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An effective stiffness model for RC flexural members
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Abstract. The paper presents an effective stiffness model for deformational analysis of reinforced
concrete cracked members in bending throughout the short-term loading up to the near failure. The
method generally involves the analytical derivation of an effective moment of inertia based on the
smeared crack technique. The method, in a simplified way, enables us to take into account the non linear
properties of concrete, the effects of cracking and tension stiffening. A statistical analysis has shown that
proposed technique is of adequate accuracy of calculated and experimental deflections data provided for
beams with small, average and normal reinforcement ratios.
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1. Introduction

Reinforced concrete is a composite multi-factor nature material with nonlinear relations between

stress and strain in compression as well as nonlinear bonding behavior of concrete and steel in

tension inducing the strain-dependent tension stiffening effect. All these properties have to be

modeled on the material level in order to be later homogenized by a suitable integration technique

to the structural level. Hence, for detailed insight into the deformational response of RC structures,

a civil engineer must choose between analytical, numerical or traditional code methods.

Numerical techniques which recently have rapidly progressed are based on the universal principles

and provide great possibilities to apply sophisticated mathematical models. The main limitations of

numerical methods are related to numerical errors and computational capabilities in application to

large structures. The implementation of the efficient solution techniques to achieve convergence,

which can have a crucial influence on the obtained results, is also strongly needed. Normally, the

non linear equations are solved numerically using an incremental step-by-step Newton-type

procedure. Furthermore, in a general case, the problem of analysis of reinforced concrete elements

under short- or long-term loading is non-smooth and non-convex and has multiple solutions, i.e.,

several stress and strain states may correspond to the same load condition. This can even occur if

stress-strain relationships used for concrete and reinforcing steel have no descending branches (e.g.,

Balevi ius and Simbirkin 2005). Therefore, conventional iterative methods of the Newton-type are

frequently inefficient when solving a set of non linear equations for reinforced concrete structures

and do not allows us to find all possible solutions to the problems.
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The application of analytical methods to the analysis of RC structures is limited by a constitutive

law of traditional mathematics, stating in particular, that the explicit solution in terms of radicals for

polynomial equations of a degree greater than four do not exist. Therefore, in part, in developing

the code methods have been usually used a great number of empirical expressions and non-physical

factors. The code approaches (e.g., SNiP 1988, ACI 1999, prEN 2001, etc.) are presented in the

analytical form and simple to use, but, actually, they are empirical and, in many cases, do not reveal

the actual stress strain state, but ensure the safe design. However, code methods usually give

statistically more accurate deflection results to experimental tests data than deflections obtained in

numerical analysis based on modern multi-parameter material models (e.g., Kaklauskas 2004).

Numerical modelling of plain and reinforced concrete started in the late 1960s with the landmark

papers of Rashid (1968), Ngo and Scordelis (1967) proposing the smeared and discrete crack

models. In the sequel, various developments, such as shear retention factor (Suidan and Schnobrich

1973), tension stiffening/softening, fracture energy concepts (e.g., Pietruszczak and Mroz 1981,

Bazant and Oh 1984, etc.), rate-dependent smeared crack models (e.g., Sluys and de Borst 1996,

etc.) have been opened to discussion. A comprehensive overview and analysis of these methods was

done by de Borst (2002).

The calculation of moment-curvature diagrams for a particular section of beam-column is usually

an intermediate step before determining its load-deflection behavior, load-carrying capacity, and

failure mode under a particular set of loads and boundary conditions in engineering technique. The

extensive analytical and experimental studies of load-deflection responses of RC beams and

columns have been reported since the 1960s. These methods comprise the analytical approaches of

the complex evaluation of tensile concrete, crack depths and bond-slipping (e.g., Rozenbliumas

1966) as well as the simple estimates of the flexural rigidity of RC beam (e.g., Gilbert 1983, Chan

et al. 2000), techniques involving an adjustment to the stiffness of the tensile steel for account the

tension stiffening (e.g., Zalesov et al. 1988, Scott and Beeby 2005) and applications of unloading

stress-strain diagram for tensile concrete (e.g., Lin and Scordelis 1975, Prakhya and Morley 1990,

Kwak and Kim 2002, Kaklauskas 2004, etc.). The procedures of numerical analysis in application

to large structures with many degrees of freedom can be simplified when analytical moment-

curvature relationships are approximately known in advance. This approach has been implemented

by Mendis and Darval (1988) determining the buckling functions of column in nonlinear analysis of

softening frames. Rather than using the layer approach, the accompanying sophisticated calculations

in the nonlinear analysis such as the determination of neutral axis and change of elastic stiffness, the

authors incrementally revised the previously determined RC section moment-curvature relation

considering the bond slipping effect (Kwak and Kim 2002). This methodology has been also

focussed on the simplified finite elements modelling and analytical solutions. 

Probably the best known method based on empirical equation of an effective moment of inertia

and specified for many years in many codes of practice for simplified deflection calculations has

been proposed by Branson (1968). This attractive conception has been studied and revised by

various investigators. The influence of load types on the effective moment of inertia has been

investigated by Al-Zaid et al. (1991) developing the model that estimates any type of a symmetrical

loading. Mathematical representation of the probability of crack occurrence by the ratio between the

area of the moment diagram of cracked section and the total area of the moment diagram for any

loading has been provided as the basis for the calculation of the effective moment of inertia by

Ning et al. (2001). Recently, the rational models for the effective moment of inertia have been

developed for fiber-reinforced polymer-RC beams (Razaqpur and Isgor 2003, Yost et al. 2003).



An effective stiffness model for RC flexural members 603

This paper presents a method for deformational analysis of cracked RC flexural members based

on the constitutive laws for materials and classical principles of the strength of materials. The

method generally involves an analytical derivation of the effective moment of inertia which, in a

simplified way, enables us to take into account the non linear properties of concrete, the effects of

cracking and tension stiffening. The engineering applicability of proposed concept is verified by

extensive comparison of analytical results with experimental data.

2. Stress strain state formulation

2.1 Basic assumptions

The present method is based on the following assumptions about the behavior of flexural RC

members: 

· Euler-Bernouilli’s hypothesis of linear distribution of strains within the depth of cross section;

· A smeared crack approach;

· Perfect bond between reinforcement and concrete (reinforcement slippage occurring concrete

cracking is included into unloading stress strain relationship for tensile concrete);

· All the fibres in the tensile zone satisfy the same stress strain law. Similarly, this is also valid to

fibres of concrete in compression. 

· Shear forces do not significantly affect stress state and stiffness of the element cross section and

can be omitted. 

2.2 Governing geometry and equilibrium relations 

Based on the above assumptions, let us consider a statically determined non-prestressed beam as

doubly reinforced concrete element under bending only (Fig. 1). Using the requirements of strain

compatibility and denoting the stresses and strains by subscripts c/ct and s/s1 for compressive/

tensile concrete and for compressive/tensile reinforcements, the equilibrium equations can be

expressed in this way:

(1)
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in which, Mc, Mct , Ms1 , Ms are the internal bending moments about a neutral axis; Fc, Fct , Fs1 , Fs

are the internal forces; M is the external bending moment;  are the average strain

of jth and j-1th layers; ρ is the load induced curvature;  is the width of cross section at a

distance of y from the neutral axis (Fig. 1);  is an effective, while h is the overall depth

of the cross section; a1 and a are the distances between centre of gravity of compressive and tensile

reinforcements to the nearest edges of the cross section; As1 and As are the areas of reinforcement.

In Eq. (1a) and Eq. (1c), the summation symbol represents that compressive and tensile zones of

the cross section are divided into the numbers of kc and kct layers since to integrate the ramp or

stepwise functions, such as . 

2.3 Material models

To describe the compression in concrete, the linear stress strain relation including the elasto-

plastic effects is applied

(2)

where  is the coefficient of elasto-plasticity for concrete in compression; Ec and 

are Young’s tangent and secant moduli for concrete. 

In general, the coefficient ν nonlinearly depends on increasing intensity of loading. When the

member is subjected to bending, it is necessary to determine the character of the stress strain

diagram. Following the code SNiP 1989 methodology, the coefficient ω is adopted to determine the

diagram shape of concrete in compression. Hence, when loading begins the compressive zone of

RC member behaves similarly to elastic material, and  can be assumed. With

increasing intensity of loading, plastic deformation occurs and stress strain diagram becomes similar

to a rectangle, then the coefficient ω is tending to 1, while  (where fc and εcR are

ultimate compressive strength and the respective strain). 

It is well-known that the tensile stiffness of the cracked reinforced concrete section between the

consecutive cracks is higher than the stiffness of pure reinforcing steel. This property called tension
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Fig. 1 RC beam cross section and strain compatibility
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stiffness let us model by using the elementary smeared crack approach (Fig. 2). Hence, an

ascending branch of the stress strain diagram simulates the behavior of the pre-cracked section

while the unloading branch in the diagram accumulates tension stiffening effects, reflecting crack

formation, the behavior of tensile concrete between cracks and reinforcement slipping:

 (3)

where:   (4)

 (5)

in which, fct and εctR are tensile strength and cracking strain of concrete (Fig. 2); α and β are the

parameters that integrally control the tension stiffening effect (Fig. 2).

In the analysis, the elastic stress strain relations in both tension and compression zones are

assumed for the reinforcement.

3. The proposed method

For the solution of the system of Eq. (1) relying on the material models, the following stages of

deformational behavior of tension zone of RC members can be distinguished: 

• The pre-cracking stage when the condition  is valid; 

• The pure tension stiffening stage when the condition  is satisfied; 

• The partially tension stiffening stage is over the range ;

• The fully cracked stage, when tensile concrete is neglected.

In the next sections, the non linear relations between internal forces/moments and respective

stiffness will be considered.
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Fig. 2 Average stress strain diagram of tensile concrete
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3.1 Internal moments and respective stiffness

At the beginning of the pre-cracking stage the moment-curvature segment is essentially a straight

line defining elastic behavior of RC section. This stage is complete at the initiation of the first

flexural crack when the concrete deformation in extreme tensile fibre reaches its ultimate tensile

deformation . The formula of the moment of cracking Mcr which corresponds to the end of pre-

cracking stage is simply obtained from Eq. (1) integrating Eq. (1a) over the range of 0 and :

(6)

where: (7)

(8)

(8a)

(8b)

Here, ρcr , Icr are the curvature and the transformed inertia moment corresponding to the end of pre-
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neutral axis;  and  are the areas of compressive and tensile

flanges of cross section, respectively; b is the width of beam web while bf1, bf , hf1, hf are width and

depth of the flanges (Fig. 1), when b = bf1 = bf we have rectangular cross section; nc = Es /Ec is the

modular ratio for compressive concrete and reinforcement. 

The location of the neutral axis xcr is defined as the roots for force balance in system Eq. (1): 
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(13)

(14)

(15)

Substituting  for ρ as well as  for x in Eqs. (10-12) and inserting

these substitutions into Eq. (1), we obtain the bending moment specifying the end of the pure

tension stiffening stage, when the deformation at extreme tensile fibre reaches its ultimate tensile

value :

(16)

where: (17)
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in which,  the transformed inertia moment of cross section about the neutral axis specifying

the end of pure tension stiffening stage consists of the inertia moments  for
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depending on the shape of the diagram for concrete in compression: for the triangular shape, ω = 1/2,

ω1 = 2/3, ωf = 1/2, while for the rectangular shape, ω = 1, ω1 = 1/2, ωf = 0;  is the
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(20)

where,  and  are the transformed area and the first moment of transformed area about

the top surface of the cross section specifying the end of pure tension stiffening stage. 

Now, let us consider the partially tension stiffening stage. At this stage, the depth of assertion of

the tensile deformations rapidly vanishes tending to almost negligible values under the increasing of

bending moment. Let us omit the tensile deformations for RC beam flanges. Hence, the internal

moments from Eqs. (10-12) and forces of Eqs. (13-15) can be applied to this stage, while Mct and

Fct are rewritten as:

(21)

(22)

Finally, the inertia moment about the neutral axis specifying the fully cracked stage If, cr may be

obtained from Eq. (17) substituting 0 for , while the location of the neutral axis is derived by

substituting 0 for  in Eq. (18):
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top surface of the section specifying the stage of full cracking.

As can be seen from Eq. (23), under increasing bending moment M, the location of the neutral

axis remains constant. The fully cracked section stage is complete when M reaches the ultimate

bending moment . The latter is determined by the ultimate curvature of RC beam ρu

that specifies the failure mode because of concrete crushing or collapse because of steel bars

breaking. 

3.2 Solution

In general, the explicit solution in terms of radicals for polynomial Eq. (1) by using Eqs. (10-15)
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respectively, for partially stiffening stage, do not exist since the degree of a polynomial in the

neutral axis is six. In order to eliminate this restriction, the linear approximation between the

location of the neutral axis and bending moment is adopted:
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(26)

Hence, the moment-curvature equation for pure tension stiffening stage of RC beam may be

obtained from the moment balance in Eq. (1) using Eqs. (10-12) as:

(27)

where: (28)

(28a)

(29)

Here,  is the first moment of tensile concrete area about the neutral axis specifying the pure
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neutral axis specifying to the stage of pure tension stiffening;  are the inertia moments
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concrete zone.
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by using Eq. (10), Eq. (12) and Eq. (21):
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Hence, the effective moment of inertia for RC beam is defined by the following relationships:

(33)

where:

(33a)

(33b)

in which: 

(33c)

(33d)

(33e)

(33f)

Here,  and  are the effective moments of inertia specifying the stages of pure tension

stiffening and partial tension stiffening; while sign , where q is any algebraic

expression. 

The influence of the adopted the linear approximation between the acting moment M and the

location of the neutral axis x using Eq. (26) on the moment-curvature diagram for different strength

grades of concrete and reinforcement ratios µ has been investigated by comparing theoretical results

determined by Eq. (32) with those solved numerically (Fig. 3). The numerical moment-curvature

diagrams were obtained by solving a system non linear Eq. (1) taking into account material models
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presented in Section 2.3. A genetic algorithm technique (see Simbirkin and Balevi ius 2004) has

been used to find all possible solutions of the considered non linear equations. 

The comparative graphs depicted in Fig. 3 show that the numerical solution and the proposed

expressions Eqs. (32-33) relying on the approximation Eq. (26) are in good agreement for the

beams with reinforcement µ > 0.7% in the both pure and partially tension stiffening stages of

deformability RC members. For small reinforcement ratios, i.e., µ > 0.7% the proposed method also

provides a reasonable approximation: the relative difference between the numerical and proposed

solutions are by about ±3-18% for pure tension stiffening stage, while for partially tension stiffening

stage these differences are less that 2%. The presented moment-curvature diagrams (Fig. 3) have

been computed for an actual experimental beam (see Nemirovskyi and Kochetkov 1969) taking into

account material parameters described in Section 4. 

4. Experimental verification of the method

Experimental verification of the method proposed is performed by comparing analytical and test

values of the moment-curvature/deflections as well as the moment-neutral axis functions of cracked

RC members in pure bending. In such a way, the proposed approach is approved for the extensive

range of loading levels and different reinforcement ratios of beams. The deflections, f, have been

computed by Mohr’s integral relying on the variable moment of inertia J(z) along the entire span z

ranging from the inertia moment of transformed section specifying the pre-cracked stage to the

effective moment of inertia Eq. (33). The code methods (i.e., prEN 2001, ACI 1999, SNiP 1989)

corresponding to the different levels of empirical complexity have been also employed in

comparative analysis.

Let us briefly describe physical properties of concrete which were implemented in the method.

The governing parameter β controlling the effects of tension stiffening has been investigated by

various researchers (e.g., Lin and Scordelis 1975, Schnobrick 1985, Bazant and Oh 1984, etc.)

particularly in shear or tension tests using its range within 5 and 20. A comprehensive study of β

c

ê

Fig. 3 The comparative graphs of dimensionless moment-curvature functions vs reinforcement ratios:
numerical (bold line), method (thin line)
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evaluation for RC elements was made by (Kaklauskas 2004) deriving average stress-strain relation

of cracked tensile concrete from RC beam tests in bending (Kaklauskas 1999) using the technique

described in (Kaklauskas and Ghaboussi 2001). Thus, despite of the fact that various parameters

affect the character of tensile stress-strain relation, a quantitative dependence between the length of

the unloading branch and the reinforcement ratio was established in (Kaklauskas 2004): 

(34)

In Eq. (34), the reinforcement ratio µ calculated by formula [%]. Based on the present

state of knowledge, the parameter α in Eq. (3) was assumed to be 0.7.

According to the regulations of the code (SNiP 1989), the coefficient of elasto-plasticity for

concrete in compression, ν, was taken to be 0.85 and additionally multiplied by the averaging factor

0.9, taking into account the uneven development of concrete strain in compression along the entire

of span, if the cracking occurs. When the intensity of loading σc /fc reaches 0.6 (where σc is the

stress at extreme compressive fibre of RC cross section, and fc is 150 × 150 mm prism strength), the

rectangular shape of stress-strain diagram was assumed, taking into account that ν = 0.4. 

The experimental data of 62 beams reported in literature (Nemirovskyi and Kochetkov 1969,

Figarovskyi 1962, Artemiev 1959, Guscha 1968) and used in developing the SNiP code (see Mulin

et al. 1970) were also used in the present comparative analysis. All RC beams were subjected to

four-point bending with a long pure bending zone (equal to 1/3 of the span) to avoid the shear effect

on the beam deflections. The main characteristics of RC cross sections are presented in Table 1. As

can be seen from this table, the tests represent a wide range of average concrete compressive

strengths and reinforcement ratios yielded by extremely low (µ = 0.16%) and relatively high

(µ = 1.63%) values.

Fig. 4 presents the diagrams of moment curvature and neutral axis comparing theoretical and

experimental values (Nemirovskyi and Kochetkov 1969). As can be seen, theoretical moment-

curvature diagrams predicted by Eq. (32) are in good agreement with those obtained in experiments

for reinforcement ratio ranging from 0.43 to 1.51%. For slightly reinforced beams i.e., BII-1 and

BI-1 the less accuracy is achieved. The linear approximation of the neutral axis vs bending

moments Figs. 4(c),(d) can also be considered acceptable. 

Comparative graphs for the values of the bending moment and deflections calculated by the

proposed method and the testing (Figarovskyi 1962) values are shown in Fig. 5. All beams of series

III had a rectangular section, while series IV was made as T section with the flanges in the tensile

zone. As can be seen in Fig. 5, the theoretically obtained deflection values are in a reasonable

β
7.12µ

2
27.6µ– 32.8, µ 2%<+

5, othervise⎩
⎨
⎧

=

µ
As As1+

bh0

------------------100=

Table 1 Main characteristics of RC beams

Author of experiment Total No.
150×150 cube 
strength, MPa 

Steel yield 
strength, MPa

h, mm b, mm µ, %

Nemirovskyi
Figarovskyi
Artemiev
Guscha

10
33
15
4

48.9-55.9
9.6-32.7
17.0-48.6
27.3-36.4

640-730
374-632
813-1062
664-999

402-413
248-254
250-264
306-312

142-150
80-180
176-187
133-162

0.20-1.51
0.16-1.63
0.99-1.12
0.28-1.18
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agreement with those obtained experimentally for both rectangular and inverted T cross sections.

The measured deflections for slightly reinforced T0-1Pk and T1-2Pd beams are less than theoretical.

Fig. 4 Experimental and calculated curvatures (a,b) and the location of the neutral axis (c,d) vs the bending
moments

Fig. 5 Experimental and calculated beam deflections: a) rectangular cross section; b) inverted T cross section
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It can be explained by the fact that a conservative theoretical assumption that tensile flanges of the

beam cross section work only on a descending branch of the stress-strain diagram for pure tension

stiffening stage was adopted while, for the partially tension stiffening stage, the influence of cracked

tensile concrete on beam flanges was ignored completely. 

Fig. 6 presents moment deflection diagrams for theoretical and experimental values (Artemiev

1959, Guscha 1968) obtained for normally (µ ~1%) and slightly (µ = 0.28%) reinforced cross

sections. Note, the moment-deflection behaviour was considered in the current analysis up to 0.8-

0.9Mu in testing (Guscha 1968) for beams series BI-3, BT-9, BI-12.

Summarising the presented comparative analysis it should be noted that the pure tension stiffening

stage occurring in slightly reinforced members can spread throughout cracking even up to failure.

At this stage, the cracks develop spontaneously, suddenly reducing effective stiffness and the

behavior of block of tensile concrete between the consecutive cracks, and reinforcement slippage

(integrally modeled by the descending branch of stress-strain diagram of tensile concrete) has non

linear effect on the deflections. The normally reinforced concrete elements usually work in both

stages of partial tension stiffening and the full cracking, while the pure tension stiffening stage

occurs if the acting moment is slightly higher than the moment of cracking Mcr. At the end of the

stage of partial tension stiffening, the crack depths as well as effective stiffness remain

approximately constant values under the increasing bending moment. The obtained results have also

Table 2 Mean values and the coefficient of variation for relative deflections fth /fexp 

Author of 
experiment

ACI prEN SNiP Method

Mean CV Mean CV Mean CV Mean CV

Nemirovskyi
Figarovskyi
Artemiev
Guscha

0.87
1.09
1.01
0.88

0.292
0.265
0.184
0.324

0.89
1.26
0.94
0.84

0.280
0.298
0.262
0.259

0.84
0.99
0.97
0.92

0.287
0.226
0.109
0.208

0.97
1.11
0.99
0.95

0.192
0.178
0.115
0.179

Total: 1.00 0.274 1.05 0.335 0.96 0.223 1.04 0.183

Fig. 6 Experimental and calculated beam deflections: (a) (Artemiev 1959) tests, (b) (Guscha 1968) tests 
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Fig. 7 Contour isolines of the mean and variation coefficient for fth /fexp functions: (a),(b) by proposed method,
(c),(d) by code SNiP 1989, (e),(f ) by code ACI 1999, (g), (h) by code prEN 2001
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shown that for beams with the reinforcement ratio higher than 1.5% the tension stiffening effect

could be completely ignored in calculations. The statistical data of the theoretical and experimental

deflections of 62 beams are presented in Table 2.

These results (Table 2) show that, in terms of average of relative deflections fth /fexp, all theoretical

predictions calculated by the proposed, code SNiP 1989, ACI 1999 and prEN 2001-based methods

varying over the range of 0.96 and 1.04 and can be treated as sufficiently accurate. On the contrary,

a less accuracy has been obtained in terms of fth /fexp variation; in particular, for the considered

deflections sample more rigorous predictions have been achieved by the proposed method (the

coefficient of variation - 18.3%), relatively accurate predictions have been made by SNiP 1989 (var.

coeff. - 22.3%) and ACI 1999 (var. coeff. - 27.4%) code methods, while code prEN 2001 method

gave unsatisfactory results (var. coeff. 33.5%).

The next step of analysis is related to the detailed statistical assessment and generalization of the

results of relative theoretical and experimental deflections distinguished by different beam

reinforcement ratios and relative moment M/Mu levels. The smoothed contour isolines of the mean

and the variation coefficient functions are depicted in Fig. 7.

These graphs (Fig. 7) clearly show common tendencies and the variation bounds of the considered

theoretical predictions. For the beams with small reinforcement ratio (µ < 0.7%) at the levels of the

bending moments over the range of 0.5-0.9Mu the displacement predicted by the method proposed

differs from their experimental values averagely over the range 0.84-1, while two code SNiP 1989

and ACI 1999 methods give rather conservative predictions ranging from 0.56 to 0.92. On the

contrary, the code prEN 2001 overestimates theoretical deflections by 1.04 to 1.44 times. The

distribution of the variation coefficient indicates similar tendencies. In particular, this coefficient

grows from 4% to 0.44%, for the proposed method and by about 60%, for all considered code

approaches. Increase in the coefficient of variation for the moment levels of (0.8-0.9)Mu can be

attributed to the increased plastic strains in reinforcement steel and the compressive concrete

(particularly for low-concrete grades) at advanced stress-strain states, which might be not very

accurately assessed by theoretical predictions.

For beams with the reinforcement ratios higher than 0.7% and the bending moments over the

range of 0.5-0.9Mu, the average values of fth /fexp ranges from 0.96 to 1.04 for the proposed method

and SNiP 1989 technique, while for the codes ACI 1999 and prEN 2001 this ratio increases up to

1.16. The variation coefficient of these values reaches 4-16% for the proposed method, the code

ACI 1999 and SNiP 1989 techniques, while for the code prEN 2001 this indicator is increased

approximately to 24%. 

The inaccurate stiffness assessment obtained by the above three code methods for slightly

reinforced (µ < 0.7%) beams may be attributed to incomplete estimation of the increased tension

stiffening effects of cracked flexural RC members. Besides, the service-bending moments for

slightly reinforced beams may be relatively small, probably, close to, or even less than, the moment

of cracking Mc and, therefore, the predictions of theoretical deflections mainly influenced by the

prediction of Mc. The latter is strongly dependent on highly dispersed tensile concrete strength and

can frequently be hardly controlled even experimentally. This fact also partly explains the above

mentioned artificial stiffening of slightly reinforced beams. For fair treatment of statistical results

concerning code methods, it should be mentioned that code-based approaches have been developed

in order to correct predict RC member deflections at the service-load performance stage while

deflections at other load levels are less important. 
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5. Conclusions

The results obtained in the present study may be generally summarised as follows. 

The deformational analysis of reinforced concrete members from the initiation of the state of

loading through serviceability conditions up to the almost structural failure has been performed on

the basis of the constitutive laws for beam materials and classical principles of the strength of

materials. The method proposed is based on the analytical derivation of the effective moment of

inertia Eq. (33) relying on the smeared crack approach. The technique proposed, in a simplified

complex manner, enables to take into account the non linear properties of compressive and tensile

concrete, and the effects of cracking and bond (including the tension stiffening). 

A statistical analysis has shown that the proposed technique is of adequate accuracy for calculated

and experimental deflections data reported in literature which describes slightly, normally and highly

reinforced beams. In particular, for the sample containing 62 beams, the most accurate predictions

of the theoretical deflections have been achieved by the proposed method (the coefficient of

variation for fth /fexp is 18.3%), relatively accurate predictions have been made by codes SNiP 1989

(var. coeff. 22.3%) and ACI 1999 (var. coeff. - 27.4%), while the code prEN 2001 has yielded

rather poor results (var. coeff. 33.5%).

The performed analysis has also shown that artificial stiffening is significant for the three

considered code methods for slightly reinforced (µ < 0.7%) beams working under the service-load

performance. In particular, prEN 2001 method yielded significantly inaccurate estimates (the mean

values of fth /fexp ranging from 1.04 to 1.44), sometimes up to 100% overestimating experimental

deflections, while SNiP 1989 and ACI 1999 methodology is more conservative (the mean values of

fth /fexp reaches 0.56); the proposed method, in this case, provide rather excellent results (mean of

fth /fexp 0.84-1). Actually, these inaccuracies can have the crucial influence on codes-based evaluation

of response of RC structures when the use of high-strength materials becomes popular worldwide

resulting in longer spans and smaller cross sections. In this case, the method proposed enables us to

perform more accurate deformational analysis of RC flexural members. 

The proposed concept can be yet more improved for deformational analysis of RC members at

loads level over the range of 0.9-1.0Mu (which is even more important for the beams with low

reinforcement ratio) simply adopting Prandtl’s stress-strain diagram for the steel reinforcement. 
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Notation 

A : area
I : inertia moment specifying the end of respective stages
J : inertia moment of respective stages 
S : first moment of area
CV : correlation coefficient of relative deflections 
E : Young’s modulus
F : axial force
M : bending moment
a1, a : distances (see Fig. 1)
b : width of web of cross section 
h0 : effective depth of cross section
h : overall depth of cross section
x : location of neutral axis
y : distance from neutral axis
k : the number of layers
n : Young’s moduli ratio
q : any algebraic expression
f : deflection
fc : compressive strength
fct : tensile strength
ρ : curvature
µ : reinforcement ratio
σ : average normal stress
ε : average strain
εcR : ultimate compressive strain of concrete
εctR : cracking strain of concrete
ν : coefficient of elasto-plasticity of concrete in compression
ω, ω1, ωf : coefficients of diagram shape of concrete in compression
α, β : parameters of stress-strain relationship (see Fig. 2)

Subscripts or superscripts

c : compressive concrete
ct : tensile concrete
s : tensile steel
s1 : compressive steel 

Subscripts 

cr : cracking stage
pr,stf : pure tension stiffening stage
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pt,stf : partially tension stiffening stage
f,cr : fully cracked stage
u : ultimate
th : theoretical
exp : experimental
f 1 : compressive flanges of cross section
f : tensile flanges of cross section

Superscripts

eff : effective
sec : secant
j : jth layer




