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Optimal shape design of contact systems
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Abstract. Many applications in mechanical design involve elastic bodies coming into contact under the
action of the applied load. The distribution of the contact pressure throughout the contact interface plays
an important role in the performance of the contact system. In many applications, it is desirable to
minimize the maximum contact pressure or to have an approximately uniform contact pressure
distribution. Such requirements can be attained through a proper design of the initial surfaces of the
contacting bodies. This problem involves a combination of two disciplines, contact mechanics and shape
optimization. Therefore, the objective of the present paper is to develop an integrated procedure capable
of evaluating the optimal shape of contacting bodies. The adaptive incremental convex programming
method is adopted to solve the contact problem, while the augmented Lagrange multiplier method is used
to control the shape optimization procedure. Further, to accommodate the manufacturing requirements,
surface parameterization is considered. The proposed procedure is applied to a couple of problems, with
different geometry and boundary conditions, to demonstrate the efficiency and versatility of the proposed
procedure. 

Keywords: contact mechanics; shape optimization; mathematical programming; surface parameteriza-
tion; finite element method.

1. Introduction

Contact of elastic bodies is encountered in many engineering applications. When two or more

elastic bodies are pressed together, the contact stresses throughout the contact interface will build

up. Contact deformations and stresses depend as much on geometric profiles of the contacting

bodies as on the externally applied load (Dundurs 1975). The resulting localized high contact

stresses have severe effects on the tribological aspects of the contacting surfaces and consequently

on the performance of the mechanical system. Therefore, it is desirable to reduce the peak of

contact stress or to have an almost uniform contact pressure distribution at the contact interface. To

obtain the desired contact stress distribution, the initial contour or shape of the contacting bodies

should be properly designed. Consequently, an optimal shape design problem of the contact profiles

will be considered. This problem involves the combination of two disciplines, contact mechanics

and shape optimization. 

Generally, contact problems of elastic bodies have been investigated analytically (Johnson 1985).
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The analytical methods gave an insight into the problem. However, they required considerable

mathematical effort, and are limited to simple geometry and boundary conditions in addition to

suffering the lack of generality. For these shortcomings and limitations, computational models have

been developed to solve the contact problems. Computational models are classified into two

categories, primary and dual methods. The primary methods, based on the strong formulation,

exploit either incremental or iterative procedure in several alternative ways to satisfy contact

constraints (Francavilla and Zeinkiewicz 1975, Mahmoud et al. 1986). On the other hand, the dual

methods, based on a weak variational formulation, make use the mathematical programming

methods to solve the inequality constrained problems. The contact conditions throughout the contact

interface are represented by a set of unilateral inequality constraints (Campos et al. 1982, Zhong

and Sun 1989). Several types of contact problems, with different levels of complexity, could be

effectively analyzed (Mahmoud et al. 1998, El-Shafei and Mahmoud  1999, Barboza et al. 2002,

El-Shafei 2004). 

An extensive survey of contact pressure optimization problems is presented by Hilding et al.

(1999). Haug and Kwak (1978) have developed a model to minimize the peak contact pressure

subject to a set of constraints representing the geometrical bounds of modification of the surface

profiles. The simplex-modified Wolf’s method, with additional slack and artificial variables, is

adopted. The model is based on the generation of the flexibility matrices, which required

cumbersome calculations. The interior penalty method is used by Mahmoud et al. (1989) to design

optimal shape of contact surface subject to a set of geometrical bounds and limit stress constraints.

The resulting optimal profile suffered from the non-regularity, which are not easily consistent with

the manufacturing requirements. Based on Herskovits’s interior point technique, contact shape

optimization problem of hyper-elastic plane solids is investigated by Herskovits et al. (1998). Shape

optimization of contact problems with Coulomb’s friction is investigated by Beremlijski et al.

(2002). Utilizing the meshfree method (Kim et al. 2003), continuum-based shape design sensitivity

analysis and optimization methods are developed. Contact shape optimization of infinitesimal elasto-

plasticity with frictional contact is analyzed by Kim et al. (2000). This analysis is extended to

consider contact problems of hyper-elastic multibody (Kim et al. 2001). Shape optimization of a

nonlinear shell structure with frictionless contact is also tackled by Kyung et al. (2003). Further,

contact optimization problems including the wear process is investigated by Paczelt and Mroz

(2004). 

The objective of the present paper is to develop an integrated design procedure capable of

determining the optimal shape design of elastic bodies in frictionless contact. For each design

configuration, the adaptive incremental convex programming method is adopted to solve its

corresponding contact problem and consequently obtaining the contact stress distribution. The

augmented Lagrange multiplier method is used to investigate the shape optimization problem.

Furthermore, to obtain a regular surface profile, satisfying the manufacturing requirements, a surface

parameterization technique based on a cubic spline function is adopted. 

2. Statement of the optimal shape design of contact system

Due to localized high contact stresses at any contact system as shown in Fig. 1, the contacting

bodies may be failed. Contact stresses are highly sensitive to the shape of the contact profile.

Variation of the contact profile could enable to substantially influence the value of the maximum
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contact stress or the contact pressure distribution. Therefore, shape optimization is of a significant

importance on the design of contact systems. Choice of the objective function and the associated set

of the design variables affects the quality of the outcome of the shape optimization process. The

objective function should depend on and compatible to the nature of the considered problem. For

example, in the design of valves, pistons and gear pumps, the main objective is to prevent fluid

leakage and to reduce the wear of the sliding surfaces. Providing uniform contact pressure

distribution throughout the contact regions can attain those required conditions. On the other hand,

in the impact-hammer, deep drawing and stamping design problems, it is desirable to increase the

fatigue life. This can be achieved by reducing the peak contact stress. 

Now, consider two elastic bodies, shown in Fig. 1, pressed together under an external static load,

such that they come into frictionless contact. The boundary Γ of each body is assumed to consist of

three disjoint parts, Γf, Γd and Γc. Γf and Γd are the portions of the boundary on which the traction

and displacement are prescribed respectively. Γc is a portion of the boundary that contains the

adjacent surfaces which may come into contact upon the application of loads. It is obvious to

mention that the boundary Γc may contain either nonconformal and conformal contacts regions.

Generally, the objective function to be minimized is an implicit function of the design vector 

but explicitly depends on the state vector . Hence, the optimal shape design of a contact system

can be formulated as follows:

Minimize

   (1)

where f is the objective function to be minimized,  and  are the lower and upper vectors

bounds of the design variables,  is the equivalent stress that can be calculated according to any

adopted yield criterion,  is the allowable stress limit, and Ω is the connected domain of the

contacting bodies. In addition,  is the state vector that obtained from the solution of the contact

problem.
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Fig. 1 Contact of two deformable bodies
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The contact problem is a class of variational inequality problems. The contact area, and

consequently the kinematic boundary conditions along that area, is not known a priori. Further, The

contact states depend basically on the capacity of applied loads, geometry and relative material

compliance of the contacting bodies. Therefore, during the monotonically application of loads, some

few boundary conditions throughout the contact interface may be relaxed and other would be added.

Accordingly, such type of problems is a nonlinear one having inequality type of constraints. 

Let the space domain of the contacting bodies be discretized into a finite element grid. For the

discretized linear elastic system subjected to an external force vector
  

and having a displacement

vector , the variational inequality model represents the static equilibrium principle of the contact

system can be expressed as: 

Minimize    (in Ω )

(2)

where  is the objective function representing the total potential energy of the system, K is the

overall stiffness matrix and NC is the number of contact pairs, active constraints, throughout the

contact interface Γc. For a contact pair i, i1 and i2 are the contact nodes belonging to the first and

second body, respectively,  and  are the normal displacements of nodes i1 and i2 respectively,

Gi is the gap,  and  are the normal and tangential stress components respectively, and Ci is an

operator matrix on the state vector , which represents the displacement of the system. It is obvious

to mention that the state vector is a function of the vector of design variables .

The first inequality constraint of (2), represents the kinematic constraints where the two contacting

surfaces can not be interpenetrated, while the second represents the kinetic one, which state that no

tensile stresses along the contact interface, and the last condition states that the contact is

frictionless.

The foregoing presentation of the problem indicates that the optimal shape design of contact

system consists of two simultaneous models. The first model presented by (1), concerns mainly with

the shape optimization problem. This model is a nonlinear mathematical model, since both the

objective and constraints functions are nonlinear. The second model defined by (2) concerns with

the solution of the contact problem for any configuration proposed by the first model. This model is

also a nonlinear convex one, since both the quadratic objective function and the linear contact

constraints are convex. To compute the objective and constraints functions of the first model,

corresponding to a specific design vector, the vector of the state variables should firstly be

determined from the second model. In other words, for each vector of the design variables, selected

through the optimization process, the corresponding vector of the state variables is firstly

determined by solving the corresponding contact problem. For a selected configuration, the adaptive

incremental convex programming method (Mahmoud et al. 1993, Hassan and Mahmoud 2002) is

used to solve the contact problem and obtain the contact stress distribution. On the other hand, the

augmented Lagrange multiplier method (Fletcher 1987) is used to solve the shape optimization

problem.
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3. Solution of the shape optimization problem

The main problem in the structural optimization is to determine a set of design variables such that

an objective function, subject to a set of constraints, is minimized. Both the objective and

constraints are usually nonlinear functions. Solution of this problem is oftenly attempted by using

the nonlinear programming techniques; among them the multiplier methods are the most effective

ones. The basic idea of the multiplier methods is to transform the original constrained optimization

model into a sequence of unconstrained ones. The function of each unconstrained model is

constructed, using both the objective and constraint functions of the original model in addition to a

set of multipliers. The solutions of the sequentially unconstrained problems converge monotonically

towards the solution of the original constrained problem. 

The general form of the constrained optimization problem (Belegundu and Arora 1985), is given

by:

Minimize

  (3)

where  is the objective function,  is a multi-valued vector of the design variables in a space

Rn of n dimensions, h( ) and g( ) are the equality and inequality constraints functions respectively,

and l is the number of equality constraints, while m is the total number of constraints.

The optimization model (3) is quite general and can be used to model various engineering

optimization problems (Haug and Arora 1979, Arora 1989, 1990). One of the crucial difficulties in

the engineering applications is that both the objective and constraints functions are oftenly

nonsmooth and depending implicitly on the design variables. This makes the evaluation of their

gradient truly tedious and expensive. The multiplier methods can easily alleviate this difficulty, as

they require only the gradient of one augmented function. This gradient can be evaluated efficiently

using the adjoint variable method (Arora and Haug 1979) without computing gradients of the

individual constraints.

The Lagrangian function equivalent to the original model, defined by (3), can be presented as:

    (4)

in which  is the vector of Lagrange multipliers. The multiplier methods employ an augmented

Lagrangian function in which some penalty terms involving constraints are added to the ordinary

Lagrangian form (4). Therefore, the Lagrange multipliers and certain penalty parameter, for each

constraint, are used to construct an equivalent function, that can be generally written as:

   (5)

in which  is a generalized penalty function and  is the vector of penalty

parameters. The values of the vectors of Lagrange multiplier and penalty parameter are chosen at the

beginning of each unconstrained minimization and then the augmented function  is
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minimized with respect to . At the end of each minimization step, both the Lagrange multiplier and

penalty parameter are updated and the process repeated until the satisfaction of the convergence

criteria. The basic motivation for the augmented multiplier methods is to avoid the ill-conditioning

associated with the usual penalty function methods (Fletcher 1975). In contrast to the penalty function

methods, the vector of penalty parameter  need not go to infinity to achieve convergence of the

multiplier methods. As a consequence, the augmented Lagrangian function has a good condition.

The augmented Lagrangian function can be defined in several ways. The most popular and

commonly form, includes quadratic penalty terms, taking the following form (Fletcher 1975):

  (6)

in which  are the Lagrange multipliers and ( f )+ = max(0, f ). This function has a suitable

structure for so, it is simpler to work with the Lagrange multipliers µ i's instead of θ 's. Therefore,

the augmented Lagrangian function (6) may be written in terms of µ's as follows:

(7)

It is clearly obvious that the above expression has few penalty terms are added to the ordinary

Lagrangian function (4), hence it is called the augmented Lagrangian function.

3.1 Unconstrained minimization and updating procedure

The original multiplier methods require an exact solution of the unconstrained minimization

model at each step. This is numerically impossible, as it may require much more iterations, and

therefore, many function evaluations. However, there are various methods that work quite well with

an inexact solution of the model at each step. The minimization procedure is usually terminated

once the following condition is satisfied:

   (8)

where k is the unconstrained minimization step, εk is the error tolerance such that  as 

and ∇ represents the gradient operator with respect to the vector of design variables . One way to

increase efficiency of the method is to terminate the unconstrained minimization with a crude

approximation to the solution. This enables the vector of Lagrange multipliers  to be updated

more frequently. This is important for large scale engineering optimization problems where an exact

minimization is impossible to reach. To accomplish this, it is better to terminate the unconstrained

minimization when the gradient of the Lagrangian function is less than some measure of the

unfeasibility of the constraint (Arora et al. 1991).

   (9)
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where ξ is some fixed positive parameter and the norm of the right hand side is only includes the

violated constraints subset. Further it is suggested that the parameter ξ may be reduced in certain

situations (Coope and Fletcher 1980). Therefore,  and  as . In addition to the

above termination criteria, a limit on the number of unconstrained minimization iterations may be

imposed. Computational experience indicates that a considerable saving is realized by accepting an

inexact unconstrained minimization.

A simple procedure for updating the Lagrange multiplier is presented in Powell (1969) such that

for the ith equality constraint

    (10)

where  define the Lagrange multipliers as  and k denotes the unconstrained

minimization stage. It is important to note that the last equation does not require the gradient of the

individual constraints, and consequently it is more suitable for large-scale engineering problems. On

the other hand, when inequality constraints are existing, the Lagrange multipliers can be updated

using the constraint function as:

 (11)

It has been shown that the updating procedures defined by (10) and (11) are merely the steepest

ascent methods for an equivalent dual of the original optimization model (3). Convergence

properties of the multiplier methods using various updating procedures have been analyzed and

more sophisticated updating procedures to obtain faster convergence rate have been addressed in

Arora et al. (1991). However, those procedures require the gradients of individual constraints,

making them unsuitable for engineering applications. 

3.2 Convergence conditions 

The global convergence of the multiplier methods can be analyzed in the framework of the

general methods of penalty function (Berisekas 1976). Considering a non-negative parameter  that

used to enforce the global convergence. This non-negative parameter, represents the maximum

constraint violation, can be expressed as:

 (12)

where 

 (13)

To enforce the global convergence,  is required to be reduced at every iteration of the

unconstrained minimization algorithm, and the entire iterative process is stopped if the following

criteria are satisfied: 
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where ε is an error tolerance. If  is not reduced at a particular iteration, then the value of the

penalty parameter r is increased by any automatic procedure (Haug and Arora 1979). Therefore the

role of the penalty parameter is important for obtaining global convergence of the multiplier

methods. According to (Berisekas 1976), the detailed algorithm of the augmented Lagrange

multiplier procedure is presented in Appendix-A.

3.3 The unconstrained minimization algorithm

In the augmented Lagrange multiplier algorithm presented in Appendix-A, it is required to

minimize the unconstrained augmented function . The modified conjugate

directions method (Arora 1989), is adopted to minimize that function. This method builds up

information that approximates the second derivatives of the considered function to be minimized.

Now, after receiving the  as the current estimate of the minimum point, as presented in the

third step of the algorithm, presented in Appendix-A, the procedure to minimize the unconstrained

augmented function is also presented in Appendix-B. 

4. Solution of the contact problem as a convex programming model

According to the incremental convex programming method (Mahmoud et al. 1993, Hassan and

Mahmoud 2002), which is one of the active multipliers methods, the frictionless contact model,

defined by (2), is replaced by a sequence of M submodels, each of them is depicted as follows:

(15)

  

where m is the submodel number and M is the total number of models.

Since both the objective function and the constraints  are convex, any local minimum

is also a global one (Haug and Arora 1979). Let  be the global minimum point of the

convex submodel (15), the global minimum point  of the original model (2) can be depicted

as 

 (16)

where  is the non-negative multiplier vector, which physically represents the contact forces vector

at the contact region. The global minimum point of each submodel should satisfy the following

Kuhn-Tucker necessary and sufficient conditions:

 (17)

which represents the dual form of the problem.
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ũ* ũm
*  and λ̃

*
λ̃m

*

m 1=

M

∑=

m 1=

M

∑=

λ̃

Kũm
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4.1 Solution procedure

The algorithm of solution of the contact problem presented above is based on an adaptive

incremental procedure. The maximum number of increments, and consequently the number of

submodels, does not exceed the total number of constraints. Through each submodel, only one new

contact event, either contact or separation, is detected. Therefore, the algorithm determines the

active and inactive constraints, corresponding to each contact or separation event in an adaptive

incremental scheme. In addition, the Lagrange multipliers of the active constraints, which physically

represent the contact forces, are calculated. Therefore, at no penalty, the contact events versus load

history can be obtained.

Before going to the detailed algorithm of solution, three points should be emphasized;

(i) The constraints of each submodel m may be divided into two sets. The first one consists of

all inactive constraints and is designated by Φm, and the other one contains only all active

constraints and is designated by Ψm.

(ii) To identify the components of the submodel number m, vectors  and  are chosen in

such a manner that either one of the inactive constraints of the submodel m − 1, would

change to be an active one, or one of the active constraints would switch to be an inactive

one.

(iii) The identification of the inactive constraint, of the submodel m − 1, candidate to change to be

an active one in the submodel m depends on the determination of a violation vector;

 (18)

Similarly, the identification of the active constraint, of the submodel m − 1, candidate to

switch to be an inactive one in the submodel m depends on the determination of a violation

vector;

 (19)

The role of both violation vectors  and  will be explained in the following algorithm:

4.2 The algorithm of solution

Assume the solution of the submodel m − 1 is , the gap vector is  and the

residual load for the next submodel is . The algorithm of solution to obtain the contact status for

the mth submodel is depicted as follows:

1. Based on the both inactive and active constraints sets Φm-1 and Ψm-1 respectively, construct the

operator matrix Cm. 

2. According to (17), construct the equilibrium equations such that 

  (20)

Once the equilibrium Eq. (20) is solved, both the incremental state and Lagrange multipliers

vectors  and  respectively are determined. 
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3. Detecting a new contact pair:

For the inactive constraints set Φm−1, and according to (18), the ith component of the violation

vector  can be stated as

 (21)

where I is the number of the inactive constraints. 

We can notice from (21) that if  is negative or positive, the inactive constraint number i is

still inactive or violated, respectively. Among the set of constrains associated with positive

violation values, detect a constraint, designated as C1, that having the maximum violation

value, such that 

 (22)

The inactive constraint C1 is candidate to be an active one. The scale factor required to

establish this new active constraint is: 

 (23)

4. Detecting a new separation pair:

For the active constraints set Ψm−1, and according to (19), the jth component of the violation

vector  can be stated as

  (24)

where J is the number of active constraints. 

We can notice from (24) that if  is positive or negative, the active constraint number j is still

active or violated, respectively. Among the set of constraints associated with negative violation

values, we can detect the constraint, designated as C2, that having the maximum absolute

violation value, such that 

 (25)

The active constraint C2 is candidate to be an inactive one. The scale factor required to

establish this new active constraint is:

 (26)

5. Choose the scale factor of the mth submodel, such that only contact or separation event will

occur
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6. Now, based on the new event corresponding to the minimum scale factor, update the cardinality

of the two constraints sets. If αC1 is the minimum scale factor, new contact event is

encountered, the cardinality of the inactive constraints set Φ is reduced by one, where one of its

constraints turns into active and joins the active constraints set Ψ. On the other hand, when the

αC2 is the minimum, new separation event is encountered, the cardinality of the active

constraints set Ψ is reduced by one, where one of its constraints turns into inactive and joins

the inactive constraints set Φ.
7. Update the displacement, contact force and gap vectors for the mth submodel, such that

8. According to (16), update the global solution of the problem, such that 

 (29)

9. Calculate the residual force vector to be applied for the next model

  (30)

10. m = m + 1, initiate the next model 

Repeat steps 2 to 10 until the intensity of the load vector  becomes zero. 

5. Shape optimization of elastic bodies in contact

The foregoing formulations of the shape optimization and contact problems can be joined together

and implemented into an integrated procedure capable of determining the optimal shape of the

contacting bodies. This procedure consists of two simultaneous models. The first one is a nonlinear

mathematical model concerned with the shape optimization problem. In this model, both the

objective and constraints functions are nonlinear and implicitly depending on the design variables.

To compute the objective and constraints functions of that model, the state variables should be

firstly determined. The state variables are calculated by solving the model, concerns with the

contact problem. In this model, the quadratic objective function and the linear contact constraints

constitute together a convex programming problem. 

In the shape optimization problem of contact systems, three important aspects should be

considered. The first aspect is the choice of the objective function to be minimized. The choice of

the objective function critically governs the outcome of the shape optimization process, where the

objective function depends on the nature of the considered problem. In some cases, it is desirable to

have a uniform contact pressure distribution throughout the contact regions, while in other

situations, reducing the peak contact stress is highly desirable. The second aspect; it is important to

know how the response of the contact system is sensitive for a slight changing of the shape of the

contacting bodies. The optimization procedure requires the sensitivity factor in order to compute the

proper search direction. Hence, shape sensitivity analysis should be considered to provide such type

of information. The coordinates of the nodal points represent geometry of the contacting bodies.

The change of the shape is represented by a finite variation of the design variables. Therefore, the

ũm
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third aspect is concerned with the parameterization of the shape. The parameterization of the shape

has two folds, the first is to relate the change of the design variables and nodal locations, while the

second is to obtain a reliable surface profile satisfying the manufacturing requirements. Those three

aspects will be discussed in the following sections. 

5.1 Formulation of the objective functions

As mentioned before, choice of the objective function depends on the nature of the considered

problem. Results of the optimization process are too sensitive to the choice of the objective

function. There are several choices for the objective function to be used. Two types of the objective

function are considered, the first is the minimization of the peak contact stress, while the second is

to achieve an almost uniform contact pressure over the actual contact area. 

When the contact area is very small compared to the gross dimensions of the contacting bodies,

the contact pressure in the contact region is several times larger than elsewhere. In addition, within

this contact area, a peak contact stress is encountered. Therefore, it is desirable to minimize the

peak contact pressure, consequently, the objective function to be minimized will take the form:

(31)

in which pi is the normal contact stress at the ith contact node at the contact interface and NC is the

number of candidate contact pairs currently in contact, i.e., the number of active constraints. There

is a direct correlation between contact pressures and nodal contact forces. In fact contact pressure

and nodal contact forces may be used interchangeably (Haug and Kwak 1978). The obtained results

demonstrate that no significant difference is found while substituting the contact pressure by the

nodal contact forces. Thus when using the maximum nodal contact force to be minimized, the

objective function will take the following form:

  (32)

where λi is the nodal normal contact force at the ith contact node at the contact interface.

On the other hand, it is oftenly desirable to have a uniform pressure distribution over the actual

area of contact. Uniform contact pressure ensures uniform wear of the components at the mating

interface. In practice, to have a uniform pressure distribution over the actual area of contact, it is

suggested to minimize the standard deviation of the contact pressure distribution along contact

boundaries. Thus, the objective function may be formulated as follows:

   (33)

with 

 (34)

where  is the final contact pressure distribution over the contact interface obtained by fitting a

polynomial of the pressures at the discrete contact nodes, pav is the mean contact pressure and Γc is

the contact area. If Γc represents the potential contact area, then the effect of the optimization
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process is to spread the actual final contact profile, i.e., increase the area of contact and

simultaneously make the pressure distribution uniform. On the other hand, if Γc represents the actual

contact area, then the optimization procedure needs no effort to increase the final area of contact.

Again, the objective function defined by (33) may be written in terms of the contact forces as:

  (35)

and

 (36)

We can easily noticed that the problem has a non-smooth nature, since the objective function, as

stated by (31) or (33), and the strength constraint given by (1) are both implicit with respect to the

design variables. However the problem is a non-smooth, but for the sake of simplicity, the

derivatives of the objective and constraints functions are calculated by the forward divided

difference scheme.

5.2 Sensitivity analysis of the problem

An important aspect in the shape optimization is the computation of the derivatives of the

objective and constraints functions, which are nonsmooth functions. Therefore, computation of

derivatives requires special care in contact problems. The purpose of shape sensitivity analysis is to

evaluate how and how much the behavior of a system changes due to slight changes in the shape of

the contacting bodies. The optimization procedure vitally requires this information in order to select

and compute the search direction that decreases the objective function. There are two approaches to

carryout the sensitivity analysis (Haug and Kwak 1978), the numerical computation by divided

differences or the analytical computation by implicit differentiation of the governing system of

equations. In the proposed model, the divided differences scheme is used to obtain such derivatives,

since there are no formulae of both objective and constraints functions.

In the contact shape optimization problem the nodal contact force is a non-differentiable function

of design variables. Therefore, the first derivative of a contact force with respect to the design

variables xi, using forward divided difference scheme, is given by:

  (37)

in which  represents the maximum contact force due to the new

vector of design variables and bi is the slight change of the design variable xi. 

5.3 Surface parameterization

In the optimal shape design of contact systems, the coordinates of the nodal points, along the

contact interface, are considered as design variables. As the number of the design variables increases,

the search process to find the optimal solution, will increase and consumes more computations,

which in turn includes more oscillation and less convergence rate. The purpose of surface

parameterization is to provide an approach for decreasing the number of design variables required for
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the optimization process. The suggested new design variables are known as the control points or

control nodes. The number of control points depends on the complexity of the surface profile and is

usually less than the number of contacting nodes. The number of control points should be enough to

derive the coordinates of any point belongs to the contacting surfaces using a convenient

interpolation scheme. Therefore, the adopted interpolation algorithm represents an intermediate phase

between the contact and optimization modules. The objective of the interpolation scheme is to

receive the values of the design variables and interpolates them to generate the new shape of the

contact interface. Further, this new shape should satisfy the manufacturing requirements. 

General polynomial interpolation can be used as interpolation scheme. However, with higher-order

polynomials there are cases where these functions can lead to erroneous results. An alternative

approach is to apply lower-order polynomials to subsets of nodes. Such connecting polynomials are

called spline functions. These functions have the additional property that the connections between

adjacent cubic equations are visually smooth. Further, on the surface it would seem that the third-

order approximation of the spline would be in lower order than the higher-order polynomial (Chapra

and Canale 1989). Therefore, the cubic spline interpolation function would be used.

The main idea of the cubic spline is to derive a third-order polynomial for each interval between

the control nodes, such as 

fi (x) = ai x
3 + bi x

2 + ci x + di ,  i = 1, 2,……., n   (38)

Thus, for n + 1 nodes there are n intervals and, consequently, 4n unknown constants have to

evaluate. Therefore, 4n conditions are required to evaluate these unknowns. An efficient

interpolation scheme using cubic spline function, but with n − 1 instead of 4n equations is used to

represent the contact profile. According to Cheney and Kincaid (1985), the first step is based on the

observation that because of each pair of control nodes is connected by a cubic function, the second

derivative within each interval is a straight line. On this basis, the second derivatives of (38) can be

represented by a first-order Lagrange interpolating polynomial

  (39)

where  is the value of the second derivative at any point x within the ith interval. Thus, this

equation is a straight line connecting the second derivative at the first control node  with

the second derivative at the second one .

Eq. (39) can be integrated twice to yield an expression for fi(x). However, this expression will

contain two unknown constants of integration. These constants can be evaluated by using the

function-equality conditions, fi(x) equals to  at  and also fi(x) equals to fi(xi) at xi. By

performing these evaluations, the following cubic equation results

 (40)
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This relationship, for the cubic spline for the ith interval, is a much more complicated expression

than (38). However, it is noticed that it contains only two unknown coefficients, the second

derivatives at the beginning and at the end of the interval  and . 

The second derivatives can be evaluated by using the condition that the first derivatives at the

control nodes must be continuous, i.e.,

  (41)

The first derivatives can be evaluated by differentiating (40). If this is done for both (i − 1)th and ith

intervals and the results are set equal according to (41), the following relationship results:

  (42)

If (42) is written for all interior control nodes, n − 1 simultaneous equations result with n + 1

unknown second derivatives. However, because this is a natural cubic spline, the second derivatives

at the end control points are zero and the problem reduces to n − 1 equations with n − 1 unknowns.

In addition, it is noted that the system of equations will be tridiagonal. Thus, not only the number of

equations is reduced but also they are presented in a form that is extremely easy to solve. 

5.4 The integrated procedure for shape optimization of contact system

The foregoing formulations of the optimal shape design problem of contact systems indicate that

two simultaneous models can present the problem out. The first one concerns mainly with the shape

optimization problem, while the second model concerns with the solution of the contact problem for

any configuration proposed by the first model. To compute the objective and constraints functions

of the first model, corresponding to a specific design vector, the state vector should firstly be

determined from the second model. For the selected configuration, the adaptive incremental convex

programming model, presented in section 4, is used to solve the contact problem and obtain the

contact pressure distribution. On the other hand, the augmented Lagrange multiplier method,

outlined in section 3, is adopted to solve the shape optimization problem. In addition, the objective

function and the surface parameterization technique are formulated in sections 5.1 and 5.3

respectively. 

These formulations and the associated algorithms can be joined together and implemented into an

integrated procedure capable of determining the optimal shape of contact systems. The constrained

optimization model is considered the milestone of the proposed integrated procedure. Fig. 2

illustrates the flow diagram of the proposed integrated procedure. 

Based on the geometry of the contact system under consideration, the initial vector of the design

variables is constructed. Also, some initial parameters are initiated to start the constrained

optimization algorithm. As mentioned previously, the design variables are manipulated as control

nodes, located on the contact profile. Construction and size of the design vector are based on the

complexity of the geometry of the contact system. Based on the considered application, both

equality and inequality constraints are evaluated. From the control nodes, which representing the

design vector, the initial geometry of the contact profile is obtained using the cubic spline
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interpolation function. The initial configuration is then solved, using the incremental convex

programming model, to get the contact pressure distribution. Once the contact pressure distribution

is determined, the constrained optimization model, using the augmented Lagrange multiplier method

to minimize the maximum contact pressure, is started.

Starting from the current configuration, the constrained optimization model is beginning by

evaluating the augmented Lagrangian function. This function is minimized through the

unconstrained minimization block, shown in Fig. 2, to get the best point in the current constrained

optimization step k. The maximum step size, which required in the unconstrained minimization

Fig. 2 Flow diagram of the proposed integrated procedure for shape optimization of contact systems
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process, is evaluated using the Golden section method. Further, the contact model is needed to

evaluate the gradient of the augmented function. To terminate the unconstrained minimization

process, the convergence criterion, defined by (B8) in Appendix B, should be satisfied. 

Based on the best point that obtained from the unconstrained minimization process, the

constrained optimization model is going to evaluate the new constraints. According to the status of

the new constraints, the maximum constraint violation is determined by (12) and (13). If the

convergence condition, defined by (14), is not satisfied, both equality and inequality constraints sets

are modified. Accordingly, the Lagrange multiplier vector should be updated, as presented in (10)

and (11), then a new optimization step is initiated. On the other hand, should the convergence be

satisfied, the constrained optimization process is terminated with the optimal design vector. This

design vector is interpolated again to locate the optimal contact profile. The detailed algorithms for

both constrained optimization and unconstrained minimization techniques are presented in

Appendices A and B respectively. 

6. Results and disscusion

The developed integrated procedure for the optimal shape design problem of contact systems is

implemented into a two-dimensional linear finite element model. The model is applied to a couple

of different problems to demonstrate the efficiency and versatility of the proposed procedure. The

considered problems are different in geometry, and boundary and loading conditions as well as the

material characteristics. Furthermore, the contacting bodies are different, since elastic/rigid and

elastic/elastic contact cases are studied. In addition, the initial contact profile of the contacting

bodies is not restricted to a specified geometry. Therefore, the initial contact profiles having a

quadratic or a flat geometry could be considered. Also, in some cases there are no limitations

imposed on the final contact profile, while in other applications, the contact surface is bounded by

upper and lower boundaries. Therefore, the developed procedure can be applied to any contact

systems in the frame of the above assumptions. 

In the design of these contact problems, the objective is to determine the contact profile that

minimizing the maximum contact pressure. The analyses of these problems are based on the plane

stress conditions. Further, the materials of the contacting bodies are assumed to be homogeneous,

isotropic, and obey Hooke’s law, i.e., linear elastic behavior is only considered.

 

6.1 An elastic curved plate pressed against a rigid foundation 

The shape optimization problem of an elastic curved plate resting on a rigid foundation is

considered to get the optimal contact profile that minimizing the peak contact pressure. The material

of the plate is having a Young’s modulus of 215 GPa, and Poisson’s ratio of 0.29. The geometry

and loading conditions are shown in Fig. 3. The initial contact profile is a quadratic curve having

the relation X2 = R – [R2 – (X1 – 4)2]1/2, where X1 ∈ [0,4] and R = 160.0125 m. The optimization

process is terminated after fifteen iterations where the solution is converged to the desired accuracy. 

Fig. 4 illustrates the predicted optimal contact profile. It is clear that the obtained optimal shape is

dramatically different from the initial one. In addition, due to the surface parameterization, the

obtained profile is almost regular satisfying the manufacturing requirements. Fig. 5 shows the

variation of the contact pressure throughout the contact interface for the initial and final optimal
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contact profiles. It is found that the maximum contact pressure is reduced from 1.91 GPa for the

initial contact profile to 1.03 GPa for the final optimal contact profile. This reduction is attributed to

the increasing of the contact length due to the optimization process. The same problem is solved in

Haslinger and Neittaanmaki (1988) and a good agreement with their solution is found. 

6.2 Contact of an elastic body with a wavy surface

This example presents the optimal shape design problem of an elastic body with a weavy surface

pressed against a rigid support. The potential contact profile of the body is a sinusoidal curve. Due

to certain consideration, the contact surface is tolerated to limit dimensions. Therefore, the optimal

contact profile is constrained to be located between the upper and lower limit tolerated profiles. The

objective of the analysis is to minimize the maximum contact pressure. The material of the body is

Fig. 3 An elastic curved plate pressed against a rigid foundation

Fig. 4 The optimal contact profile

Fig. 5 Variation of the contact pressure for different contact profiles
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having a Young’s modulus of 15.0 MPa, and Poisson’s ratio of 0.3. The geometry and loading

conditions are shown in Fig. 6. The optimization process is terminated after eleven iterations where

the solution is converged smoothly according to the desired accuracy. 

Fig. 7 illustrates the upper and lower limit profiles as well as the optimal profile. It is obviously

clear that the obtained optimal contact profile is located between the two limit profiles. Also, it is

noticed that the obtained optimal profile is almost regular satisfying the manufacturing and

operation conditions. Fig. 8 shows the variation of the contact pressure throughout the contact

interface for the initial upper and lower profiles as well as for the final optimal contact profile. It is

found that the maximum contact pressure is reduced from 12.6 MPa for the initial upper contact

profile to 10.0 MPa for the final optimal contact profile.

Fig. 6 Contact of an elastic body with a weavy surface and a rigid foundation

Fig. 7 The optimal contact profile 

Fig. 8 Variation of the contact pressure for initial and final optimal contact profiles
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6.3 Contact of two elastic flat bodies

This example presents the optimal shape design of an elastic flat body pressed against another

elastic flat one. The potential contact profile of the system is a flat surface. The objective of the

analysis is to minimize the peak contact pressure. The contact interface of the upper body is the

optimized profile. The materials of the upper and lower bodies have Young’s module of 71.0 GPa

and 10.0 GPa, respectively, while the Poisson’s ratio is 0.3 for both. The upper surface of the upper

body is subjected to uniform traction of 10.0 MPa. The geometry and loading conditions are shown

Fig. 9 Contact of two elastic bodies

Fig. 10 The optimal contact profile

Fig. 11 Variation of the contact pressure for initial and final optimal contact profiles
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in Fig. 9. The optimization process is terminated after twenty-four iterations, where the solution is

converged according to the desired accuracy. 

Fig. 10 displays the optimal contact profile. It is obviously clear that the obtained optimal contact

profile is a quadratic smooth one, while the initial profile is a flat surface. Fig. 11 shows the

variation of the contact pressure throughout the contact interface for the initial and optimal profiles.

In the initial design, a very sharp increase in contact stress is found at the contact boundaries.

Through the optimization process, such a concentration of stress can be eliminated. Furthermore, it

is clear that the final design has almost uniform distribution of the contact pressure.

6.4 An elastic flat body pressed against a rigid foundation 

Consider the design problem of an elastic flat body pressed against a rigid foundation. The initial

contact profile is a flat surface. The Young’s modulus and Poisson’s ratio of the material of the

elastic body are 71.0 GPa and 0.3 respectively. The geometry and loading conditions are shown in

Fig. 12. The objective of the analysis is to minimize the peak contact pressure. The optimization

process is terminated after twenty-two iterations, where the solution is converged according to the

desired accuracy. 

Fig. 13 illustrates the optimal contact profile. Due to the loading condition, the optimal contact

profile is found to be a curved shape with maximum gap at the center. The optimal contact profile

for this case is completely different from the preceding three problems. Fig. 14 shows the variation

of the contact pressure throughout the contact interface for the initial shape, after twelve iterations

and for the optimal profile. In the initial design, the peak contact stress of 19.88 MPa is found. With

the application of the developed integrated procedure, the contact pressure distribution is modified

Fig. 12 Contact of an elastic flat body and a rigid foundation

Fig. 13 The optimal contact profile
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to be almost uniform with a maximum value of 6.29 MPa located near the edges of the contact

area. This means that the maximum contact stress, for the initial design, is reduced by 68.5%. This

result represents a considerable improvement on the initial design.

7. Conclusions

The distribution of the contact pressure throughout the contact interface plays an important role in

the performance of the contact systems. In many applications, it is desirable to have an

approximately uniform contact pressure distribution or to minimize the maximum contact stress.

Such requirement can be attained through a proper design of the initial contour of the contacting

bodies. Therefore, an efficient integrated procedure capable of determining the optimal profiles of

contact systems is developed. The proposed procedure consists of two simultaneous models. The

first model concerns with the solution of the boundary value problems of non-conformal contact

between elastic bodies. The adaptive incremental convex programming method is adopted to solve

the contact problem and obtaining the contact status for a given design configuration. The second

model investigates the optimal shape design problem. The maximum contact pressure, which is

already determined in the first model, is the objective function to be minimized. The augmented

Lagrange multiplier method is used to manage and control the shape optimization procedure, in

which the contact profile is parameterized using the cubic spline curves. Instead of the coordinates

of the nodes of the contact profile, control nodes of a cubic spline curves are used as the design

variables. This simulation has several advantages; reducing the dimensions of the optimization

problem and consequently reduces the computational time, making a higher convergence rate of the

optimization problem and obtaining a regular surface profile satisfying the manufacturing and

operational requirements. 

The developed procedure is applied to four different problems, with different geometry and

boundary conditions, to illustrate the efficiency and versatility of the model. The obtained results are

representing a substantial change in the initial contact profile and consequently reducing

significantly the peak value of the contact pressure.

Fig. 14 Variation of contact pressure for different contact profiles
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Appendix-A

According to Berisekas (1976), the augmented Lagrange multiplier algorithm is stated as follows:
1. Set the following initial vectors and parameters:

k = 0, initiate the constrained optimization step, 
 and  initiate the vectors of design variables and augmented Lagrange multipliers respectively, 
, initiate the vector of penalty parameter, 

K = ∞, initiate the maximum constraint violation value, and scalars α > 1, β > 1 and ε > 0, 
where ε is the desired accuracy; α is used to enforce sufficient decrease in the constraint violations, and
β is used to increase the penalty parameters.

2. Set k = k + 1.
3. Set , according to (6), then minimize it with respect to  and let  be the best point

obtained in this step.
4. Evaluate ,  and , . 
5. Set , the maximum constraint violation according to (12).
6. Check for convergence criteria according to (14), If these criteria are satisfied, then stop, otherwise,

establish the following sets of equality IE and inequality II constraints whose violation did not improve by
the factor α:

                         (Equality constraint set)

    (Inequality constraint set)

7. If , then go to step 8, otherwise
This condition means that the constraint violation did not improve. Satisfaction of this condition also
means that . In this case, increase the penalty parameters by the factor β and reduce the corre-
sponding θi by the same factor, such that

and for all

x̃
k
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k

r̃
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k
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thus keeping the multipliers unchanged.
Go to step 9.
Note that these calculations are performed only for constraints whose the constraint violation have been
improved by the parameter α. 

8. Here , (i.e., the maximum constraint violation is improved) In this case . According to
(10) and (11), update  by setting 

Also, note that these calculations are performed only for constraints whose the constraint violation have
been improved. 

9. Set  and go to step 2
The initial choice of , α and β are very important. Usually initial θi are set to zero for all constraints.
Considering the rate of convergence, the initial choice of penalty parameters ri are important as discussed
before. Penalty parameters are usually chosen to satisfy  where  is the
expected decrease in the objective function at the initial design point x0. This requires some prior knowl-
edge about the problem. Another way to choose the initial penalty parameters is to impose a condition
that the objective function and the generalized penalty function or the norm of their gradients to be equal
at the initial point x0. Different values of the parameters α and β are discussed in (Belegundu and Arora
1985, Berisekas 1976). To prevent excessive iterations, a limit on the maximum number of function and
gradient evaluations may be imposed.

Appendix-B

This Appendix presents the unconstrained minimization algorithm according to Arora (1989). After receiv-
ing the  as the current estimate of the minimum point, as presented in the third step of the algorithm,
presented in Appendix-A, the procedure to minimize the unconstrained augmented function is proceeds as
follows: 

1. Set n = 0, initiate the unconstrained minimization step, and set a symmetric positive definite matrix 
2. Set 
3. Set n = n + 1 unconstrained minimization counter
4. Compute the search direction vector S

n
 as follows:

  (B1)

where ND is the number of design variables
5. Using the Golden section method (Haug and Arora 1979) to evaluate the scalar parameter η, which rep-

resents the maximum step size in the minimization search direction of the augmented function
, such that  is minimum.

6. Compute: 
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where     ,           (B4)
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and       ,         (B5)

 (B6)

with        (B7)

7. If or ,              (B8)
is sufficiently small, then terminate the process. Else, go to step 3

Finally, it is important to mention that for engineering design problems, it is necessary to impose some
bounds or limitations on the design variables during the unconstrained minimization process to prevent
impractical designs.
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