (Choi and Stubbs 1997, Cornwell et al. 1999) and cylindrical shells

(Srinivasan and Kot 1998). Although it seems that the DI method is more refined than the MSC

method, the DI method suffers from the same difficulties as the MSC method. Consequently, the DI
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method cannot estimate the absolute severity of damage, even if the localization of damage is

distinguishable from other methods (Farrar and Jauregui 1998, Ndambi et al. 2002). 

Since both the DI and the MSC methods directly identify damage from response signatures

without involving any numerical model modification step such as a sensitivity updating algorithm,

they are fast, inexpensive, and non-intrusive. However, the accuracy of measured mode shapes

relies not only on sampling frequency but also on magnitude resolution of frequency response

function. Thus, the cautious selection of sensitivity of sensors to the expected range of vibration

magnitude is necessary. Furthermore, the second order derivatives of measured mode shapes are

required, because a feature common to the MSC and DI methods is the utilization of mode shape

curvature. Clearly, unexpected measurement noise could be involved in this step. However, this

situation could be avoided either by conducting the sufficient number of modal testing and analysis,

or by using the state-of-the-art laser sensing technology. In any case, the small variances and

standard deviations on measured mode shapes should be confirmed before applying the

deterministic mode shape based damage detection methods. 

Based on the common feature of the MSC and DI methods, it is natural to deduce a strong

relationship between curvature and damage. However, the existing MSC and DI methods fail to

estimate the absolute severity of damage. The major obstacles to damage severity estimation may be

the mode selection and singularity problems. This study introduces an attempt to resolve the

aforementioned deficiencies of the DI and MSC methods for a selected class of structures. The

approach introduced uses modal flexibility to avoid the mode selection problem. A commonly

accepted feature of modal flexibility, related to damage detection, is the fact that modal flexibility

can accurately be estimated by a few of the lower modes. In the case of damage detection, modal

flexibility can be considered to be a rational way to combine modes. Consequently, a single

representative solution can be achieved. To resolve the singularity problem, a set of coupled

equations that represent a damage mechanism near the singularity points is sought and solved. To

achieve the objective with those strategies, the following four steps are conducted. First, the slope-

deflection formula for a curved beam is derived after introducing the background of modal

flexibility. Second, a damage mechanism of a curved element is unveiled using the finite difference

approach. Third, an efficient solution procedure to solve a derived equation governing the damage

mechanism is discussed. Finally, a set of numerical verifications is provided to examine the

performance of the proposed method. 

2. A theory of damage detection

2.1 The jth modal flexibility

The flexibility matrix is known as the inversion of the global stiffness matrix of a structure. The

jth column in the flexibility matrix represents a deflection profile caused by a unit load at the jth

degree of freedom (DOF). In the following discussion, the jth modal flexibility vector is defined as

the modal approximation of the jth column of the flexibility matrix. The jth modal flexibility vector,

denoted by wj, can be obtained as follows (Berman and Flannelly 1971); 

(1)wj

ϕj i

λimi

----------ϕi

i 1=

r

∑=
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where ϕi denotes the ith displacement normalized mode shape vector; ϕji denotes the jth scalar

components of ϕi; λi denotes the ith eigenvalue; mi denotes the ith modal mass; and the upper limit,

r, denotes the number of measured modes. If the mass normalized mode shape is available, the jth

modal flexibility vector can be expressed by

(2)

where  denotes the ith mass normalized mode shape (Ewin 2000) and ψji denotes the

jth component of ψi. Note that the jth modal flexibility vector accurately approximates the static

deflection due to a unit load by utilizing only a few of the lower modes. The reason is that the ith

modal contribution factor (ψji/λi or ϕji /miλi) rapidly decreases as the frequency increases.

Furthermore, the kth component of wj represents the displacement at the kth node caused by an

applied unit load at the jth DOF. 

(3)

Since wkj = wjk, the reciprocal theorem is still valid even if the jth or kth modal flexibility vector is

truncated. It is interesting that the deflection at an arbitrary position caused by applied loads can be

achieved by knowing the eigenvalues and eigenvectors without any knowledge of the material

properties of a system. 

The input and the output responses of a structure are available in the forced vibration tests.

Consequently, mass normalized mode shapes can be easily determined by existing modal analysis

techniques and the jth modal flexibility vector can be synthesized using Eq. (2). However, in the

case of ambient vibration tests, mass normalized mode shapes cannot be determined because the

input is unknown. In such a case, the ith modal mass can be approximated by the numerical

integration of the following formula:

(4)

where the function  denotes the ith displacement normalized mode shape. To approximate the

ith modal mass, a cubic Spline interpolation of the mode shapes is recommended prior to numerical

integration. Using the estimated modal mass and the displacement normalized mode shapes, the jth

modal flexibility vector can be obtained by Eq. (1).

wj

ψj i

λi

------ψi

i 1=

r

∑=

ψi ϕi / mi=

wkj

ψj iψki

λi

--------------
i 1=

r

∑ wjk= =

mi ρAϕi s( )ϕi s( ) sd
0

L

∫=

ϕi s( )

Fig. 1 Sign convention of a curved beam 
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2.2 Slope deflection equation for a curved thin beam 

A slope-deflection equation for a curved thin beam is derived in this section. Consider the curved

thin beam element with a radius of R shown in Fig. 1. The symbols s and z denote the tangential

and radial coordinates, respectively. The symbols u and w denote the tangential and radial

deflections caused by distributed load f, respectively. Tangential strain, εs, at an arbitrary point (s, z)

can be expressed as

(5)

in which

and (6)

where εm denotes membrane strain along the midline of the curved beam and χ denotes curvature

change associated with bending moment M. Here, curvature change is considered positive when the

radius of curvature decreases. Under most loading conditions, the displacements caused by the

extension of the centerline of a slender arch or thin ring are very small in comparison with the

displacements caused by bending (Timoshenko and Gere 1963). At the limit of slenderness,

inextensibility assumption εm = 0 implies

(7)

Combining Eq. (6) and Eq. (7) with Eq. (5) yields the inextensible strain-displacement relationship:

(8)

The virtual work done by a normal stress fiber caused by virtual strain δεs can be described as

(9)

where δ denotes the variational operator and σs denotes normal stress in the tangential direction.

Assuming that the material follows Hook’s law, σs = Eεs, the virtual work done by a normal stress

fiber is given by

(10)

where E denotes the modulus of elasticity. Then, the internal virtual work done, δWI , by a body

owing to the elastic deformation is given by integrating δW0  with respect to the volume:

(11)

The external virtual work done δWE, owing to the distributed surface radial loads f, can be

described as 

εs εm zχ–=

εm
∂ u

∂ s
-------

w

R
----+= χ

1

R
---
∂ u

∂ s
-------–

∂
2
w

∂ s
2

----------+=

∂ u

∂ s
-------

w

R
----–=

εs z
w

R
2

-----
∂

2
w

∂ s
2

----------+⎝ ⎠
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–=

δW0 σsδεs=

δW0 Ez
2 w
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-----
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2
w

∂ s
2

----------+⎝ ⎠
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-------
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V
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(12)

The negative sign implies that work is performed on the body. With the aid of a double integration

by the parts, the total virtual work done, , can be expressed by

(13)

The principle of virtual displacement, δW = 0, gives rise to the equilibrium equation as well as to

the boundary conditions on the forces (i.e., ending moments M and shear force V ):

for (14)

at s = 0 and L (15)

at s = 0 and L (16)

Note that the above governing equation and force equations are similar to those of the Euler-

Bernoulli beam when the radius R approaches infinity. 

Consider a circular arch, as depicted in Fig. 2(a), with a uniform cross section and a radius R. The

arch is subjected to a unit load at the jth node. Suppose that the static radial deflection profile of the

curved beam is accurately approximated at the sensor locations by the jth modal flexibility vector,

wj , using Eq. (1) or Eq. (2). Then the governing equation of the eth circular beam element, as

shown in Fig. 2(b), can be achieved using Eq. (14):

δWE fδw sd

0

L

∫–=

δW δWI δWE+=
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-------- EI
∂

2
w

∂ s
2

----------⎝ ⎠
⎛ ⎞ EI

R
2

------
∂

2
w

∂ s
2

----------
∂

2

∂ s
2

--------
EI

R
2

------w⎝ ⎠
⎛ ⎞ EI

R
4

------w f–+ + + δw sd

0

L

∫=

∂

∂ s
------ EI

w

R
2

-----
∂

2
w

∂ s
2

----------+⎝ ⎠
⎛ ⎞ δw

0

L

– EI
w

R
2

-----
∂

2
w

∂ s
2

----------+⎝ ⎠
⎛ ⎞ δ ∂w

∂ s
-------⎝ ⎠

⎛ ⎞

0

L

–

∂
2

∂ s
2

-------- EI
∂

2
w

∂ s
2

----------⎝ ⎠
⎛ ⎞ EI

R
2

------
∂

2
w

∂ s
2

----------
∂

2

∂ s
2

--------
EI

R
2

------w⎝ ⎠
⎛ ⎞ EI

R
4

------w+ + + f= 0 s L< <

M EI
w

R
2

-----
∂

2
w

∂ s
2

----------+⎝ ⎠
⎛ ⎞

=

V
∂M

∂ s
--------=

Fig. 2 The jth modal flexibility of a circular arch
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(17)

Note that the eth element has a constant flexural rigidity EI, a constant radius R, and an arc length l.

In addition, no radial distributed surface load f is applied. For this homogeneous fourth order

ordinary differential equation, the roots of the characteristic equation, , are

. The exact solution has the following form:

(18)

where αi is an arbitrary constant that depends on the specific boundary conditions. Eq. (18) can be

rewritten as

(19)

in which

(20)

and

(21)

To obtain the four unknowns, denoted as αi, four boundary conditions are required. Since the

primary variables in Eq. (13) are w and , they must be specified at two ends of the element.

Such essential boundary conditions of the eth element are as follows:

(22)

where,  denotes the rotational DOF, and l denotes the length of the eth element

considered. Combining Eq. (19) with Eq. (22) yields the equation:

(23)

In a matrix form, Eq. (23) can be rewritten as:

(24)

d
4
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where the 4 × 1 vector  denotes a set of the primary nodal variables.

Inverting the matrix, C, the coefficient vector, α, can be directly obtained.

(25)

Substituting Eq. (25) into Eq. (19) yields the radial deflection, , in terms of the primary nodal

variables:

(26)

where the 4 × 1 vector  is called an interpolation matrix. 

Substituting the radial deflection in terms of the primary nodal variables in Eq. (26) into Eq. (15)

yields:

(27)

where the 4 × 1 vector, , denotes the curvature of the element. Thus,

the internal moments at any point along the beam element can be estimated if all the primary nodal

variables can be measured. Substituting s = 0 and s = l in Eq. (27) yields the internal moments, 

and , at the two end nodes in terms of the primary nodal variables, respectively. 

(28)

where the subscripts ‘1’ and ‘2’ of M, EI, θ, and w denote left and right end nodes of the element,

respectively, and the superscript ‘e’ denotes the eth element. The coefficients are as follows:

 

,

, and (29)

Eq. (28) can be rewritten as:

(30)

where, the 2 × 1 vector, Me, denotes the internal moments at the two end nodes. The 2 × 1 vectors,

 and , represent typically un-measurable rotations and measurable radial deflections,
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respectively. The 2 × 2 matrices, S and T, denote element stiffness matrices with rotational DOF and

radial DOF, respectively. The rotational DOF, , can be obtained by a direct inversion of the

matrix, S:

(31)

The explicit expression for Eq. (31) is as follows:

(32)

where the geometric coefficients are as follows:

, and (33)

Note that Eq. (32) reduces to the elementary slope-deflection equation of the Euler-Bernoulli beam

when the radius R approaches infinity or the length l approaches zero:

(34)

2.3 Flexural damage index equation 

In this section, the flexural damage index equation is derived using the previously derived slope

deflection equation. Consider the two adjacent elements, denoted by e and e + 1, in a global

coordinate system (Fig. 3). For instance, the end nodes of the eth element are denoted by i − 1 and

i. Using Eq. (32), the rotational DOF of the eth element at the ith node can be expressed in terms of

the primary nodal variables.

(35)

Similarly, the rotational DOF of the e + 1th element at the ith node becomes:
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Fig. 3 Global coordinates of the curved elements
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(36)

Note that the slopes of the two elements are identical at the ith node. Hence, a continuity condition

gives rise to the following equation:

(37)

Substituting Eq. (35) and Eq. (36) into Eq. (37) yields:

(38)

If the curved beam is damaged, the analogous form of Eq. (38) can be described as: 

(39)

where the superscript, ‘*’, denotes the damaged states. 

The small deflection theory requires that the change in shape of a structure due to a force must

not affect the line of action of the applied load (Timoshenko and Gere 1963). Based on this

approximation, the initial configuration can be used for the computation of internal forces caused by

the applied loads. It is further assumed that the additional change in beam shape caused by a small

damage event under a given loading condition may not affect the applied loads’ line of action. The

application of such a small damage assumption, , into Eq. (39) yields:

(40)

With the aid of Eq. (15) and Eq. (6b), the moment-curvature relationship at the ith node can be

obtained by:

(41)

where χi denotes the curvature of an intact structure. Substituting Eq. (41) into Eq. (40) yields the

Flexural Damage Index Equation (FDIE) for the curved thin beam:
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where βi is a damage index that is a ratio of the undamaged flexural rigidity to the damaged

flexural rigidity at the ith node. For instance, if the severity of damage at the ith node is 10%

( ), the damage index βi becomes 1.1111. Similarly, the damage index will be a unity at

the undamaged location. χi and  can be numerically estimated at the ith node using the jth modal

flexibility vector of an undamaged structure and a damaged structure, respectively. Hence, the

unknowns that are supposed to be identified in Eq. (42) are the damage index, βi, and the others, χi

and , are the measured constants at the ith node. When the radius R approaches infinity or the

length of the element l goes to zero, Eq. (42) approaches the linear FDIE for a beam (Kim et al.

2002): 

(46)

where  denotes the undamaged curvature of Euler-Bernoulli beam at the ith node.

Note that χi and  approach the curvature profile of undamaged and damaged structure,

respectively, when the radius R approaches infinity.

The estimation of the curvature profile is necessary when using the dynamically measured jth

modal flexibility vector. Since a coarse sensor interval is typically employed in practice, a cubic

Spline interpolation of the jth modal flexibility vector is considered to be a prerequisite. Suppose

that the jth modal flexibility vectors are measured at the N0 nodes and they are interpolated at the N

nodes for a circular arch with simply supported end conditions. Then the explicit expression of the

FDIE of Eq. (42) for such a structure is as follows;

(47)

where the damage index at the two end nodes can be set as a unity , because the

curvature is equal to zero  at the simply supported ends and the damage index can

be arbitrary. The set of the FDIE in Eq. (47) is also valid for the j+1th modal flexibility vector.

Hence, a sufficient number of equations at the interpolated nodes, denoted by m, can be constructed.

The total possible number of equations is (N − 2) × (N0 − 2). However, the number of unknowns is

only N − 2, denoted by n. Therefore, a set of FDIEs results in an over-determined system of linear

equations:

(48)

where the n × 1 vector, β, denotes the unknown damage index vector; the m × 1 vector, , denotes

a damaged curvature of the curved beam; and the m × n matrix, Λ, represents the curvature set of
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the undamaged curved beam. An efficient pseudo-inverse solution of Eq. (48) that satisfies all the

Moore-Penrose conditions (Golub and Van Loan 1996) is 

(49)

in which

(50)

where the n × m matrix Y and the m × m matrix Ω are sets of singular vectors and singular values

of a m × m symmetric matrix , respectively. 

In theory, one set of the jth modal flexibility vector in Eq. (47) may predict the exact solution if

the rank of Λ is full. However, the over-determined equation is inherently recommended because of

measurement noise in the modal flexibility. For example, the reciprocal theorem of the jth modal

flexibility vector in Eq. (3), , is achievable. However, wkj and wjk are not exactly identical

in the dynamically measured modal flexibility. Small errors in measurements of modal flexibility

always exist. If there is no noise in the mode shapes, then only one set of the FDIE is needed to

obtain an accurate solution. 

In principle, two sets of linear algebraic equations have the identical solutions if their singular

values are the same. Note that the singular value decomposition of the m × n  matrix, instead

of the m × n matrix Λ, is performed in Eq. (50). Since the maximum possible rank of the matrix Λ

is only n, the large number of equations, m, is unnecessary if the number of nonzero singular values

in the matrix Λ becomes n. In practice, a few numbers of modal flexibility are enough to reach

maximum rank n. In addition, the column choice in the modal flexibility matrix is arbitrary. The

resulting solutions are insignificantly altered by column choice in the modal flexibility matrix if the

rank of Λ is full.

The derived FDIE for a curved beam is seen to have the following four features. First, localized

inspection may be feasible because no boundary conditions are imposed in the previous derivation

of the FDIE. Second, the solution at the singular point may be achieved because the other adjacent

nodes may not be singular and they are correlated through the FDIE. Third, a representative

solution can be obtained using more than one mode because modal flexibility inherently provides a

rational way to combine multi-modes. Finally, inspecting the resulting solution of the FDIE yields

the location and the absolute severity of damage simultaneously. 

3. Numerical study

In order to examine the performance of the derived FDIE for a circular arch, the simply supported

circular arch in Fig. 4 is considered. The structural properties of the simulated arch consist of

Young’s modulus of 200 GPa, density of 7870 kg, radius of 1.0 m, a subtended angle (central

angle) of π /3, and uniform rectangular cross sections of 0.04 m wide and 0.02 m high. This model

is similar to that studied by Cerri and Ruta (2004). Damage is simulated by reducing the flexural

rigidity, EI, in the damaged region indicated by the gray area in Fig. 4. The severity of damage is

simulated by a 10% uniform reduction of flexural rigidity. Thus the exact damage index that is

supposed to be predicted is 1.1111 in the damaged region. To measure flexural mode shapes, the 21

sensors (N0 = 21) are placed with a uniform interval of π /30. Assuming that only the radial degrees
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of freedom are measured at each sensor, the first three frequencies and displacement-normalized

mode shapes are extracted for the structure before and after a small damage event. To numerically

extract such eigenpairs, the 80 linear beam elements are used. The measured natural frequencies and

mode shapes of the intact structure are shown in Fig. 5. Note that the changes in the first three

natural frequencies are only 0.027%, 0.4026%, and 0.0112%, respectively. The changes in the first

and third modes are significantly small because the location of damage is around the nodal point of

the corresponding mode shapes. After a cubic Spline interpolation at the 201 nodes (N = 201), the

trapezoidal line integration rule is used to obtain the flexural modal mass for each mode. Based on

Eq. (4), the changes in modal mass are 0.0151%, 0.9706%, and 0.1580% for the three flexural

modes, respectively. 

Using the estimated modal mass, three sets of 21 × 1 modal flexibility vectors, due to a unit load

at α = 2π /5, π /3, and π /2, are computed by Eq. (1). Recall that choice of the location of a unit is

arbitrary. Using the cubic Spline interpolation with a 0.0866 m uniform interval, the set of modal

flexibility vectors is interpolated at N = 201 nodes. Then, the damaged and undamaged curvatures

of three sets of modal flexibility vector are approximated by Eqs. (44) and (45), respectively. Here,

Fig. 5 Modal parameters of finite element model

Fig. 4 Damage detection scenario of a simply supported circular arch
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the geometric coefficients, d1, d3, d3 and d4 in Eq. (33) are 0.3333367, 0.1666675, 0.999975, and

1.000012, respectively. Note that these values are close to those of a linear thin beam. To identify

unknown damage indices at the 201 nodes, the 597 (199 × 3) coupled FDIEs are constructed with

the aid of Eq. (42). The next step involves solving the over-determined equation using the pseudo-

inverse technique in Eq. (49). Note that the matrix size of the required SVD process, , in Eq. (50)

is only 199 × 199 instead of 597 × 199. The estimated damage indices at the only sensor locations

are shown in Fig. 6. 

The location of damage is clearly identified. Furthermore, the estimated severity of damage at the

damaged location is β = 1.1125. Thus it can be interpreted that the flexural rigidity is reduced to

89.89% (1/1.1125) at the damaged region. Note that the percentile error of this severity estimation is

only −0.12%. When the same solution procedures are applied with the geometric coefficients for a

linear beam in Eq. (34), the percentile error of the severity estimation becomes 0.26% at the

damaged region. This result indicates that the linear FDIE can also be used for damage detection of

arches, but the proposed curved FDIE guarantees more accuracy. 

For the purpose of comparative study, the DI method of Stubbs et al. (1995) and the MSC method

of Pandey et al. (1999) are applied to the simulated arch with the same damage scenario. For the DI

method, the damage index of the jth beam element βj is defined as

(51)

where L denotes total length of the beam; Lj denotes the length of the jth element; r denotes the

number of modes considered;  denotes the ith curvature mode shape of the undamaged states;

and  denotes the ith curvature mode shape after the damage event. Then, the normalized damage

indicator Zj of the jth element is defined as

(52)
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where  and  denote the arithmetic mean and standard deviation of , respectively. For each

of the mode shapes, the finite difference formula is applied to compute the curvature mode shape

after the cubic Spline interpolation at the 201 nodes. Next, the numerical integrations with the

trapezoidal rule are performed. The estimated damage indices for the three modes are shown in Fig. 7.

The clear peak near the simulated damage region is identified. To estimate the severity of damage, a

sensitivity-updating algorithm, which is a model-based approach, can further be applied (Stubbs and

Kim 1996). However, unlike the proposed FDIE method, the quantitative severity estimation of

damage is not attainable by directly inspecting the normalized damage indices. For the MSC

method, the absolute differences of each mode shape curvature are compared in Fig. 8. No refined

interpolation processes are applied. Note that a clear peak in the second mode is distinguishable

from the others at the damaged region. This is because the simulated damage locates at the nodal

point of the first and third mode shape. This result clearly shows the mode selection problem

previously discussed. It is seen that the MSC method has only succeeded in locating damage.

However, the quantitative estimation of damage severity could not be obtained as with the DI

method. 

The applicability of the proposed method, under real conditions of measurement, is investigated

by considering a type of noise. Possible noises involved in modal parameter measurements may be

classified as two types. One is for sensor tilt caused by inaccurate installation. The other is for

random signal noise in the measured time series. The problem associated with accurate modal

parameter extraction in severe random noise conditions is out of the scope of this study. Usually, the

statistic manipulation through the repeated modal tests and analyses with the proper selection of

sensor sensitivity provides a set of averaged clean mode shapes that has small standard deviation

and variance. Only noise caused by tilt is considered here because true modal parameters in such

noise conditions may not be recovered. Assume that accelerometers cannot be installed exactly

perpendicular to the surface of the arch, and their biased angles are randomly distributed from −5o

to 5o in tangential directions. Such noise is numerically considered by taking the cosine function of

random angles within such a range. Also assume that the sensors are not moved before and after a

small damage event. Using mode shapes with such simulated noise, the same FDIE solution

procedures are performed. The damage indices identified at the sensor locations are shown in Fig. 9.

µβj
σβj

βj

Fig. 7 Normalized damage index by the DI method Fig. 8 Absolute curvature differences by the MSC
method
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Damage localization is shown to be successful, but the error of the severity estimation at the

damaged region increases to 0.664%. 

To investigate the effect of sensor spacing, a coarser sensor interval is examined. The eleven

sensors are placed with a uniform spacing of π /15 from α = 0 to α = 2π /3. Identical FDIE solution

procedures are repeated for the same single damage scenario. The predicted damage indices are

shown in Fig. 10. Although the localization of damage is successful, the error in the severity

estimation at the damaged region increases to 5.78%; this result may not be satisfactory for certain

applications. To resolve this deficiency, the eleven sensors can be moved to the damaged region

using a priori knowledge of the predicted damage locations shown in Fig. 10. The sensors are

placed from α = 31π /120 to α = 51π /120 with a uniform sensor spacing of π /60. The predicted

damage indices, attained using the identical solution procedures for only three modes, are shown in

Fig. 11. The error of severity estimation is reduced to −2.07% at the peak. This result yields two

observations: first, the proposed method is capable of local inspection even though mode shapes are

Fig. 9 Estimated damage index with tilt noise Fig. 10 Estimated damage index with a larger sensor
spacing

Fig. 11 Estimated damage index for local inspection Fig. 12 Estimated damage index for multiple damage
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either spatially or temporally incomplete; second, the accuracy of damage severity estimation relies

on the sensor spacing even though the localization of damage is successful. 

To investigate the performance of the proposed method for a multiple damage scenario, an

additional damage region is considered. The additional damage region is intentionally placed near

the nodal points of the second and third mode shape. The exact location of the additional damage

lies between α = 3π /20 and α = π /6. The exact severity of damage is β = 1.25 (1/0.8) because of a

20% uniform reduction in flexural rigidity. The first three natural frequencies with two damaged

regions are 31.7827 Hz, 80.2131 Hz, and 156.0527 Hz, respectively. The same 21 sensor locations

are used, and the identical FDIE solution procedures are conducted. The identified damage indices

are depicted in Fig. 12. Two clear peaks are identified at the two simulated damaged regions. The

errors of damage severity estimation are −0.1991% and −0.1734% at α = π /6 and α = π /3,

respectively. This result indicates that the proposed method is capable of evaluating damage in

multiple locations. 

4. Conclusions

The objective of this study is to introduce a newly developed vibration-based NDE method for a

selected class of structures that attempts to resolve some deficiencies associated with earlier works.

To meet this goal, the fundamental concept of the jth modal flexibility vector is summarized, and

the slope-deflection equations for a curved beam have been derived. Next, the FDIE are achieved

with a small damage assumption. Then, an efficient solution technique has been introduced to solve

the set of previously derived FDIE for the considered structure. Finally, various aspects of the

performance of the proposed method have been numerically evaluated.

Based on the results of the numerical experiments, the following five findings can be stated. First,

the mode selection and singularity problems of earlier attempts are not an obstacle in the proposed

approach. Second, the proposed method provides not only the location of damage, but also the

severity of damage through direct inspection of the estimated damage indices. Third, the proposed

approach makes localized detail inspection with incomplete mode shapes possible. Fourth,

identification of structural damage in multiple locations is also feasible. Finally, the sensor interval

significantly affects the accuracy of the damage severity estimation. This may be due to the

interpolated error of curvature measured between two sensor nodes. This deficiency requires that

mode shapes be measured with a refined sensor interval. 
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