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Evolution of bone structure under axial and 

transverse loads
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Abstract. The evolution process of an initially homogeneous bone structure under axial and transverse
loads is investigated in this paper. The external loads include axial and external lateral pressure, electric,
magnetic and thermal loads. The theoretical predictions of evolution processes are made based on the
adaptive elasticity formulation and coupled thermo-magneto-electro-elastic theory. The adaptive elastic
body, which is a model for living bone diaphysis, is assumed to be homogeneous in its anisotropic
properties and its density. The principal result of this paper is determination of the evolution process of
the initially homogeneous body to a transversely inhomogeneous body under the influence of the
inhomogeneous stress state. 
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1. Introduction

Adaptive bone remodelling under multi-field loads is attracting widespread attention from

biological scientists and mechanical engineers. The remodelling process is the mechanisms by

which bone adapts its histological structure to changes in long term loading. Since bone tissues

remodel themselves without the control of the nervous system (Hert et al. 1971), it is quite rational

to assume the presence of an unknown mechanism in bone tissues which can assess the surrounding

mechanical environment and control bone formation and resorption. The bone remodelling

mechanism has been investigated by many authors (Cowin and van Buskirk 1978, 1979, Cowin and

Firoozbakhsh 1981, Cowin and Hegedus 1976, Gjelsvik 1973a,b). Many hypotheses as to the nature

of this mechanism have been proposed, including the theory of adaptive elasticity (Cowin and van

Buskirk 1978, 1979, Cowin and Firoozbakhsh 1981, Cowin and Hegedus 1976), piezoelectric

theory (Gjelsvik 1973a,b), hydrostatic theory (Jendrucko et al. 1976), fatigue damage theory (Martin

and Bur 1982, Bur et al. 1985, Carter 1984) and the transport of growth factors theory (Takakuda
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1993). Among these theories, the theory of adaptive elasticity is the most popular and widely

applied in biomedical engineering. The adaptive elastic theory does not, however, take into account

the piezoelectric or piezomagnetic properties of bone tissues. Investigation of some tissues such as

living bone and collagen has shown these materials to be piezoelectric (Fukada and Yasuda 1957,

1964, Williams and Breger 1974, Guzelsu 1978, Johnson et al. 1980, Demiray 1983, Qin and Ye

2004) and indicates that the piezoelectric properties of bone play an important role in the

development and growth of remodelling of skeletons. Evidences (Bessett et al. 1982, Mcleod and

Rubin 1992, Giordano and Battisti 2001) showed that the pulsed extremely low frequency

electromagnetic field can stimulate the bone tissue to remodel itself. This feature was widely

applied to cure the skeletal disease such as osteoporosis, fracture and nonunion. However the

behaviour of bone remodelling under multi-field loads is still less investigated. To the authors’

knowledge, the theoretical study of bone remodelling during the past decades has been limited to

elasticity. Recently, Qin and Ye (2004) and Qin et al. (2005) extended previous study to include

piezoelectric effects. 

The purpose of this paper is to extend previous results to include piezomagnetic effects and to

investigate how the magnetic field and further the coupled multi-field can simultaneously affect

bone remodelling and the evolution process of an initially homogeneous bone material subjected to

axisymmetric external loads which generate an inhomogeneous stress, electric and magnetic fields.

These external loads include axial and external lateral pressure, electric, magnetic, and thermal

loads. It should be mentioned here that one of the thermal loads a person may experience is the

fluctuation of body temperature. However, how this may affect bone remodelling process is still an

open question. As an initial investigation, the purpose of this study is to show how a bone may

response to thermal and multi-field loads and to provide information for possible use of imposed

external temperature and/or electrical fields in medical treatment and controlling healing process of

injured bones. The bone structure is simulated by a hollow circular cylinder composed of linearly

thermomagnetoelectro-elastic materials. The theoretical predictions of evolution behaviour are based

on the extended theory of adaptive elasticity and thermomagnetoelectroelastic constitutive

formulation. According to the theory, an inhomogeneous thermomagnetoelectroelastic field will

result in an inhomogeneous bone structure. The evolution of an initially homogeneous body to an

inhomogeneous one under the influence of an inhomogeneous stress field is illustrated graphically.

The values of some constants needed for the adaptive elastic model are available in the literature,

for example, the elastic moduli of cortical bone and the variation of moduli with bulk density. The

values of other constants, such as the remodelling rate coefficients, are not known and they are

estimated in the present work by physical arguments and by imposing the restriction that the

remodelling time constant be of the order of 100 days. 

2. Equation for internal bone remodeling

The equations of the theory of adaptive elasticity of Cowin and Hegedus (1976) are used and

extended to include piezoelectric and piezomagnetic effects in this study. The remodelling rate

equation in cylindrical coordinates is
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where e is a change in the volume fraction of bone matrix material from its reference value, say ξ0;

 are  material coefficients dependent upon the volume fraction e. sij, Ei,

Hi are components of strain, electric field and magnetic field, respectively. 

3. Analytical solution to the remodeling equation of a homogeneous hollow circular

cylindrical bone

3.1 The linear theory of thermomagnetoelectroelastic solids

Consider a thermomagnetoelectroelastic bone cylinder subjected to axial-symmetric axial and

external lateral pressure, electric, magnetic, and thermal loads. For simplicity, the cylindrical

coordinate system is used the analysis. The axial, circumferential and normal to the middle-surface

coordinate length coordinates are denoted by z, θ and r, respectively. With the cylindrical coordinate

system, the constitutive equations of a thermomagnetoelectroelastic solid can be given by Gao and

Noda (2004). 

(2)

where σij, Di, Bi and hi are components of stress, electrical displacement, magnetic induction and

heat flow, respectively; cij are elastic stiffness; eij are piezoelectric constants; αij are piezomagnetic

constants; κi are dielectric permitivities; di are magnetoelectric constants; µi are magnetic

permeabilities; T denotes temperature change; p3 is a pyroelectric constant; m3 is a pyromagnetic

constant; βi are stress-temperature coefficients; qi are heat intensity; and ki are heat conduction

coefficients. The associated strains, electric fields, and heat intensities are respectively related to

displacements ui, electric potential ϕ, magnetic potential ψ, and temperature change T as

(3)

For quasi-stationary behaviour, in the absence of heat source, free electric charge, electric current,

and body forces, the thermopiezoelectricmagnetic theory of bone is completed by adding the
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following equations of equilibrium for heat flow, stress, electric displacements and magnetic

induction:

(4)

Consider now a hollow circular cylinder of bone, subjected to an external temperature change T0,

a quasi-static axial load P, an external pressure p, an electric potential load ϕa(or/and ϕb) and an

magnetic potential load ψa(and/or ψb). The boundary conditions are

 

(5)

and 

(6)

where a and b denote the inner and outer radii respectively of the bone, and S is the cross-sectional

area. For a long bone, it is assumed that except for the axial displacement uz, all displacements,

temperatures and electrical potential are independent of the z coordinate and that uz may have linear

dependence on z. 

The solution of displacements ur, uz, and electric potential ϕ to the problem above in the absence

of piezoelectric magnetic field has been discussed elsewhere (Qin and Ye 2004). This work extends

the results in Qin and Ye (2004) to include the piezomagnetic effect. The strains, electric field

intensity, magnetic field intensity and the temperature change T can be found by introducing the

boundary conditions (5) and (6) into (2) (For the reader’s convenience the derivation for the

corresponding ur, uz, ϕ and ψ is briefly discussed in Appendix A at the end of this paper). They are,

respectively,
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(9)

(10)

(11)

where 

(12)

(13)

Substituting (7)-(11) into (1) yields

(14)

Since we do not know the exact expressions of the material functions ,

 and βi the following approximate forms of those functions, as proposed by Cowin and

van Buskirk (1978) for small value of e, are used here:

(15)

and 

(16)

where C0, C1, C2,  are material constants. 
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To simplify the writing and analysis, but without loss of generality, constant p and P are assumed

in this paper, which means that both of them don’t change with time. Using these approximations

the remodelling rate Eq. (14) can be simplified as 

(17)

by neglecting terms of e3 and its higher orders, where α, β and γ are independent of time t (Qin and

Ye 2004). The solution to (17) is straightforward and has been discussed by Cowin and Hegedus

(1976). For the reader’s benefit, the solution process is briefly described here. Let e1 and e2 denote

solutions to , i.e.,
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Since it has been proved that both solutions (19) and (20) are physically unlikely (Cowin and van

Buskirk 1978), we use solution (21) in the following numerical analysis.

4. Numerical example 

As numerical illustration of the bone evolution process, we consider a femur with a = 25 mm and

b = 35 mm. The material properties assumed for the bone are Qin and Ye (2004)

The remodelling rate coefficients are assumed to be Qin and Ye (2004)
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and 

The initial inner and outer radii are assumed to be 

a0 = 25 mm, b0 = 35 mm

and e0 = 0 is assumed. In the calculation,  has been assumed for the sake of simplicity,

i.e., a(t) and b(t) may be approximated by a0 and b0. 

To illustrate the evolution process, we investigate the change of the volume fraction of bone

matrix material from its reference value, which is denoted by e, in the transverse direction at several

specific times. We also distinguish the following three loading cases to investigate the influence of

electric, magnetic and thermal loads on the bone structure. Finally effect on the bone of coupling

loads of electric and mechanical loads is studied. 

(1) 

Fig. 1 shows the variation of e with time t in the transverse direction of bone when the loading

case is .

It can be seen from Fig. 1 that as the time passes, the initially homogeneous bone structure

gradually becomes inhomogeneous. The change in the volume fraction of bone matrix material on

its inner surface is less than that on its outer surface. This means the bone tissue near the outer

surface is less porous and thus denser than that near the inner surface, which means it is stronger. 

This can be illustrated by the theory of adaptive elasticity. After the transverse electric field is

loaded, an inhomogeneous stress field is generated. Then the stress of the inner surface is smaller

than that of the outer one. As the bone remodelling process is ongoing, the strain field is becoming

homogeneous. To achieve this, the bone tissue must change to a state with more porous endosteum
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Fig. 1 Variation of e with time t along the radii for electric load
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and less porous periosteum, which results in an inhomogeneous bone structure. Although the value

of e is very small, transverse electric loads can indeed change the bone structure. If real remodelling

rate coefficients are attained by experimental means, then we can evaluate the effect of electric field

on the bone structure. 

It is also found that as time approaches infinity, the value of e becomes less and less. This

indicates that the bone structure stabilizes itself at a relatively steady state, which can be accepted as

the end of the remodelling process. 

(2) 

Fig. 2 shows the variation of e with time t along the radii of bone when the loading case is

.

It can be seen from Fig. 2 that a magnetic load has a similar influence on bone structure to an

electric load. A magnetic load can also inhomogenize an initially homogeneous bone structure

through the bone remodeling process. But essentially further experimental and theoretical

investigations need to be developed to obtain the exact remodeling rate coefficients and to discover

the importance of the role played by magnetic stimuli.

(3) 

Fig. 3 shows the variation of e with time t along the radii of bone when the loading case is

.

A similar phenomenon to that of Fig. 2 is found in Fig. 3, which indicates that a warmer

environment may improve the remodelling process with a less porous bone structure, and change of

temperature can also result in an inhomogeneous bone structure. As mentioned in Qin and Ye

(2004), the process by which temperature change may affect bone remodelling is still an open

question. An initial purpose of this study is to show how a bone may response to thermal, magnetic,

and electric loads and to provide information for possible use of imposed external temperature and/

or magnetic-electrical fields in medical treatment and in controlling the healing process of injured

bones. Further investigations are undoubtedly needed.
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Fig. 2 Variation of e with time t along the radii for magnetic load
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(4) 

Fig. 4 shows the variation of e with time t in the transverse direction when subjected to coupling

loads. The above loading case is considered to study the coupling effect of electric-magnetic and

mechanical loads on bone structure. It can be seen from Fig. 4 that the function of coupled loads is

the superposition of the single loads. But they are not simply linearly superposed. Further, the

properties of bone tissue change more sharply under coupled loads than when it is subjected to only

one load. The combination of the magnetic, electric, thermal and mechanical loads results in

significant change in bone structure and properties of bone tissues. This indicates that loading

coupled fields is more effective in modifying bone structure than loading only one kind of field.

5. Conclusions

The problem of thermopiezomagneticelectric bone remodelling was addressed within the

framework of adaptive elastic theory. The thermomagneticelectroelastic solution for adaptive elastic

bone materials was derived through the use of adaptive elastic theory. By assuming a homogeneous

p t( ) 1MPa P 1500N= T0 t( ) 0.1
o
C= ϕb ϕa– 30V ψb ψa– 1A=,=, , ,=

Fig. 3 Variation of e with time t along the radii for thermal load

Fig. 4 Variation of e with time t along the radii for coupling loads
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bone material, the evolution process of bone structure was investigated both theoretically and

numerically. 

Numerical studies were carried out to verify the analytical solution for the bone remodelling

process. In the numerical analysis, various load conditions were considered, including axial

pressure, transverse thermal, magnetic, electric and pressure loads. The evolution process of an

initially homogeneous bone structure to an inhomogeneous one was simulated.

The numerical results showed that apart from mechanical loads, electric field, magnetic field and

thermal load can also affect the bone remodelling process. All of these can result in an

inhomogeneous bone structure. This feature may be considered and utilized in controlling the

healing process of injured bones. It must be mentioned that the model proposed above is a general

one for bone remodelling. The detailed process of how the bone tissues evaluate the environment

and response to it need further investigation. 
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APPENDIX A: The solution of displacements ur, uz and electric ϕ, magnetic field ψ

Using (2) and (3), differential Eq. (4) can be written as

(A1)

(A2)

(A3)

The solution to the above equations satisfying boundary conditions (5)-(6) is given by 
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