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Abstract. Under high velocity, pulse type near source earthquakes semi-active control systems are very
effective in reducing seismic response base isolated structures. Semi-active control systems can be
classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined
variable stiffness and damping systems. Several researchers have studied the effectiveness of
independently varying damping systems for seismic response reduction of base isolated structures. In this
study effectiveness of a combined system consisting of a semi-active independently variable stiffness
(SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated
structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of
the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the
isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average
control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for
damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting
of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are
presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and
variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is
shown that the combined variable stiffness and variable damping system leads to significant response
reduction over cases with variable stiffness or variable damping systems acting independently, over a
broad period range. 
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1. Introduction 

To date, several researchers have investigated the effectiveness of various semi-active devices, that

can change stiffness and damping, in reducing seismic response of buildings and bridges (Symans

and Constantinou 1999, Nagarajaiah et al. 2005). One such device, the semi-active independently

variable stiffness device (SAIVS) that varies the stiffness of a system smoothly and continuously,

has been developed by Nagarajaiah and Mate (1998). The effectiveness of the SAIVS device in

producing a nonresonant structure has been demonstrated by Nagarajaiah and Mate (1998).

Varadarajan and Nagarajaiah (2004) have developed a semi-active tuned mass damper (STMD)

using SAIVS; a time frequency controller based on instantaneous frequency was used to vary

stiffness. Nagarajaiah and Varadarajan (2005) have also studied the effectiveness of using STMD in

a tall benchmark building. Effectiveness of the SAIVS device in reducing seismic response of

sliding base isolated buildings and bridges has also been demonstrated (e.g., Nagarajaiah and

Sahasrabudhe 2005, Sahasrabudhe and Nagarajaiah 2005). Narasimhan and Nagarajaiah (2005)

analytically studied the effectiveness of the SAIVS device in reducing seismic response of

elastomeric base isolated reinforced concrete buildings and showed it effectiveness. 

Active Variable Stiffness (AVS) system to control seismic response of buildings has been

developed by Kobori et al. (1993). In the AVS system the input energy to the structure is reduced

by changing its stiffness in real time to avoid resonance phenomena. In addition, it can also provide

additional damping by hysteretic energy dissipation. The effectiveness of the AVS system has been

demonstrated experimentally and analytically by implementing it in a three story steel building in

Japan (e.g., Kobori et al. 1993, Nasu et al. 2001). Use of resettable actuators in reducing vibration

has been proposed by Jabbari et al. (2002). The effective stiffness of the structure is kept high so

that it stores energy. At appropriate times, when the energy stored in the system has reached a peak

value, the force is reduced for a short time and reset to a high value. As a result of this resetting,

stored strain energy is dissipated. The resetting technique has advantages over the variable stiffness

approach in the ways that energy is extracted at a higher rate and it maintains the natural frequency

and mode shapes of the system. Yang et al. (2000) have proposed a control law for resetting a

semi-active stiffness damper and shown its effectiveness. Applications of semiactive dampers in

bridges (Yang et al. 1995) and buildings (Yang and Agrawal 2002) has also been studied and shown

to be effective. 

Effectiveness of semiactive dampers in reducing seismic response has gained considerable

attention in recent years (Spencer et al. 1997). The application of controllable magnetorheological

(MR) fluid dampers (Carlson and Chrzan 1994) in fixed base structures and smart base isolated

buildings and bridges has been studied analytically and experimentally by Dyke et al. (1998),

Spencer et al. (2000), Nagarajaiah et al. (2000) and Sahasrabudhe and Nagarajaiah (2005a,b), and

shown to be effective in reducing seismic response. The effectiveness of controllable

electrorheological (ER) dampers for seismic response control of elastomeric base isolated buildings

has been studied (e.g., Makris 1997, Gavin 2001). Response control of sliding isolated buildings

using variable orifice dampers has also been studied experimentally by Madden et al. (2002).

Applications of semi-active stiffness dampers and semi-active friction dampers in reducing seismic

response of cable stayed bridges has been studied and shown to be effective (e.g., Agrawal et al.

2003, He et al. 2003). 

Sahasrabudhe (2002) studied the effectiveness of combined variable stiffness and variable

damping systems in sliding base isolated buildings and bridges. This experimental and analytical
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study revealed that the combined variable stiffness/damping system reduces the response of sliding

base isolated buildings and bridges further than independently acting variable stiffness or variable

damping systems. Effectiveness of combined variable stiffness and variable damping systems, in

reducing seismic response of sliding base isolated structures, over a broad period range has not been

studied to date. Hence, in this analytical study, the efficacy of a combined variable stiffness SAIVS

system and variable damping system provided by MR dampers, in reducing the seismic response

over a broad period range, is evaluated by considering a sliding base isolated single degree of

freedom system (SDOF) and a two-story sliding isolated building (MDOF). Various pulse type of

earthquake excitations are considered (Mao 2002). A nonlinear tangential stiffness moving average

control algorithm for switching of the SAIVS device (Sahasrabudhe and Nagarajaiah 2005,

Nagarajaiah and Sahasrabudhe 2005) is presented. A Lyapunov based control algorithm for

switching of the MR damper (Sahasrabudhe and Nagarajaiah 2005a,b) is also presented. It is shown

that the combined SAIVS/MR damper system significantly reduces the response of both the SDOF

and MDOF systems when compared with the independently varying stiffness or damping systems,

over a broad period range under pulse type earthquake excitations. 

2. Sliding base isolated single degree of freedom system and a two-story steel

building model with SAIVS device and MR damper 

2.1 Single degree of freedom system with SAIVS device and MR damper 

The base isolated single degree of freedom (SDOF) structural system equipped with the SAIVS

device and a MR damper (e.g., Mao 2002) is shown in Fig. 1. The base isolation system consists of

teflon-stainless steel sliding bearings. The SAIVS device is connected between mass m and ground.

A MR damper is also incorporated between mass m and ground, to enhance damping characteristics

of the isolation system. The equation of motion of the SDOF system is given by: 

(1)

where  is the acceleration of the ground,  is the absolute acceleration of the mass,

, and ub are the acceleration, velocity and displacement of the mass relative to the ground, and

fb is the nonlinear force from friction in the sliding isolation system, SAIVS device and MR damper

fb = fµ + fs + fd. 

mb u··g u··b+( ) cbu
·
b kbub fb t( )+ + + 0=

u··g u··g u··b+( )
u··b u· b,

Fig. 1 Schematic of a single degree of freedom base isolated structure with the SAIVS device and MR damper
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2.2 Two-story building with SAIVS device and MR damper 

The two-story base isolated building with base supported by sliding bearings results in a three

degree of freedom (3DOF) system. The 3DOF sliding base isolated (teflon-stainless steel bearings)

building equipped with the SAIVS device and a MR damper is shown in Fig. 2. The base isolated

structure considered is a 1:5 scaled model developed by Sahasrabudhe (2002). The periods (model

scale) for superstructure with fixed base are T1 = 0.15 sec and T2 =0.04 sec and the damping ratios

are ξ1 = 2.56% and ξ2 = 1.48%. For the base isolated structure the periods of first three modes are

T1 = 1.09 sec, T2 = 0.1 sec and T3 = 0.04 sec and corresponding damping ratios are ξ1 = 2.68%,

ξ2 = 2.45% and ξ3 = 2.26%. The equations of motion for the two-degree of freedom elastic

superstructure are given by: 

 (2)

in which M = the diagonal fixed base superstructure mass matrix, C = fixed base superstructure

damping matrix, K = fixed base superstructure stiffness matrix, and R = the matrix of earthquake

influence coefficients.  are  are floor acceleration vector relative to the base, base

acceleration relative to the ground, and ground acceleration, respectively.

The equations of motion for the base are as follows: 

 (3)

in which mb = the mass of the base, cb = resultant damping matrix of viscous isolation elements, kb

= resultant stiffness matrix of elastic isolation elements,  and ub are the velocity and displacement

Mu·· Cu· Ku+ + MR u··g u··b+( )–=

u·· u··b, u··g

R
T
M u·· R u··b u··g+( )+[ ] mb u··b u··g+( ) cbu

·
b kbub fb+ + + + 0=

u· b

Fig. 2 Schematic of a three degree of freedom base isolated structure with the SAIVS device and MR damper 
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of the base of the two-story model relative to the ground, and fb = the vector containing the forces

mobilized in the nonlinear elements of the isolation systems (i.e., forces in sliding bearings, SAIVS

system and MR damper). 

Combining Eqs. (2) and (3), the governing equations of the base isolated two-story building

model are expressed in the following matrix form: 

(4)

Eq. (4) can be written in matrix form as: 

(5)

The corresponding state equations, measured output equations, and regulated output equations are

as follows: 

(6)

where 

(7)

(8)

where Cm, Cz, Dm, Dz and Em are appropriately defined system matrices or vectors. 

Eq. (6) is solved using Newmark’s unconditionally stable constant average acceleration method.

The nonlinear forces in the sliding isolated bearings, SAIVS device and control forces are updated

by solving equations described in the following sections. Then Eq. (6) is resolved using an iterative

predictor-corrector solution algorithm until equilibrium of nonlinear system is reached within

specified tolerance and convergence is achieved. 
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2.3 Mathematical modeling of friction forces 

The friction force in the sliding bearings is expressed as 

fµ(t) =  (9)

where µ is the friction coefficient of the sliding bearing. In order to accurately model friction, the

coefficient µ is modeled as a function of relative velocity, . For sliding bearings consisting of

interfaces made of Teflon composites and highly polished stainless steel, the coefficient of friction

can be expressed as 

 (10)

where  is the velocity of the sliding-essentially the relative velocity between mass m and ground

for SDOF system and relative velocity between base mass and ground for two-story model, fmax =

0.13 is the coefficient of sliding friction at high velocity, fmin = 0.06 is the coefficient of sliding

friction at very low velocity of sliding, and a = 0.6 sec/cm is the coefficient controlling the

dependency of friction on velocity of sliding. 

In Eq. (9)  is replaced by a non-dimensional hysteretic parameter, z(t) (e.g., Wen 1976); 

fb(t) =  (11)

 

where z(t), the hysteretic parameter, is governed by the equation: 

(12)

where Y = 0.127 cm is the yield displacement, γ = 0.9, β = 0.1, n = 2, and A are dimensionless

parameters of the model that adjust the shape of the hysteretic loop. 

µ mg∑( ) u· b t( )( )sgn⋅

u· b

µ f fmax fmax fmin–( )– e
a u· b–

⋅=

u· b

u· b t( )( )sgn

µ mg∑( ) z t( )⋅

Y z·⋅ γ u· b z z
n 1–⋅ ⋅ β u· b z

n⋅ ⋅ Au· b–+ + 0=

Fig. 3 Analytical model of the SAIVS device
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2.4 Semi-active independently variable stiffness (SAIVS) device 

The semi-active independently variable stiffness Device (SAIVS) has been developed by

Nagarajaiah et al. (1998a, 1998b, 2000). This novel device is designed for switching the stiffness

continuously and smoothly. Sahasrabudhe (2002) experimentally studied the force-displacement

characteristics of a medium scaled SAIVS device, and demonstrated that the device can vary the

stiffness continuously and smoothly between minimum and maximum stiffness. 

The SAIVS device consists of four set of springs and frictional elements that are arranged in a

rhombus configuration as shown in Fig. 3. Each spring is supported on the inside by two telescopic

tubes. The tubes guide extension and compression of the springs and prevent the springs from

buckling. The telescopic tube contribute to frictional forces in the device. An electromechanical

actuator is connected to joint 1, to adjust the relative position of springs. Joint 1 of the device is

connected to mass m in the SDOF system, whereas, it is connected to base in the two-story building

model. Joint 1 can move only in the Y direction. Joints 2 and 3 are also connected to mass m in

SDOF model and to the base in the two-story model. Joints 2 and 3 can move only in the X

direction. Joint 4 is connected to ground in both models, and can move in both the X and Y

directions. Thus the attached electro-mechanical actuator can move joint 1 to any desired position in

the Y direction, thus changing the configuration of the device continuously and smoothly. The

stiffness of the device is the function of the position. There is two limit positions for the device:

closed and open position. In open position, the device provides minimum resistance (stiffness), and

in closed position it provides maximum resistance (stiffness). Using the actuator connected to joint

1, the device can change it’s configuration continuously and smoothly between closed and open

position, thus changing the connection stiffness at the interface of sliding continuously and

smoothly. The force in the device consists of: (1) force in spring elements and (2) friction force in

the telescopic tubes. The spring force is a function of device position y(t) and relative displacement

ub, whereas, the friction force is a function of relative velocity . Thus, the governing equation to

compute the force in the device is 

 (13)

where the first term is the contribution of spring force and the second term is the contribution of

friction force in telescopic tubes. ke = 2984 N/cm (1700 lb/in) is the stiffness of single spring, ub(t)

is the spring deformation, α = 66.88 N (15 lb) defines the friction coefficient, and z(t) is given by

Eq. (12) with the yield displacement of Y = 0.127 cm. θ (t) = sin−1(α − y(t)/β ) is the time varying

angle of the spring elements with the horizontal, where α = 0.917 is a non-dimensional constant, β

= 15.24 cm is the dimension of an individual spring element, and y(t) is the displacement of joint 1

which is connected to the linear electro-mechanical actuator. The device scaling factor is 5 (see

Sahasrabudhe (2002) for further details). 

2.5 Magnetorheological (MR) damper 

Magnetorheological (MR) dampers are semi-active control devices that use MR fluids to produce

controllable damping. MR dampers combine the best features of both passive and active control

devices, which represent two ends of the spectrum in the use of the supplemental control devices.

The damper consists of MR fluid in the cylinder, where the micron sized iron particles are

u· b

fs t ub,( ) kecos
2
θ t( )[ ] ub t( )⋅ α z t( ) cosθ t( )⋅ ⋅+=
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suspended. Voltage signals are used to control the change of the magnetic field. Iron particles line

up and form chains. The state of the fluid passing through the orifice changes from free flowing

viscous liquid to semi-solid. 

The MR damper is incorporated into the isolation system to enhance the energy dissipation

characteristics. In the SDOF model it is connected between mass m and ground, and in the two-

story model it is connected between base and ground. The force in the damper (in Newton units) is

given as 

 (14)

where k = 8.24 N/cm (4.69 lb/in) is the stiffness of the accumulator, c is the damping coefficient

and α and c are given as: α = αa + αb, c = ca + cb in which αa = 15.00, ca = 4.1 and αb = α1 · v,

cb = c1 · v, f (v)= β3 * v3 − β2 * v2 + β1 * v + β0 where α1 = 58.0, c1 = 3.35, β0 = 0.8133, β1 =

1.3706, β2 = 0.6679, β3 = 0.0808 and v is the voltage supplied to the MR damper. ub and  are the

displacement and velocity, respectively, of the MR damper. f (v) is the function of the voltage input

and is incorporated into the expression to account for the variation in the force generated by the

damper under different voltages. The hysteretic variable z (Wen’s Model) is governed by Eq. (12),

where Y is the yield displacement (Y = 0.165 cm) and γ = 0.9, β = 0.1, n = 2, A = 1. 

The hysteresis variable z is obtained by solving Eq. (12) with yield displacement Y = 0.165 cm. ub is

the relative displacement with respect to ground of the mass m in SDOF and base in two-story model. 

3. Control algorithms 

3.1 Lyapunov control algorithm for MR damper 

The Lyapunov based control algorithm for control of MR damper (Sahasrabudhe and Nagarajaiah

2005a,b) is derived by considering a typical sliding base isolated single degree of freedom system.

The equations of motion are written as 

fMR c u· b t( )⋅ k u· b t( )⋅ α z t( )⋅( ) f v( )⋅+ +=

u· b

Fig. 4 Wen’s model of the MR damper 
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(15)

where, m is the total mass of SDOF system, k is the stiffness of restoring springs, ug is shake table

acceleration, ua is the absolute displacement of mass, fs is the total force in sliding bearings, and fc is

the force in the MR damper. The relative displacement of mass m with respect to shake table is ur =

ua − ug. Substituting fc =  the equation of motion can be written as 

 (16)

Eq. (16) can be written in state space as 

 

(17)

Eq. (17) can be written as 

 (18)

The Lyapunov function V is defined as 

 (19)

where

 (20)

With  and  gives , where first term represents

the total strain energy in the spring, second term represents total energy dissipated and third term

represents total kinetic energy. 

(21)

Simplifying Eq. (21) gives 

(22)

Now, for  to be minimum or negative 

(23)

which can be simplified as 

mu··a k ua ug–( ) fs fc+ + + 0=
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·
r
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(24)

where cv is variable damping coefficient of the MR damper, Cmin is minimum damping coefficient

for 1 V, Cmax is maximum damping coefficient for 4 V. Simulations lead to P1 = 100 and P2 = 1 for

optimum response reduction. Note that the absolute or total displacement and velocity needed in

Eq. (24) can be obtained from measured absolute acceleration by using integrators/filters proposed

by Spencer et al. (1997). Fig. 5 presents the comparison between the actual Sylmar 90 earthquake

ground velocity and displacement and filtered ground velocity and displacement obtained from

original Sylmar 90 acceleration record. As evident from Fig. 5, the filtered velocity and

displacement is in good agreement with the actual velocity and displacement. 

3.2 Nonlinear tangential stiffness moving average control algorithm for SAIVS device 

The control algorithm for smooth switching of the SAIVS device (e.g., Sahasrabudhe and

Nagarajaiah 2005, Nagarajaiah and Sahasrabudhe 2005) is presented. Based on Eq. (13), which

governs the mechanical behavior of SAIVS device: 

KSAIVS = kecos2θ (t) (25)

Introducing a time shift, τ, we get: 

KSAIVS = kecos2θ (t − τ ) (26)

where, Kmin < KSAIVS < Kmax, and θ (t − τ ) = sin−1(α − y(t − τ )/β ). The displacement y(t − τ ),

cv

Cmax         
P2

mb

------ P1ua P2u· a+( )u· r 0>

Cmin         
P2

mb

------ P1ua P2u· a+( )u· r 0<
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Fig. 5 Measured and filtered absolute velocity and displacement under Sylmar 90 earthquake
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required to control the device, is given by: 

(27)

 

where, λ = 0.6 is a non-dimensional constant (λ < 1), γ = 3.5 so that the SAIVS position is within

10 cm, t is the current time, τi = iTavg/100, and τ = jTavg /100, where Tavg is the average period given

as Tavg = , j = 8 and k = 18, kmax= maximum stiffness of the SAIVS

device (2510 N/cm), kmin = minimum stiffness of the SAIVS device (373 N/cm), mtotal = total mass

of the system. In Eq. (27), ub is the relative displacement of mass m or base with respect to ground,

which can be measured by connecting a linear variable displacement transducer (LVDT) between

mass/base and ground. Also, t ≥ 0 and t > τ in Eqs. (25) and (26). For t ≤ τ

 KSAIVS = ke (28)

The control algorithm presented in Eq. (27) is designed such that the angle θ (t) is a nonlinear

function of the moving average of the relative displacement ub of mass/base with respect to ground.

The control objective is to make spring force a nonlinear function of the relative displacement. The

nonlinear function is designed to simulate softening tangential stiffness at larger relative

displacements, with eventual negative tangential stiffness at peak relative displacements to reduce

the response. A moving average of the relative displacement was chosen to ensure smooth stiffness

variation and to reduce the effects of measurement noise. The exponent, λ = 0.6, was chosen to

simulate softening tangential stiffness and was obtained by performing a series of analytical

simulations for the chosen earthquakes, which resulted in the least response. 

4. Earthquake excitations and analytical program 

To evaluate the effectiveness of the combined SAIVS/MR system in reducing seismic response

under a broad range of periods, analytical simulations are performed with the isolation period of the

base isolated SDOF system and two-story model varying from 0.1 to 5 seconds. Results under

following three earthquake motions are presented in the paper: 

(1) Northridge Newhall Earthquake, fault normal (FN) component, Channel 3-360 Deg., January

17 1994, peak acceleration: 0.72 g, and 

(2)  Kobe Earthquake, EW component, 1995, peak acceleration: 0.63 g. 

Analytical simulations are performed with: (1) the MR damper in passive ‘on’ case (constant 2

volts) with: (a) the SAIVS device in the passive stiffness closed position (maximum passive

stiffness) and (b) the SAIVS device in the controlled mode where the position of the device is

switched between passive open (minimum stiffness) and passive closed (maximum stiffness)

positions, continuously and smoothly, based on the nonlinear moving average tangential stiffness

control algorithm, (2) the MR damper controlled case (1 and 4 volts) i.e., switching based on the

Lyapunov control algorithm with SAIVS in passive closed position, and (3) both the SAIVS and

MR damper in the controlled mode. 

Additionally, effectiveness of the combined SAIVS/MR damper system in reducing response of

the SDOF and MDOF systems under fault parallel (FP) component of Northridge Newhall

y t τ–( ) γ

k j–( )
--------------- ub t τ i–( ) λ

i j=

k

∑=

2π mtotal/ kmin kmax+( )/2( )
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earthquake (1994), El Centro (1940) earthquake, Kobe (NS component, 1995) earthquake,

Northridge Rinaldi (FP and FN components, 1994) earthquake, Northridge Sylmar (FP and FN

components, 1994) earthquake is also studied, results of which are presented in Mao (2002). Due to

lack of space only results under Newhall 360 and Kobe EW are presented here. 

5. Results 

5.1 Sliding base isolated single degree of freedom system 

Results of the single degree of freedom (SDOF) system with 1 sec and 2 sec period under

Newhall 360 earthquake, scaled up to the full scale prototype system, are presented in Figs. 6 to 9

in the form of time histories of relative (mass-ground) displacement and force versus displacement

loops. 

The base displacement time history and force-displacement loop of a single degree of freedom

system subjected to Newhall-360-fault normal (FN) component earthquake are presented in Fig. 6.

The base isolation period is 1 sec, which represents a very stiff isolation system. Four cases are

considered: MR damper control (switching between 1 and 4 volts), MR damper passive at 2 volts

with SAIVS passive maximum stiffness, MR damper passive at 2 volts with SAIVS control

(switching between minimum and maximum stiffness), and MR damper control with SAIVS

control. Fig. 7 shows the energy dissipation forces of these cases. Four cases have the same

maximum friction force coefficient. In Fig. 6, the maximum displacement with both MR damper

control and the SAIVS device control is 0.125 m, which is the least base displacement in four

cases. The base displacement in the case of SAIVS control only (MR damper passive at 2 volts) is

Fig. 6 Comparison of time history of base
displacement and force-displacement loop
of SDOF base isolated structure subjected
to Newhall-360-FN under different MR
damper and SAIVS control cases 

Fig. 7 Comparison of force-displacement loops and
energy dissipation of SDOF base isolated
structure subjected to Newhall-360-FN excita-
tion under different MR damper and SAIVS
control cases 
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0.146 m displacement and in the case of MR damper control only (SAIVS device passive maximum

stiffness) is 0.188 m displacement. The least effective strategy is to set MR damper passive at

2 volts and the SAIVS device passive maximum stiffness. 

A similar trend can be observed for the total base shear forces in Fig. 6. The total base shear

force coefficient at the isolation level for MR damper and the SAIVS control is the least at

0.627 W, compared with 0.663 W for the SAIVS control only (MR damper passive) and 0.976 W

for MR damper control only (SAIVS device passive stiffness). The combination of MR damper

passive at 2 volts with SAIVS device passive stiffness reaches a base shear coefficient of 1.016 W,

which is highest in all four cases. 

The maximum friction force coefficient is the same in four cases as shown in Fig. 7(a), since it

does not depend on SAIVS or MR damper system, but depends on the weight of the structure and

the maximum friction coefficient. The changing width of the force-displacement loops of the MR

damper controlled case, evident in Fig. 7(b), provides efficient energy dissipation. Fig. 7(c) presents

the SAIVS device force normalized by total weight as a function of relative mass-ground

displacement under different cases. Note from Fig. 7(c) that the SAIVS device in the controlled

mode varies the stiffness continuously and smoothly as commanded by the control algorithm and

reduces the response. The softening tangential stiffness followed by eventual negative tangential

stiffness is seen in the force-displacement loops at peak relative displacements in Fig. 7(c). This

unique behavior of the device prevents excessive strain energy from being stored in the SAIVS

device at larger relative displacements, which when coupled with energy dissipation-provided by

friction in telescopic tubes-results in efficient response reduction. It is clearly evident that the case

with both MR damper and SAIVS in controlled mode reduces the base displacement with no further

increases in base shear. The continuous and smooth variation of stiffness provided by the SAIVS

device (see Fig. 7(c)) coupled with efficient energy dissipation provided by the MR damper (see

Fig. 7(b)) results in response reduction. 

Fig. 8 Comparison of time history of base
displacement and force-displacement loops
for Newhall 360 excitation with different
MR damper and SAIVS control states
(SDOF, T1 = 2 sec)

Fig. 9 Comparison of energy dissipation force-
displacement loops for Newhall 360 excita-
tion with different MR damper and SAIVS
control states (SDOF, T1 = 2 sec)
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Fig. 8 presents the base displacement time history and force-displacement loop of a single degree

of freedom system with 2 sec isolation period, subjected to Newhall-360-fault normal (FN)

component earthquake. As evident from Fig. 8, for the SDOF with 2 sec period, the SAIVS/MR

controlled case yields the least relative base displacement while maintaining the least base shear

forces when compared to all other cases. Again the softening tangential stiffness followed by

eventual negative tangential stiffness at peak displacements provided by the SAIVS device (see

Fig. 9(c)) combined with efficient energy dissipation provided by the MR damper (see Fig. 9(b))

results in reductions in displacements and forces. 

To study the effect of change in isolation period on response, analytical simulations are performed

with the isolation period varying from 0.1 sec to 5 sec. Fig. 10 presents relative displacement and

base shear spectra under Newhall-360 earthquake. This nonlinear spectrum is generated such that

the horizontal axis is composed of a series of base isolation periods (from 0.1 to 5 sec) and the

vertical axis is composed of a series of maximum absolute responses (i.e., relative displacement and

total base shear forces). As evident from Fig. 10, for isolation periods less than 0.7 sec the SAIVS/

MR damper controlled case results in increased relative displacements and base shear forces than

the MR damper controlled case. This response degradation is due to a very stiff isolation system

which renders the control forces ineffective. However, for the SDOF systems with isolation periods

greater than 0.7 sec the SAIVS/MR damper control case results in maximum reductions in relative

displacement and base shear forces (see Fig. 10). Fig. 11 presents the relative base displacement and

peak base shear spectra under Kobe-EW earthquake. As evident from Fig. 11, the SAIVS/MR

damper control case maintains the least relative base displacement response for isolation periods

greater than 0.7 sec. For this period range, the SAIVS/MR damper control case also maintains the

peak base shear at the same level as that of the MR damper passive/SAIVS control case. In

summary MR damper passive at 2 volts with SAIVS control case is effective in approximately the

region 0.7 < T1 < 3 sec whereas MR damper control case is effective beyond 2 sec. In the

combined SAIVS/MR damper control case the benefits of the both controls are superimposed and

significant reduction in response is observed for a wider range of T1 (0.7 < T1 < 5 sec). This is

Fig. 10 Displacement and base shear spectra for
1994 Newhall-360 earthquake for a rigid
sliding isolated block (SDOF)

Fig. 11 Displacement and base shear spectra for
1995 Kobe-EW earthquake for a rigid sliding
isolated block (SDOF)
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because of the fact that two control algorithms are effective in almost complementary T1 ranges.

From the results it is evident that the independently variable stiffness and variable damping systems

lead to significant response reduction over a broad period range beyond isolation periods 0.7 sec in

single degree of freedom systems. 

5.2 Sliding base isolated two-story building 

Analytical results of sliding base isolated two-story building are presented in Figs. 12 to 18 in the

form of time histories of relative (base-ground) displacement, force-displacement loops, inter-story

drifts and first/second floor acceleration time histories, and relative (base-ground) displacement,

base shear and superstructure acceleration spectra. Note the results are scaled up to the full scale

prototype system. 

Fig. 12 presents the comparison of relative base-ground displacement time histories and total base

shear versus relative base displacement loops under Newhall-360 earthquake with 1 sec isolation

period. As evident from Figs. 12(a) and (b) the SAIVS/MR damper control case maintain the least

relative base-ground displacement and base shear forces when compared with the MR/SAIVS

passive and MR passive and SAIVS control cases. Fig. 13 presents the shear force, MR damper

force and SAIVS force normalized by weight versus base-ground displacement loops under Newhall-

360 earthquake. Efficient variation of damping, evident in changing width of MR damper force-

displacement loops (see Fig. 13(b)), coupled with smooth stiffness variation and softening tangential

stiffness at peak relative displacement, evident from Fig. 13(c), leads to reductions in displacements

and forces. Fig. 14 presents superstructure interstory drifts and acceleration time histories under

Newhall-360 earthquake. As a result of continuous and smooth stiffness variation, provided by the

SAIVS device, no abrupt spikes in drift and acceleration time history responses are seen. 

Fig. 12 Comparison of time history of base displace-
ment and force-displacement loops for
Newhall 360 excitation with different MR
damper and SAIVS control states (3DOF, T1

= 1 sec)

Fig. 13 Comparison of energy dissipation force-
displacement loops for Newhall 360
excitation with different MR damper and
SAIVS control states (3DOF, T1 = 1 sec)
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Figs. 15 to 17 present the responses of the two-story building under Newhall-360 earthquake with

2 sec isolation period. A similar set of observations as in the 1 sec isolation period case (see Figs.

12 to 14) can be obtained from Figs. 15-17. That is, the SAIVS/MR damper control case, as a result

of efficient damping and stiffness variation, results in reductions in displacements and forces, yet

maintaining superstructure drifts and accelerations within bound of other cases considered. 

Fig. 14 Comparison of time history response of
relative drift and absolute acceleration for
the first and second story for Newhall 360
excitation with different MR damper and
SAIVS control states (3DOF, T1 = 1 sec)

Fig. 15 Comparison of time history of base
displacement and force-displacement loops
for Newhall 360 excitation with different
MR damper and SAIVS control states
(3DOF, T1 = 2 sec)

Fig. 16 Comparison of time history of base
displacement and force-displacement loops
for Newhall 360 excitation with different
MR damper and SAIVS control states
(3DOF, T1 = 2 sec)

Fig. 17 Comparison of time history response of
relative drift and absolute acceleration for
the first and second story for Newhall 360
excitation with different MR damper and
SAIVS control states (3DOF, T1 = 2 sec)
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To evaluate the effectiveness of the SAIVS/MR damper controlled case over a broad range of

isolation periods, simulations are performed for the two-story building with isolation period varying

between 0.1 to 5 sec. Fig. 18 presents the relative displacement, base shear, superstructure drifts and

acceleration spectra of the two-story building under Newhall-360 earthquake. As evident from

Fig. 18(a), the SAIVS/MR damper controlled case results in substantial reductions in the relative

base-ground displacement response for isolation periods greater than 0.7 sec. For the isolation

periods greater than 0.7 sec the SAIVS/MR damper control case also maintains the interstory drifts

and superstructure accelerations with bounds of other cases considered. 

Experimental verification of the relative base-ground displacement and peak base shear spectra of

the two-story building under Sylmar 90 and Newhall 90 earthquakes has been presented by

Nagarajaiah and Mao (2004); the comparison between experimental and analytical results was found

to be satisfactory, thus validating the analytical spectra. 

In summary it can be concluded that MR damper passive at 2 volts with SAIVS control case is

effective in isolation period range 0.7 < T1 < 3 sec whereas MR damper control case is effective

beyond 2 sec. In the combined SAIVS/MR damper control case the benefits of the both systems are

superimposed and significant response reductions are observed for a wider period range of T1 (0.7 <

T1 < 5 sec). This is due to the fact that two control algorithms are effective in almost

complementary T1 ranges. From the results it is evident that the independently variable stiffness and

variable damping systems lead to significant response reduction over a broad period range beyond

isolation periods 0.7 sec in two-story building. It is obvious that the degrees of freedom of the

system, whether SDOF or 3-DOF, has insignificant effect on the shape and magnitude of the spectra

in various ground motions. This is due to the fact that first mode response is dominant in base

Fig. 18 Relative displacement, base shear, superstructure drifts and acceleration spectra of the 2-story sliding
isolated structure (3DOF) under Newhall-360 earthquake
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isolated systems. The SAIVS/MR damper control case uniformly reduces the response in both the

SDOF and 3-DOF case in broad isolation period range beyond 0.7 sec, indicating the effectiveness

of the combined variable stiffness and variable damping systems. 

6. Conclusions 

In this paper performance of semi-active control algorithms in smart base isolated structures

subjected to near fault ground excitations are analytically studied. Three semi-active control cases

are considered: i) independently variable stiffness control, ii) independently variable damping

control and iii) combined variable damping and stiffness control. It is observed from simulated

results that MR damper passive at 2 volts with SAIVS control case is effective in approximately the

region 0.7 < T1 < 3 sec whereas MR damper control case is effective beyond 2 sec. In the

combined SAIVS/MR damper control case the benefits of the both controls are superimposed and

significant reduction in response is observed for a wider range of T1 (0.7 < T1 < 5 sec). This is

because of the fact that two control algorithms are effective in almost complementary T1 ranges.

From the results it is evident that the independently variable stiffness and variable damping systems

lead to significant response reduction over a broad period range beyond isolation periods 0.7 sec. 
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