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Wave propagation in laminated piezoelectric cylindrical 
shells in hydrothermal environment
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Abstract. This paper reports the result of an investigation into wave propagation in orthotropic
laminated piezoelectric cylindrical shells in hydrothermal environment. A dynamic model of laminated
piezoelectric cylindrical shell is derived based on Cooper-Naghdi shell theory considering the effects of
transverse shear and rotary inertia. The wave characteristics curves are obtained by solving an eigenvalue
problem. The effects of layer numbers, thickness of piezoelectric layers, thermal loads and humid loads on
the wave characteristics curves are discussed through numerical results. The solving method presented in
the paper is validated by the solution of a classical elastic shell non-containing the effects of transverse
shear and rotary inertia. The new features of the wave propagation in laminated piezoelectric cylindrical
shells with various laminated material, layer numbers and thickness in hydrothermal environment and
some meaningful and interesting results in this paper are helpful for the application and the design of the
ultrasonic inspection techniques and structural health monitoring. 

Keywords: laminated piezoelectric cylindrical shells; wave characteristics curves; transverse shear and
rotary inertia; thermal/humid loads.

1. Introduction

The characteristic of wave propagation in orthotropic laminated piezoelectric cylindrical shells in

hydrothermal environment can be used to predict the size of damage in a structure or used in the

ultrasonic inspection techniques and structural health monitoring. Wave propagation in cylindrical

shells was presented based on a membrane shell model was put forth by Love (1944), in which the

transverse forces, bending and twisting moments are negligible. However, the membrane shell

model is only suitable for thin shell structures in which only the normal and shear forces acting in

the mid-surface of shell are considered. For shells of moderate thickness, Mirsky and Herrmann

(1957) presented the shear effects in both axial and circumferential directions and the rotary-inertia

effects in the study of axially symmetric wave propagation in a cylindrical shell. Lin and Morgan

(1956) developed the equations for axially symmetric motions including both shear and rotary-

inertia effects for non-axially symmetric motion of shell structures. Cooper and Naghdi (1957)

presented a theory including shear and rotary inertia effects for non-axially symmetric motion of
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shell structures. Mirsky (1964) gave an approximate theory for vibration of orthotropic thick

cylindrical shell in which the effect of transverse normal stress was retained, the result showed

frequencies for fourth and fifth mode at infinite wavelength are very close and nearly equal for thin

shell, but the result can be different by approximately 20% for thick shell. Another study of wave

propagation in cylindrical shells using different shell theory by Greenspon (1960) showed that

Cooper-Naghdi theory considering only the transverse shear and rotary inertia can be applied in all

shells and the max error is less than 20%.

Recently, the use of piezoelectric materials in intelligent structures attracted extensive attentions.

Due to the intrinsic, direct and converse piezoelectric effects, piezoelectric materials can be

effectively used as sensors or actuators for the active shape or vibration control of structures. Liew

(1997) and Lim (1995, 1996, 1997, 1998, 2006) studied the vibration of laminated structures with

the higher order theory. Wave propagation and vibration in pure piezoelectric structures have been

investigated by Mindlin (1952). The constitutive relationship of orthotropic piezoelectric materials is

investigated by Ping (2002). Wang (2001, 2002, 2003) gave some original works on wave

propagation in piezoelectric coupled cylinder considering transverse shear and rotary inertia. Wang

(2003) presented an analytical solution for the axisymmetric deformations of a finitely long

laminated cylindrical shell under pressuring loading and a uniform temperature change. However,

the investigation on the effect of thermal load on wave propagation in laminated piezoelectric

cylindrical shells is a few. 

The effect of transverse shear, rotary inertia and thermal or humid load on wave propagation in

orthotropic host cylindrical shells coupled with piezoelectric actuator layer and piezoelectric sensor

layer is studied as an example in this paper. A dynamic model of laminated piezoelectric cylindrical

shell is derived based on Cooper-Naghdi shell theory considering the effects of transverse shear and

rotary inertia in section 2. Then, the wave characteristics curves are obtained by solving an

eigenvalue problem in section 3. Besides discussing the characteristics curves in different wave

modes, we also analyze the effects of the layer numbers and the thickness of piezoelectric layers and

thermal/humid loads on the wave characteristics curves in section 4. Results carried out are validated

by the classical solution of an elastic shell no considering the effects of transverse shear and rotary

inertia, and this solution method may be used as a useful reference to investigate wave propagation in

laminated piezoelectric cylindrical shells with various laminated material, the layer numbers and the

thickness of piezoelectric layer not only in thermal environment but also in humid environment.

2. Governing equation

The structure studied in this article is considered as an infinitely long laminated piezoelectric

cylindrical shell composed of composite host layer (1), piezoelectric actuator layer (2) and

piezoelectric sensor layer (3), which is shown in Fig. 1. The coordinate system (x, θ, z) is taken,

where the x axis expresses the length direction of the shell, θ expresses circumferential coordinate

and z expresses radial coordinate. z = 0 is set on the middle surface of the laminated shell and R is

the radius of the middle surface. The displacement considering the shear and rotary inertias can be

written as Cooper (1957) 

,

 (1)

Ux x θ z t, , ,( ) ux x θ t, ,( ) zβx x θ t, ,( )+= Uθ x θ z t, , ,( ) uθ x θ t, ,( ) zβθ x θ t, ,( )+=

Uz x θ z t, , ,( ) w x θ t, ,( )=
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where ux, uθ , w are the displacement component of a point on the midplane of the shell along the

coordinate axis (x, θ, z). βx and βθ represent the rotations of a transverse normal at z = 0 about the x

and θ axes, respectively, which bring in the axial and circumferential shear effects. The normal strains

ε
xx and εθθ, the in-plane shear strains γxθ, and the out-plane shear strain γxz

 and γθz
 can be expressed as

(2)

The constitutive relationship of orthotropic piezoelectric cylindrical shell can be written as 

(3)

where the superscripts i = 1, 2 and 3 represent the orthotropic composite host layer 

, piezoelectric actuator layer and piezoelectric sensor layer respectively; For plane stress 

problem, the effective elastic constants are , 

and  respectively; , , , are the

effective piezoelectric constants of piezoelectric layers; Ex and Eθ express the electric fields along

the axial and circumferential directions; Θ expresses temperature changes or humidity; 

+  and  express thermal elastic module and  and  are, respectively,

the coefficient of thermal expansions along the axial and circumferential directions of the ith layer.

In humid environment,  and  express humid elastic

module and  and  are, respectively, the coefficient of humid expansions along the axial and

circumferential directions of the ith layer. The shear stresses  and , where k

expresses a shear coefficient taken as 0.8333 (Mirsky 1964). Since the thickness of piezoelectric is

much thinner than that of the host, the effect of piezoelectric layers on the shear coefficient can be

ignored (Wang 2003). 

The relationship between the electric fields and electric potential ϕ are defined by
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Fig. 1 Laminated piezoelectric cylindrical shell  
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(4)

 

Substituting Eq. (2) into Eq. (3) and integrating the stresses across the thickness of the shell, give

the membrane forces as Wang (2003)

(5-12)

where Nx, Nθ and Nθx are the membrane forces, Mx, Mθ and Mxθ  are the internal moment and Qx and

Qθ are the normal shear forces, and the expressions of Ai, Bi, Ci, Di, Ei (i = 1,…, 6) and

Fi (i = 1,…, 3) are shown in appendix A.

By considering the effects of piezoelectric layers, the dynamic equations of laminated

piezoelectric cylindrical shells under thermal or humid load are written as Reissner (1941) 

Ex
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(13-17)

where ρ1, ρ2 and ρ3 express the mass densities of the elasticity host shell, the piezoelectric actuator

layer and the piezoelectric sensor layer. 

3. Dispersion characteristics

Substituting Eqs. (5-12) into Eqs. (13-17) yields the following five equations of laminated

piezoelectric cylinder shells in terms of ux , uθ , w, βx and βθ  as follows
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(18-22)

The electric displacements in the piezoelectric actuator layer and sensor layer are expressed as

, , (23)

, ,  (24)

where  (i = 2, 3), are the effective dielectric coefficients in the

piezoelectric layers for a plane stress problem. The superscripts 2 and 3 represent, respectively, the

piezoelectric actuator layer and the piezoelectric sensor layer.  and  represent the pyroelectric

coefficients in piezoelectric actuator layer and the piezoelectric sensor layer respectively.

Because the piezoelectric actuator layer and the piezoelectric sensor should, respectively, meet

Maxwell equation , we have 
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 (25-26)

Wave propagation in thermal environment is studied by considering the following solutions:

, ,

, ,

(27-33)

where ξ and c are the wave number and wave phase velocity respectively, and ω = ξc is the

corresponding frequency. 

Substituting Eqs. (27-33) into Eqs. (18-22) and Eqs. (25-26) yields a set of homogeneous

equations in terms of  as:

(34)

where the expressions of  are shown in appendix B. The relationship

between the wave number ξ and wave phase velocity c is determined by searching the condition for

non-trivial solution of .

According to any specific wave number ξ, the wave phase velocity c can be determined from the

non-trivial solution of Eq. (35). Using this method, wave characteristics curves in thermal or humid

environment for different modes are obtained. 

4. Results and discussions 

In numerical examples, the outer piezoelectric actuator layer adopts PZT-4 material, and the

thickness is h2; The inner piezoelectric sensor layer adopts PVDF material, and the thickness is h3.

The all material properties (Kadoli 2004) are listed in appendix C.

To easily investigate the effect of piezoelectric layers, the non-dimensional wave number of wave

characteristics curves is taken as ξh/2π and the non-dimensional velocity is taken as c/ct (Wang

2003) where 
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The effect of piezoelectric layer’s thickness on the wave propagation, characteristics curves of the

ct

c44p

1
h1 c44p

2
h2 c44p

3
h3 c44p

2 h1h2 h2

2
+( )

R
---------------------------– c44p

3
+ + +

h1h3 h2

2
+( )

R
---------------------------×

ρ1h1 ρ2h2 ρ3h3+ +

---------------------------------------------------------------------------------------------------------------------------------------------------

1/2

=

Fig. 2 The effect of thickness on wave characteristics curves for the first mode at (a) n = 0 and (b) n = 1, for
the second mode at (c) n = 0 and (d) n = 1 and for the fifth mode at (e) n = 0 and (f ) n = 1 
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first, second and fifth modes at , when n = 0 and n = 1 are plotted in

Fig. 2. The result shows that the phase velocity drastic increases as the wave mode increases;

besides, the lower the ratio of the thickness of elastic host layer to the thickness of piezoelectric

layer is, the higher the velocity is. The characteristics curves of the first mode when n = 0 and n = 1

are shown in Figs. 2(a) and (b). It is evident that the phase velocity decreases dramatically within a

h2 h3 0.05h1 0.1h1 0.15h1, ,= =

Fig. 3 The effect of piezoelectric layer numbers on wave characteristics curves for the first mode at (a) n = 0
and (b) n = 1, for the third mode at (c) n = 0 and (d) n = 1 and for the fifth mode at (e) n = 0 and
(f ) n = 1 
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very small range of wave number at first, and then it varies smoothly with higher wave number.

Similar phenomena for the second mode when n = 0 and n = 1 is also shown in Figs. 2(c) and (d). It

is seen that the phase velocity decreases as wave numbers increase, and the difference of the

velocity is very evidence in larger wave number. The characteristics curves of the fifth mode for

n = 0 and n = 1 are shown in Figs. 2(e) and (f ). It is seen that wave velocity differs form each other

at lower wave number, and wave velocity convergence to a fixed value at higher wave number,

which is independent on the thickness of piezoelectric layers.

The effect of piezoelectric layer numbers on wave propagation is discussed in this segment. The

characteristics curve of the first, third and fifth modes at  when n = 0 and n = 1

with 1, 2 and 3 layers are plotted in Fig. 3. The result shows that the characteristics curves of

different piezoelectric laminated shells appear in the same change tendency, but the effect of

different piezoelectric layers on wave velocity is very evidence. The characteristics curves of the

first mode when n = 0 and n = 1 are shown in Figs. 3(a) and (b). It is seen that the phase velocity

increases as the layer numbers of piezoelectric layer increase, on the other hand, the velocity for the

third and fifth modes decreases as the piezoelectric layers increase which is, respectively, shown in

Figs. 3(c), (d) and (e), (f ). It is also found that the velocity in laminated cylindrical shells with more

than two piezoelectric layers is very close.

h2 h3 0.1h1= =

Fig. 4 The effect of thermal loads on wave characteristics curve for the first mode at (a) n = 0 and (b) n = 1,
for the fifth mode at (c) n = 0 and (d) n = 1 
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Fig. 5 The effect of humid loads on wave characteristics curve for the third mode at (a) n = 0 and (b) n = 1,
for the fourth mode at (c) n = 0 and (d) n = 1 

Fig. 6 A comparison of wave characteristics curves from two different methods at (a) n = 0 and (b) n = 1,
where M expresses Modes 
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The effect of the thermal loads on the characteristics curves in the first and fifth modes at

 for n = 0 and n = 1 are described in Fig. 4. The result shows that the effect of

thermal loads on wave propagation is drastic for only the fifth wave mode, the magnitude of phase

velocity is very lower when piezoelectric laminated cylindrical shells under thermal load (which

can’t be obviously shown in the characteristics curve), but for the first mode at n = 0 and n = 1, the

effect of thermal loads on wave velocity is very lower which is shown in Figs. 4(a), (b). For the

fifth mode at n = 0 and n = 1 (Figs. 4(c) and (d)), the influence of temperature change on phase

velocity is very evidence. The effect of the humid loads on the characteristics curves in the third

and fourth modes are described in Fig. 5. The host layer is taken as fiber layer. The two

piezoelectric layers take PZT-4 as sensors. The result shows that the effect of humid loads on wave

propagation is very low. 

In order to comparison with the published literature by Mirsky and Herrmann (1957), the

elasticity host layer, with the thickness h1, is taken as Aluminum. The wave characteristics curve for

the two wave modes at n = 0 and n = 1 when h1/R = 1/30, h2 = h3 = 0 and Θ = 0 (no considering

piezoelectric layer and temperature/humidity changes) obtained from two different methods are

described in Fig. 6. These curves carried out in the paper are the same as those presented by Mirsky

and Herrmann (1957) for pure elastic shell problem. 

5. Conclusions

The main contribution in the paper is to describe the effects of transverse shear, rotary inertia and

thermal/humid loads on wave propagation in orthotropic piezoelectric laminated cylindrical shells.

The effects of the layers number, thickness of piezoelectric layers and thermal/humid loads on the

wave propagation and the wave characteristics curves are concluded by 

(1) The phase velocity drastic increases as wave modes increase, besides, the velocity is higher

when the thickness ratio of elastic host layer to the thickness of piezoelectric layer is lower;

(2) The velocity in the first mode increases as the layer numbers of piezoelectric layer increase,

but the velocity in the third and fifth modes decreases as the layer numbers of piezoelectric

layer increase, the velocity is very close when there are more than two piezoelectric layers

coupled with cylindrical shell;

(3) The effect of thermal loading on wave propagation in an orthotropic laminated piezoelectric

cylindrical shells is drastic for the fifth wave mode, but for the first mode the effect is very

lower. The effect of humid loading on wave propagation is little.

The solution method in the paper may be used as a useful reference to investigate wave

propagation in laminated piezoelectric coupled cylindrical shell not only in thermal environment but

also in humid environment, for various laminated materials, the layers numbers and the thickness of

piezoelectric layer.
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Appendix C

 
Table 1 Materials properties of laminated piezoelectric cylindrical shells

Properties PVDF Al  T700/Epoxy PZT-4

Mass density (kg/m3) 1.8 × 103 2.8 × 103 1.5 × 103 7.5 × 103

c11 (GPa) 3.61 105 148 132

c12 1.61 51 4.8 71

c13 1.42 51 4.8 73

c33 1.63 105 12 115

c44 0.55 105 5 26

c55 0.59 105 5 26

e31 (k/m2) 32.075 × 10−3 - - −4.1

e33 −21.19 × 10−3 - - 14.1

e15 −15.93 × 10−3 - - 10.5

Ξ11 (φ /m) 53.985 × 10−12 - - 5.841 × 10−9

Ξ33 59.295 × 10−12 - - 7.124 × 10−9

Thermal expansion coefficient (/ oC)

α11 1.2 × 10−4 2.55 × 10−5 0.02 × 10−6 1.2 × 10−6

α22 1.2 × 10−4 2.55 × 10−5 22.5 × 10−6 1.2 × 10−6

Pyroelectric constant

p −4 × 10−5 - - 0.25 × 10−4

Humidity expansion coefficient (wt.%H2O)−1

η11 - - 0.005 × 10−6 -

η22 - - 0.6 × 10−6 -




