
Structural Engineering and Mechanics, Vol. 24, No. 5 (2006) 621-639 621

Elasto-plastic stability of circular cylindrical shells 
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Abstract. Stability of a cylindrical shell subject to a uniform axial compression, which is a power
function of time, is examined within the framework of small strain elasto-plasticity. The material of the
shell is incompressible and the effect of the elastic unloading is considered. Initially, employing the
infinitesimal elastic-plastic deformation theory, the fundamental relations and Donnell type stability
equations for a cylindrical shell have been obtained. Then, employing Galerkin’s method, those equations
have been reduced to a time dependent differential equation with variable coefficient. Finally, for two
initial conditions applying a Ritz type variational method, the critical static and dynamic axial loads, the
corresponding wave numbers and dynamic factor have been found. Using those results, the effects of the
variations of loading parameters and the variations of power of time in the axial load expression as well
as the variations of the radius to thickness ratio on the critical parameters of the shells for two initial
conditions are also elucidated. Comparing results with those in the literature validates the present analysis. 

Keywords: elasto-plastic stability; cylindrical shell; time dependent compressive axial load; critical
parameters.

1. Introduction

Plastic stability phenomena have provided during the last four decades some of the crucial test

cases for the validity of metal plasticity theories. In many of the studies, the stability problem of

shells subjected to dynamic loading is considered when the strain is below the proportionality limit.
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Although, the experiments show that elastic-plastic deformation occurs in dynamic loading

condition (see Wolmir 1975). In the plastic deformation zone, the constitution of any particular thin-

walled structure, made by plates and shells, is not recommendable before the stability and strength

problems are studied. The plasticity theory provides more correct results for the same strength of

the designs and constructions. 

Plastic stability of circular cylindrical shell under different loading has been systematically studied

since the late 1940s due to its importance in aerospace engineering. The investigations at this time

have established the sound theory describing the buckling phenomenon. Numerous works about this

problem can be found in the literature, covering theoretical and experimental studies of elastic and

plastic buckling under axial compression, external pressure or end torsion. The most commonly

used constitutive relations of plasticity for buckling problems are deformation and incremental

theories (Hill 1983). In the present work the deformation theory is used for the description of the

plastic behavior of the material. Il’ishin puts the mathematical and technical formulation of elasto-

plastic bending theory of plates and shells forward (Il’ishin 1947, 1948). The validity of Il’ishin

theory is repeatedly proved by the experimental evidence (Bojinski and Wolmir 1962, Lee 1962).

Besides, Gerard (1956, 1957) and Batterman (1965) have been studied the most important

investigations about plastic buckling of cylindrical shells. Elastic and elasto-plastic stability

problems of cylindrical shells under axial load are widely discussed and analyzed (for details see

corresponding literature, e.g., Hill 1983, Wolmir 1967, Korolyov 1971). 

There are many worthy studies about the plastic buckling of plates and shells under constant

loading as: (Storakers 1975, Sobel and Newman 1980, Tvergraad 1983, Tu cu, 1991, Giezen et al.

1991, Li and Reid 1992, Ore and Durban 1992, L n and Yeh 1994, Durban 1998, Durban and

Zuckerman 1999, Yeh et al. 1999, Mao and Lu 2001, Wang et al. 2001, Kosel and Bremec 2004,

Wang 2004). In some of these studies, the deformation theory is also utilized.

The subject of dynamic buckling of elasto-plastic cylindrical shells under axial impact has been

studied in many investigations (Coppa and Nash 1962, Florence and Goodier 1968, Zimcik and

Tennyson 1980, Lee 1981, Bajenov and Lomunov 1983, Lindberg 1987, Li et al. 1994, Yu et al.

1996, Lepik 1998, Karagizova and Jones 1992, 1995, 2000, 2002, Shevchenko and Piskin 2003,

Wang and Tian 2003). 

The stability problem of the shells under time dependent axial compressive load has been much

less studied in contrast to the buckling under axial impact load. One of the most important studies

about this subject is Wolmir (1975). Wolmir (1975) studied elasto-plastic stability of cylindrical

panel, which has initial imperfection under time dependent axial compressive load by using the

Runge-Kutta method. Jones and dos Reis (1980) studied on the dynamic buckling of a simple

elastic-plastic model. The theoretical method predicts that dynamic plastic-elastic buckling governs

the response for small imperfections, while dynamic instability occurs elastically for large

imperfections. Furthermore the dynamic buckling load of a model with small imperfections is larger

than the corresponding static buckling.

Besides, time dependent compressive loads vary not only linearly and periodically but also as

power functions depending on time (Sofiyev 2002, 2003, 2005). But, one such problem, not

considered till today, is the elasto-plastic stability of the shells under time dependent a-periodic axial

loads.

In this study, the aim is to investigate stability of circular cylindrical shells subjected to time

dependent axial compression described by a power law function-using the small elasto-plastic

deformation theory and the Galerkin and Ritz type variational methods. 
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2. Fundamental relations 

As shown in Fig. 1, we consider a cylindrical shell, with immovable hinged supports at the ends,

length L, radius R and thickness h. The system of coordinates is selected in such a way that the

origin is on the middle surface, the z axis is perpendicular to the middle surface of the shell,

positive inwards, and the x and y axes are in the axial and tangential directions, respectively (Fig. 1). 

The material of the shell is homogeneous isotropic, incompressible and the effect of the elastic

unloading is considered. In agreement with the laws for the elasticity and plasticity of materials the

stresses and strains are connected by the relations (Korolyov 1971):

(1)

where σx, σy, σxy and εx, εy, εxy are stress and strain components, respectively and  is the

secant modulus.

The equivalent stress σi and the equivalent strain εi are defined by

(2a)

(2b)

For the purpose of buckling analysis one should recast further the stress-strain relations (1) into a

variational form. Thus, Eq. (1) gives, 

σx
4

3
---Es εx 0.5εy+( ), σy

4

3
---Es εy 0.5εx+( )= , σxy

2

3
---Esεxy==

Es σi/εi=

σ i

2
σ x

2
σ xσy– σ y

2
3σ xy

2
+ +=

εi

2 4

9
--- εx

2
εxεy– εy

2
2 εx εy+( )2 3εxy

2
++ +[ ]=

Fig. 1 Geometry and the coordinate system of a cylindrical shell
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(3)

(4)

(5)

where  is the tangent modulus, δ is the symbol of variation and the following

substitutions are introduced:

(6a-c)

(6d-e)

Es and Et are defined of relation σi = φ (εi), which describes the plastic behavior of the material.

The function σi = φ (εi) is invariant to the type of the stress state and may be determined with

uniaxial tension/compression experiments (See Wolmir 1967). 

The following expression is obtained from (3)-(5):

(7)

where σ and ε are stress and strain functions and the following definitions apply:

(8)

(9)

The variations of strain components and curvatures of the shell are obtained, respectively,

employing the following approximation:

(10)

where  are the variations of the strain components on the middle surface and

 are the variations of the middle surface curvatures of the shell. 

The coordinate of the surface that separates the regions of loading and unloading is obtained from

the condition that the variation of the equivalent stress or equivalent strain is equal to zero: 

(11a)

Substituting of (10) into Eq. (11a) the following expression is obtained: 

(11b)

δsx Esδεx Es Et–( )
sx

σi

----δεi–=

δsy Esδεy Es Et–( )
sy

σi

----δεi–=

sxyδ σxyδ
2

3
---Es εxyδ Es Et–( )

sxy

σi

------δεi–= =

Et dσi/dεi=

sx σx 0.5σy, sy σy 0.5σx–= , sxy σxy=–=

δsx δσx 0.5δσy–= , δsy δσy 0.5δσx–=

Π σ ε,( ) Π σ δs,( )
Et

----------------------=

Π σ δs,( ) Π s δσ,( ) σxδsx σyδsy 3σxyδsxy+ + Etσiδεi= = =

Π σ δε,( ) σxδεx σyδεy σxyδεxy+ + Etσiδεi= =

δεx δεy δγxy, ,( ) δex zχx+ δey zχy+ 2δexy 2zχxy+, ,( )=

δex δey δexy, ,
χx χy χxy, ,

σxδεx σyδεy σxyδεxy+ + 0=

z0

Π σ ε,( )
Π σ χ,( )
-------------------–=
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where

(12)

in which χ is the curvature function.

Substitution of (7) into (11b), a result in the following expression is obtained:

(13)

In the active deformation region or for loading region (z > z0), when expression (13) is considered,

the following relations can be used instead of (3)-(5):

(14)

(15)

(16)

In the case of passive deformation or for elastic unloading (z < z0), the variation of the stress and

strain relations are written in the form:

(17)

 

where E is the elasticity modulus.        

The variations of force and moment components are obtained after Wolmir (1967) as:

(18)

(19)

In case of stability loss, certain part of the shell material passes through the irreversible state of

plastic deformation. Thus at post-buckling state, one part of the shell is loaded plastically, while the

other one undergoes elastic loading. Accordingly, each integral in (18) and (19), can be regarded as

additive decomposition of two integrals. The integrand in the first one is integrated from 

to z = z0 by using (14)-(16) instead of . In the second integral, the expression is

integrated from z = z0 to  by using (17) instead of . Besides, the expression

(13) is substituted in (18) and expression (11) is substituted in (19).

After computations, the following expressions are obtained for the variation of the force and

moment components:

Π σ χ,( ) σxχx σyχy 2σxyχxy+ +=

z0

Π σ sδ,( )
EtΠ σ χ,( )
-------------------------–=

δsx Esδεx

Es Et–

Et

----------------
sxΠ σ δs,( )

σi

2
--------------------------

z0 z–

z0

------------–=

δsy Esδεx

Es Et–

Et

----------------
sxΠ σ δs,( )

σi

2
--------------------------

z0 z–

z0

------------–=

δsxy
2

3
---Esδεxy

Es Et–

Et

----------------
sxΠ σ δs,( )

σi

2
--------------------------

z0 z–

z0

------------–=

δsx Eδεx= , δsy Eδεy, δsxy
2

3
---Eδεxy==

δNx 0.5δNy– δsx zd

h/2–

h/2

∫= , δNy 0.5δNx– δsy zd

h/2–

h/2

∫= , δNxy δsxy zd

h/2–

h /2

∫=

δMx 0.5δMy– δsxz zd

h/2–

h/2

∫= , δMy 0.5δMx– δsyz zd

h/2–

h/2

∫= , δMxy δsxyz zd

h/2–

h /2

∫=

z h/2–=

δsx δsy δsxy, ,
z h/2= δsx δsy δsxy, ,
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(20)

(21)

(22)

(23)

(24)

(25)

where the following definitions apply:

(26a-b)

(26c-d)

(26e)

in which  is the dimensionless coordinate and satisfies inequality .

The variations of force components are given in terms of the Airy stress function as follows:

(27)

In the case, satisfies the following relation:

(28)

 

By removing the variation of strain components from (20)-(22) and expressions (27) are taken

into consideration in the expressions obtained, the following expressions are obtained for the

variations of strain components:

(29)

(30)

δNx B1 δex 0.5δey+( ) D1 χx 0.5χy+( ) B2

Π σ δs,( )

σ i

2
----------------------σx–+=

δNy B1 δey 0.5δex+( ) D1 χy 0.5χx+( ) B2
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σ i

2
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σ i

2
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σ i

2
-------------------σx–+=
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Π σ χ,( )

σ i

2
-------------------σy–+=

δMxy 0.5D1δexy 0.5C2χxy C̃3
Π σ χ,( )

σ i

2
-------------------σxy–+=

B1

2h

3
------ E Es E Es–( ) z0–+[ ], B2

h

4
---

Es Et–
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----------------
1 z0+( )2
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---------------------==

D1

h
2

6
----- E Es–( ) 1 z0

2
–( ), C2

h
3

18
------ E Es E Es–( ) z0

3
–+[ ]==

C̃3
h
3

48
------ Es Et–( ) 1 z0+( )2 2 z0–( )=

z0 2z0/h= 0 z0 1≤ ≤

δNx δNy δNxy, ,( ) h Φ,yy Φ,xx Φ,xy–, ,( )=

Π σ δs,( ) Π s Φ,( ) sx
∂

2Φ

∂ y
2

----------- sy
∂

2Φ

∂ x
2

----------- 3sxy
∂
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∂ x∂ y
-------------–+= =
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-----------
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3
---

h

B1

-----
∂

2Φ
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3
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2
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3
---

h

B1

-----
∂

2Φ
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-----------
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---
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∂
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-----------–
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------
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∂ y
2

-----------
4

3
---

B2

B1

-----
Π σ δs,( )

σ i

2
---------------------- σy 0.5σx–( )+ +=
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(31)

Taking the expressions (14)-(16) into consideration in expression (13) and substituting the

expressions obtained into (18) and removing  and taking expressions (27) into

consideration for variation of the moment components, the following expressions are obtained: 

(32)

(33)

(34)

where the following definitions apply:

(35a-c)

The linearized modified Donnell type dynamic stability and compatibility equations of the

cylindrical shell are, respectively, as follows (Wolmir 1967):

(36)

(37)

where  and  are pre-buckling membrane forces, ρ is the density of the material and t is

the time.

Finally, we combine Eqs. (27), (29)-(31) and (32)-(34) with (36)-(37) to obtain the compatibility

and dynamic stability equations in the form:

(38)

(39)

Inserting relations (12) and (28) in Eqs. (38) and (39), respectively can be obtained:

δexy 2
h

B1

-----
∂

2Φ
∂ x∂ y
-------------–

D1

B1

------
∂

2
w

∂ x∂ y
------------- 2
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B1

-----
Π σ δs,( )

σ i
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δex δexy δey, ,
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∂
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∂
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∂ x
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2
w

∂ y
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----------+⎝ ⎠
⎛ ⎞
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Π σ χ,( )
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2
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δMy h
D1
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∂

2Φ

∂ x
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∂
2
w

∂ y
2
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2
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∂ x
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----------+⎝ ⎠
⎛ ⎞

– D3
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σ i

2
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∂
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-------------–

1
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---D2

∂
2
w

∂ x∂ y
-------------– D3
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2
-----------------------σxy–=

D2 C2

D1

2

B1
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D1B̃2
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h
2

8
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∂
2
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∂ x
2

---------------- 2
∂

2
δMxy

∂ x∂ y
------------------

∂
2
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∂ y
2
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δNy

R
--------- N x

0∂
2
w

∂ x
2

---------- N y

0∂
2
w

∂ y
2

---------- 2Nxy

0 ∂
2
w

∂ x∂ y
-------------+ + + + + + ρh

∂
2
w

∂ t
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----------=

∂
2
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∂ y
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2
δey

∂ x
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2
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∂ x∂ y
----------------–+

1

R
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∂
2
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0
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0
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∂ y
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σy 0.5σx–
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∂
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∂ x
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----------------------------+

3
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σ i

2
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∂
2Π σ δs,( )

∂ x∂ y
----------------------------–

+
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′

4R
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∂
2
w
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2
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∇4
w
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D2
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1
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2
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∂
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∂
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∂
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∂ y
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∂
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∂ x
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0∂
2
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2
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∂ y
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∂
2
w

∂ t
2

----------–+ + +⎝ ⎠
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(40)

(41)

where the following definitions apply:

(42a-b)

(42c-d)

The cylindrical shell subjected to axial compression,

(43)

and axial compressive load varying as a power function of time in the form (Sofiyev 2005): 

(44)

where T1 is the static axial load, T0 is the axial loading parameter and  is a positive whole

number power which express the time dependence of the axial compressive load.

Inserting expressions (43) and (44) in Eqs. (40) and (41) can be obtained:

(45)

where the following definitions apply:

(46a)

(46b)

∇4Φ B2
′

sx

2

σ i

2
-----

∂
4Φ

∂ y
4

----------
sy

2

σ i

2
-----

∂
4Φ

∂ x
4

----------
2sxsy 9sxy

2
+

σ i

2
----------------------------

∂
4Φ

∂ x
2
∂ y

2
------------------ –+ +

6sxsxy

σ i

2
--------------

∂
4Φ

∂ x∂ y
3

---------------
6sysxy

σ i

2
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∂
4Φ

∂ x
3
∂ y

---------------–

+
3B1

′

4R
----------

∂
2
w

∂ x
2

----------–=

∇4
w

D3

D2

------
σx

2

σi

2
-----

∂
4
w

∂ x
4

----------
2σxσy 4σxy

2
+

σi

2
--------------------------------

∂
4
w

∂ x
2
∂ y

2
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σy

2

σi

2
-----

∂
4
w

∂ y
4

----------+ + ––
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3σxyσx

σi

2
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∂
4
w
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3
∂ y
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3σxyσy

σi

2
----------------

∂
4
w

∂ x∂ y
3

---------------+–  –

1

D2

------
h

R
---

∂
2Φ

∂ x
2

----------- N x

0∂
2
w

∂ x
2

---------- N y

0∂
2
w

∂ y
2

---------- 2N xy

0 ∂
2
w

∂ x∂ y
------------- ρh

∂
2
w

∂ t
2

----------–+ + +⎝ ⎠
⎛ ⎞ 0=–

B1
′ B1

h
-----

2

3
---= E Es E Es–( ) z0–+[ ], B2

′ B2

h
-----=

1

4
---

Es Et–

Et

----------------
1 z0+( )2

z0
---------------------= =

D2 C2

D1

2

B1

------ , D3– C̃3

D1B̃2

B1

------------+= =

σx σi σxy 0= σy 0=, ,=

Nx

0
σxh T1 T0t

α

+( )–= =

α 1≥
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L21  L22

w

Φ⎝ ⎠
⎜ ⎟
⎛ ⎞ 0

0⎝ ⎠
⎜ ⎟
⎛ ⎞
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L11 D2 D3–( ) ∂
4

∂ x
4

--------- 2D2

∂
4

∂ x
2
∂ y

2
------------------ D2

∂
4

∂ y
4

--------- T1 T0t
α

+( ) ∂
2

∂ x
2

--------- ρh
∂

2

∂ t
2

--------+ + + +=

L12

h

R
---

∂
2

∂ x
2

---------–=
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(46c)

(46d)

Should no effect of elastic unloading take place the differential operators (46) turns into the

following form: 

(47a)

(47b)

(47c)

(47d)

where the following definition applies:

(48)

3. Solution of the governing equations

Consider a cylindrical shell with simply supported edge conditions. The solutions for Eq. (45)

take the following form [37]: 

(49)

where m1 = mπR/L, m is the half wave length in the direction of the x-axis, n is the wave number in

the direction of the y-axis,  and  are the time dependent amplitudes. 

Substituting expressions (49) in the equation set (45) and applying Galerkin’s method in the

ranges  and  and eliminating , the following differential equation is

obtained: 

(50)

where t = τ tcr, in which tcr is the critical time and the dimensionless time parameter τ satisfies

.

L21

3B1
′

4R
-----------

∂
2

∂ x
2

---------=

L22 1 0.25B2
′+( ) ∂

4

∂ x
4

--------- 2 B2
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∂ x
2
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∂ y
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---------+ +=
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3

9
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2
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2
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∂
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∂ y
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2

--------- ρh
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∂ t
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--------+ +=
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h
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∂
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∂ x
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---------–=
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R
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∂
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∂ x
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4
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2
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------
∂

4

∂ y
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Eq. (50) is solved for two initial conditions (Sachenkov and Baktieva 1978, Sofiyev 2005): 

1) In the first approximation, the function satisfying the initial conditions  is

in the following: 

(51)

2) Furthermore, the curve  has the maximum when τ = 1, so in the first approximation the

function satisfying the initial conditions  is in the following: 

(52)

where the displacement amplitude  is found from the condition of transition to the static

condition. The values of p will be determined numerically in Section 4. 

Under these circumstances, displacement-time curve  possesses two different characteristic

regions. In the first region the inertia force acts opposite to the axial load, whereas, in the second

region it changes sign at some point and enhances the axial load from that point on. Consequently,

displacement amplitude ξ goes to infinity and stability loss occurs. The time at which stability loss

occurred is called as critical time (tcr) and the corresponding load is called dynamic critical axial

load.

Applying the Ritz type variational method to Eq. (50), i.e., multiplying it by dξ(τ)/dτ then after

integration, the following equation is obtained: 

(53)

where C0 is the integration constant and it is assumed that the initial conditions which are taken up

into consideration are equal to zero. Besides, in any points of the interval ,  is

not equal to zero and the following definitions apply:

(54a)

(54b)

Available experimental data (see Lee 1962, Batterman 1965, Sobel and Newman 1980) is

dominated by the axially symmetric mode (see Ore and Durban 1992), by taking this factor into

consideration and substituting Eqs. (51) and (52) in (53), then after integration in , for the

Lagrange-Hamilton type functional the following expression is obtained: 

(55)
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ξ1 0( ) ξ1 τ,= 0( ) 0=

ξ τ( ) A1ξ1 τ( ) A1e
pτ

τ
2

p 3+( )/ p 2+( ) τ–[ ]= =

ξ2 τ,( )
ξ2 0( ) ξ2 τ,= 1( ) 0=

ξ τ( ) A2ξ2 τ( ) A2e
pτ

τ p 2+( )/ p 1+( ) τ–[ ]= =

Aj j 1 2,=( )

ξ τ–( )

dξ τ( )
τd

--------------
2

Λ1 ξ τ( )[ ]2 2Λ2 ξ τ( ) ξd

τd
-----τ

α

∫ τd–+ C0=

0 τ 1< < dξ τ( )/ τd

Λ1

tcr

2

ρhR
4

------------=

D2 D3–( )m1

4
2D2m1

2
n
2

D2n
4

R
2
T1m1

2
–  + + +

 
3B1

′hR
2

4
-------------------

m1

4

1 0.25B2
′+( )m1

4
2 B2

′–( )m1

2
n
2

1 B2
′+( )n4

+ +[ ]
---------------------------------------------------------------------------------------------------------------------+

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

Λ2

T0tcr

  2 α+

m1

2

ρhR
-------------------------=

0 τ≤ 1≤

Γ A1

Φ1ρhR
4

tcr

2
m1

2
------------------- Φ2T0tcr

α

R
2

– Φ0 D2 D3–( )m1

2 0.75B1
′hR

2

1 0.25B2′+( )
--------------------------------

1

m1

2
------ T1R

2
–++

⎩ ⎭
⎨ ⎬
⎧ ⎫

=



Elasto-plastic stability of circular cylindrical shells subjected to axial load 631

(56a-c)

During an infinite time, there may be no agreement in the work done by axial force and inertia

force and the minimum value of potential energy. According to this, being the minimum condition

in respect of the unknown amplitude  of the functional Γ must support being the

minimum condition in respect of wave number  of the functional Γ. These two conditions give

the following two algebraically equations dependent on tcr and : 

(57)

(58)

From Eq. (58), the following equation is obtained:

(59)

Substituting expression (59) in (57), the following expression is obtained: 

(60)

For T1 = 0 eliminating tcr from Eqs. (57) and (60) one gets

(61)

where the following definitions apply:

(62a)

(62b)

For the static condition  the wave number corresponding to the critical axial

load is found as 

(63)

Substituting (63) in (60) and replacing  by Ncrs, the static critical axial load is

found as
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(64)

Should no effect of elastic unloading take place, expression (64) turns into the following form:

(65)

This expression is firstly obtained in Gerard (1957).

Eq. (61) solving numerically for varying α value, the value obtained is substituted within the

equation, obtained by minimizing the energy functional with respect to the unknown coefficient Aj,

the dynamic critical axial load  is found. The dynamic factor is found from the ratio of the

dynamic critical axial load to the static critical axial load:

(66)

where the following definitions apply:

(67)

(68)

4. Numerical results

For validating the analysis, the analytical results are compared with the theoretical and

experimental results. In comparison, for finding the values of Es secant modulus and Et tangent

modulus, the method of Batterman (1965), Ore and Durban (1992) and Wang et al. (2001) is

applied. The examples presented later were calculated with the Ramberg-Osgood elasto-plastic

characteristic: 

(69)

or

(70)

where σy is yield stress, ε is the total plastic strain, (N, K ) are material parameters and the following

definition applies:

(71)

In Table 1 the experimental results of Lee (1962) and the calculated results with the present study

are compared. The tests were performed with simple support cylindrical shells, made of Al 3003-0

with the material parameters E = 7.0 × 1010 (Pa), N = 4.1, σy = 2.362 × 107 (Pa) or K = 2.4811868

× 1010. The elastic Poisson’s ratio is ν = 0.32. The three shells were also analyzed for axisymmetric
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buckling by using deformation and flow theories of plasticity in Ore and Durban (1992) and Mao

and Lu (2001). Their results are also listed in Table 1. The comparison shows that the deformation

theory gives good results but the flow theory predicts much too high critical static loads. Their

results obtained by using the deformation theory correspond well with those from the present study.

In addition to validate the analysis, the results of the elastic stability for cylindrical shells under

the axial compressive loads varying as a linear function of time are compared with the experimental

and numerical results of Agamirov (1990) (see Table 2). The comparisons were carried out for the

following material properties and shell parameters: E = 7.75 × 104 MPa, ν = 0.3, L/R = 2.2, R/h = 180.

The comparisons show that the present results correspond well to those in the literature. 

In Tables 3 and 4, calculations were performed for simply supported Al 3003-0 and ST 304

shells. Al 3003-0 shells characterized by Eq. (69) with the material parameters: E = 7.0 × 1010 Pa,

ν = 0.32, ρ = 2.77 × 103 kg/m3, K = 2.4811868 × 1010 and N = 4.1, which are the same as those in

the papers of Lee (1962), and Ore and Durban (1992). ST 304 shells characterized by Eq. (69) with

the material parameters: E = 2.2147 × 1011 Pa, ν = 0.27, ρ = 8.5888 × 103 kg/m3, K = 4.74 × 1023 and

N = 8.64, which are the same as those in the paper of Sobel and Newman (1980). In all

computations, it is assumed that , i.e., the effect of the elastic unloading is not taken into

consideration.

In Table 3 are given the variations of the dynamic critical load and dynamic factor for the elastic

and elasto-plastic stability of cylindrical shells with radius to thickness ratios. As in the elastic

stability, the value of dynamic critical load is higher than the value of the static critical load in

elasto-plastic stability. In the elasto-plastic stability, the values of the dynamic critical load are

considerably lower than the corresponding dynamic critical load in the elastic stability. With an

increase of the ratio R/h, the values of the dynamic critical load in the elastic and elasto-plastic

stability of the shell decrease, however, the values of the dynamic factor increase. When the ratio of

z 0 1=

Table 2 Comparisons of the dynamic factor with experimental and numerical results for elastic 
stability of shell under the axial compressive loads varying as a linear function of time

N0 
(MPa/sec)

Experim. study 
Agamirov (1990)

Numerical study 
Agamirov (1990)

Present 
study

Kd(1)

7 × 104 1.25 1.18 1.27
9 × 104 1.31 1.21 1.32
11 × 104 - 1.25 1.36

12.7 × 104 1.394 - 1.398

Table 1 Comparison of the critical static stress (MPa) with experimental and analytical results 

Geometry of the 
shell

Lee
 (1962)

Ore and Durban 
(1992)

Mao and Lu 
(2001)

Present 
study

R/h L/R
Experimental

study
Deform. 
theory

Flow 
theory

Deform. 
theory

Flow 
theory

Deform.
 theory

9.36 4.21 96.87 88.49 162.33 89.71 165.46 88.21
19.38 4.10 78.60 74.09 122.03 74.87 124.25 72.68
29.16 4.06 64.74 67.06 103.98 67.70 106.0 64.91
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R/h is increased, the values of the dynamic critical load are decreased in a more acute way in the

elastic stability, but this decrease is less in the elasto-plastic stability. Furthermore, when the ratio of

R/h is increased, the values of the dynamic critical factors are increased more slowly in the elastic

stability, but this increase is more important in the elasto-plastic stability. The increase of the ratio

R/h affects more the dynamic factor in the elasto-plastic stability and this effect is even increased in

Fig. 2 Variations of the dynamic axial loads with p for elastic and elasto-plastic stability of shells (T0 = 2 × 109

(N/m × s); R/L = 0.3, R/h = 100)

Table 3 Variations of the dynamic critical load and dynamic factor for elastic and elasto-plastic stability of
cylindrical shells with R/h (T0 = 0.5 × 109 Pa × m/sec, R/L = 0.25)

Elastic stability Elasto-plastic stability Elastic stability Elasto-plastic stability

Ncrd (1) (MPa) Kd

ξ1(0) = 0, ξ1, τ (0) = 0, ξ1(τ) = e pττ2 [(p + 3)/(p + 2) − τ]

R/h Al 3003-0

50 883.02( p = 65) 89.48( p = 5) 1.042 1.612
75 605.67( p = 38) 87.51( p = 4) 1.072 1.785
100 468.47( p = 26) 86.51( p = 3) 1.106 1.937

R/h ST 304

50 2708( p = 138) 245.74( p = 11) 1.020 1.270
75 1831( p = 80) 236.34( p = 9) 1.034 1.335
100 1394( p = 55) 229.56( p = 7) 1.050 1.392

ξ2(0) = 0, ξ2, τ (1) = 0, ξ2(τ) = e pττ  [(p + 2)/(p + 1) − τ]

R/h Al 3003-0

50 883.02( p = 66) 89.50( p = 6) 1.042 1.612
75 605.68( p = 39) 87.48( p = 5) 1.072 1.785
100 468.48( p = 27) 86.65( p = 4) 1.106 1.941

R/h ST 304

50 2709( p = 138) 246.17( p = 13) 1.020 1.272
75 1831( p = 79) 236.37( p = 10) 1.034 1.335
100 1394(p = 56) 229.79( p = 9) 1.050 1.393
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aluminum shells. For both approach functions, convenient critical parameters get equal values,

approximately.

In Fig. 2, variations of the values of dynamic critical axial load for elastic and elasto-plastic

stability of AL 3003-0 shells under the axial compressive loads varying as a linear function of time

corresponding to varying values of p for the approximation function  are given. Dynamic

critical axial load values are minimal according to the wave numbers and versus to different values

of p. The minimum point of the curve is selected the minimum value of dynamic critical axial load

according to p. 

Table 4 shows the variation of the critical parameters for elastic and elasto-plastic stability of Al

3003-0 and ST 304 shells with different power of time α. The numerical analysis for the ST 304

and AL 3003-0 shells show that the loading parameter varies approximately by the following values

to become the loading dynamic: 

a) When the axial load varies linearly depending on time (in N/m × s), it must be in 108 ≤  T0 < 1011,

b) When the axial load varies quadratic depending on time (in N/m × s2), it must be in

1010 ≤ T0 ≤ 1014, c). When the axial load varies cubically depending on time (in N/m × s3), it must

be in 1013 ≤  T0 ≤ 1018.

ξ1 τ( )

Table 4 The variation of the critical parameters for elastic and elasto-plastic stability of Al 3003-0 and ST 304
shells with different power of time (R/h = 75, R/L = 0.25)

ξ2(0) = 0, ξ2, τ (1) = 0, ξ2(τ) = e pττ  [(p + 2)/(p + 1) − τ]

α = 1 α = 2 α = 3

T0 × 10-8N/(m × sec) T0 × 10-11N/(m × sec2) T0 × 10-15N/(m × sec3)

5 50 500 5 50 500 5 50 500

Aluminum shells (Al 3003-0)

Elastic stability

Ncrd (α) × 10−6 
(Pa)

605.68
( p = 39)

751.29
( p = 10)

1378
( p = 3)

696.22
( p = 25)

855.12
( p = 13)

1219.55
( p = 7)

952.1
( p = 12)

1248.1
( p = 11)

1794.5
( p = 8)

Kd (α) 1.072 1.333 2.439 1.233 1.514 2.159 1.686 2.210 3.177

Elasto-plastic stability

Ncrd (α) × 10−6

(Pa)
87.48

( p = 5)
208.95

( p = 2.4)
633.06

( p = 2.1)
110.87
( p = 7)

191.3
( p = 4)

378.85
( p = 3.5)

204.34
( p = 6)

334.79
( p = 5)

575.75
( p = 5)

Kd (α) 1.785 4.263 12.92 2.262 3.916 7.729 4.169 6.83 11.75

Steel shells (ST 304)

Elastic stability

Ncrd (α) × 10−6 
(Pa)

1830.7
( p = 82)

2047.4
( p = 19)

3013.5
( p = 5)

2050.1
( p = 37)

2385
( p = 19)

3142.1
( p = 10)

2696.5
( p = 20)

3388.5
( p = 10)

4651.8
( p = 9)

Kd (α) 1.034 1.156 1.702 1.158 1.347 1.775 1.523 1.914 2.627

Elasto-plastic stability

Ncrd (α) × 10−6

(Pa)
236.46

( p = 10)
435.17
( p = 3)

1197.1
( p = 2.1)

314.95
( p = 10)

491.4
( p = 6)

903.94
( p = 4)

567.16
( p = 7)

889.8
( p = 6)

1490.5
( p = 5)

Kd (α) 1.335 2.457 6.759 1.778 2.775 5.104 3.203 5.024 8.416



636 A. H. Sofiyev, E. Schnack and F. Demír

For the case that the loading law does not vary and the axial loading parameter T0 increases, the

dynamic axial critical load and the dynamic factor values increase and the values of p parameter

versus to the minimum dynamic axial critical load decrease. When T0 is increased, the values of the

dynamic critical load and dynamic factor in the elasto-plastic stability change more acute than the

values in the elastic stability. Consequently, when the loading law changes, the values of the loading

parameter change as well. 

5. Conclusions

The stability of a cylindrical shell subject to a uniform axial compression, which is a power

function of time, is examined within the framework of small strain elasto-plasticity. The material of

the shell is incompressible and the effect of the elastic unloading is taken into consideration.

Initially, employing small elasto-plastic deformation theory, the fundamental relations and Donnell

type stability equation of a cylindrical shell have been obtained. Then, employing the Galerkin’s

method, those equations have been reduced to a time dependent differential equation with a variable

coefficient. Then, for two initial conditions applying a Ritz type variational method, the critical

static and dynamic axial loads as well as the dynamic factor have been found. Finally, carrying out

some computations, the effects of the variation of the power of time in the axial load expressions,

of the varying loading parameter and of the varying radius to the thickness ratios on the critical

parameters of the shells for two initial conditions have been studied and the results obtained were

presented in the form of graphs and tables.
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Notation

Bj, Cj, Dj : Coefficients defined in Eqs. (26a-e) and (35a-c) 
E : Elasticity modulus 
Es, Et : Secant and tangent moduli, respectively 
h : Thickness of the shell
Kd : Dynamic factor
L : Length of the cylindrical shell
Lij, : Differential operators defined in Eqs. (46a-d) and (47a-d), respectively
Mx, My, Mxy : Moments per unit length of the cross-section of the shell
m : Half wave number in the axial direction
m1st : Wave number corresponding to static critical axial load
n : Wave number in the circumferential direction
Ox, Oy, Oz : Coordinate axes with the origin on the middle surface of the shell
N, K : Material parameters
Ncrs, Ncrd : Static and dynamic critical axial loads, respectively
C0 : Integration constant
T0, T1 : Axial loading parameter and static axial load, respectively
R : Radius of the cylindrical shell
Nx, Ny, Nxy : Forces per unit length of the cross-section of the shell

: Pre-buckling membrane forces
t, tcr : Time and critical time, respectively
w : Displacement of the middle surface in the inwards normal direction
z0 : Coordinate of the surface that separates the regions of elastic and plastic deformation

: = 2z0/h dimensionless coordinate 
α : Power of time in the axial compression
δ  : Symbol of variation
φ : Function
χ : Curvature function
χx, χy , χxy : Middle surface curvatures 
ex, ey, exy : Strain components on the middle surface of the shell
εx, εy, εxy : Strain components
εi : Equivalent strain
ε : Strain function
ν : Elastic Poisson’s ratio
τ : Dimensionless time parameter
ρ : Density of the material

L̃ij

Nx

0
Ny

0
Nxy

0
, ,

z0
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ϕts : Et/Es

σx, σy , σxy : Stress components
σ, σi : Stress function and equivalent stress, respectively
ξ(t), ζ(t) : Time dependent amplitudes
Φ : Stress function
Π(σ) : Function defined in Eqs. (8), (9) and (11)
Λj : Coefficients defined in Eqs. (54a-b)
Γ : Functional defined in Eq. (55)




