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Abstract. This paper uses the finite element method to simultaneously consider the coupled cable-deck
vibrations and the parametric vibrations of stay cables in dynamic analysis of a cable-stayed bridge. The
stay cables are represented by some cable finite elements, which can consider the parametric vibration of
the cables. In addition to modeling stay cables using multiple link cable elements, a procedure for
removing the self-weight term of cable element is proposed. A eigenvalue analysis process using dynamic
condensation method for sorting out the natural modes of the girder-tower vibrations and the Rayleigh
damping considering element damping for damping matrix are also proposed for dynamic analyses of
cable-stayed bridges. The possibilities of using cable elements and of using global and local vibrations to
evaluate the parametric vibrations of stay cables in a cable-stayed bridge are confirmed, respectively. 
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1. Introduction

Over the last two decades, significant cable vibrations have occurred in several bridges in

different countries. The first report of cable vibrations was a 1985 study of the Farφ Bridge in

Denmark (Langsoe et al. 1987). These large-amplitude vibrations in some of the bridge’s stay

cables are caused by bending vibrations in the girder and/or towers (Yoshimura et al. 1989). Since
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multi-cable systems are widely used in cable-stayed bridges (Gimsing 1983), the natural frequencies

of the global modes easily approach the natural frequencies of the stay cables. This tends to produce

large-amplitude vibrations in the cables. The same phenomenon has been observed in other cable-

stayed bridges in Europe (Royer-Carfagni 2003). Large-amplitude vibrations of stay cables have

also occurred in some cable-stayed bridges in Japan. During a forced excitation experiment on the

Hitsuishijima cable-stayed bridge (420 m, steel, 1992), local vibrations in some stay cables occurred

when the bridge was excited at the frequency of the torsional second global mode (Okauchi et al.

1992). The same type of vibration appeared during a dynamic experiment on the Yohkura cable-

stayed bridge (77 m, timber, 1993) (Fujino et al. 1997). During a recent vibration test, large-

amplitude vibrations were found in the stay cables of the Tatara cable-stayed bridge in Japan, the

center span of which, at 896 m, is the largest in the world (Manabe et al. 1999). In the U.S.A.,

considerable attention is given to local parametric vibrations in stay cables of cable-stayed bridges

(Smith et al. 2001). 

Kovács considered these large-amplitude cable vibrations to be local parametric vibration (i.e.,

dynamic instability) in the cables. These vibrations are caused by excitations at the extremities of

the cables, which are anchored to the girder and tower (Kovács et al. 1982). Under certain

resonance conditions, energy can flow into the stay cables and produce large-amplitude cable

vibrations. Parametric vibrations in cables have been analyzed and verified using analytical models.

Applying the harmonic balance method and the eigenvalue method, Takahashi (1991) calculated the

boundaries of the instability regions of the parametric resonances in a flat-sag cable. Fujino et al.

(1993) treated with the linear and nonlinear internal resonance in a stay cable of cable-stayed

bridges and used a physical 3-DOF model of a cable-stayed, cantilevered beam to study the

influence of parametric vibrations. Laboratory tests were performed to check the validity of this

approach (Warnitchai et al. 1995). Lee and Perkins (1993) focused their experimental investigation

on the parametric responses of lower-mode interaction in sagging cables. Lilien and Pinto Da Costa

(1994) examined the amplitudes of vibrations caused by parametric excitation of cable-stayed

structures. They developed non-dimensional analytical formulas that can be applied to any stay

cable for calculating threshold amplitudes and limit cycle amplitudes produced by parametric

excitation, making possible the development of large-span cable-stayed bridges. Pinto Da Costa

et al. derived the governing differential equations of motion. Parametric resonance curves showed

significant responses when the motion of the anchorage was either one or two times the first natural

frequency of the cables (Pinto Da Costa et al. 1995, 1996). 

Focusing on the fact that periodic time-varying displacements were given at the supports of the

single cable in the above studies, Wu et al. (2003) proposed a single-cable model that considered

the parametric vibrations of the stay cable under random excitation. They also discussed the

possibility and properties of parametric vibrations in the stay cables of a cable-stayed bridge

subjected to environmental and service loadings. Since global vibrations and local cable vibrations

are treated separately, the stay cables were modeled as single truss elements in the analysis of

global vibrations. This is a very common practice when performing numerical analyses of cable-

stayed bridges, but leads to the exclusion of the local cable vibrations in a global girder/tower

system. 

In the other aspect, the importance of considering the interaction between cable vibrations and

girder/tower vibrations in cable-stayed bridges is emphasized. Abdel-Ghaffar et al. (1991)

discretized the cables using multiple link truss elements and showed that cable vibrations strongly

affect the natural vibration characteristics of the deck/towers system. Tuladhar et al. (1995) stressed
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the inadequacy of using single elements to model the cables and the necessity of discretizing the

cables into several elements. Caetano et al. (2000) configured the interaction between cable

vibrations and deck/towers vibrations using a physical model of a cable-stayed bridge and

demonstrated the great influence of local cable vibrations on the global vibrations of girder and

towers in terms of the response to seismic excitations Although the interaction between

simultaneous cable vibrations and girder/tower vibrations was taken into account in their research,

the parametric vibrations of stay cables could not be considered because truss elements were used to

model the stay cables. 

This paper uses the finite element method in dynamic analysis of a cable-stayed bridge to

consider these two aspects: the coupled cable-deck vibrations and the parametric vibrations of

cables. The stay cables are represented by some cable finite elements. This cable finite element can

consider the parametric vibration of the cables. In addition to modeling the stay cables using

multiple link cable finite elements, this paper proposes a procedure for removing the self-weight

term of the cable elements in the dynamic analysis. The idea that cable finite elements can take into

account the non-linearity and the parametric vibration of cables is examined and confirmed. 

This paper also describes a dynamic analysis of a cable-stayed bridge that demonstrates the

applicability of the cable finite element for modeling the stay cables in cable-stayed bridges. 

The local vibrations of stay cables are taking into account by using normal eigenvalue analysis of

cable-stayed bridges. This analysis extracts the enormous natural modes of the stay cable vibrations

and girder/tower vibrations. In order to sort out the natural modes of the girder and tower

vibrations, which are necessary for understanding the properties of cable-stayed bridges, a method

using the substructure synthesis method is adopted. This paper proposes an eigenvalue analysis

process based on the dynamic condensation method. 

The damping matrix should be correctly evaluated in dynamic analysis of cable-stayed bridges,

because the stay cables have very small structural damping in the range of 0.001 to 0.005, while the

girder and towers have relatively greater damping in the range of 0.01 to 0.03. The Rayleigh

damping considering element damping is proposed as a way to consider the different damping

constants of the girder, the tower and the stay cables. This paper also examined possibility that

cable finite element can be used to model the parametric-induced vibrations of stay cables in cable-

stayed bridges. 

Finally, this paper examines the concept of using global and local vibrations to evaluate

parametric vibrations of stay cables in cable-stayed bridges. 

2. Cable modeling using cable finite elements

Three main approaches are used for examining the nonlinear behavior of stay cables in cable-

stayed bridges. In the first approach, each cable is represented by a single truss element or single

spring element with the equivalent modulus approach (Ernst 1965). This approach is often used for

common dynamic analysis of cable-stayed bridges (Karoumi 1999). Abdel-Ghaffar pointes out the

inadequacy of the first approach and proposes dividing each cable into several straight truss

elements for cable modeling. This led to the development of the second approach (Abdel-Ghaffar et al.

1991, Tuladhar et al. 1995, Caetano et al. 2000), but because the approach uses truss elements, it

cannot consider the transverse vibrations and out-of-plane vibrations of cables (Au et al. 2001). The
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third approach uses isoparametric cable elements (Ali et al. 1995). However, these elements are

stiffer and required numerical integration in order to formulate the element stiffness matrix (Leonard

1988). 

This paper considers the parametric vibrations of cables in cable structures, and models each cable

by multiple link cable elements based on the second approach. The cable finite element proposed by

Broughton and Ndumbaro (1994) is used in this paper. This cable finite element can account for the

in-plane (longitudinal and transverse) and out-of-plane responses of cables. 

2.1 Stiffness matrix of cable element

In the local coordinate system of the cable element, shown in Fig. 1, the original length of the

element is L0, the initial basic force is P0, and the displacements in three directions (x*, y*, z*) are

(ui, vi, wi) in node-i and (uj, vj, wj) in the node-j. The equilibrium equation of one cable element is

given below. 

(1)

where  is the load vector as applicable to the ends of the element

(i − j),  is the updated element basic force,  is the

element extension, , and Ec and Ac are the Young’s modulus and

cross-sectional area of the cable element. 

By transforming the partial basic forces into partial intermediate forces and partial intermediate

displacements, the following equation can be obtained. 

(2)
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Fig. 1 Cable element in global and local coordinate system
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(3)

where  is the element incremental stiffness matrix and .

2.2 Relationships of stiffness matrix among cable element, truss element, and chord

element 

In the truss element, only the longitudinal displacement u in the local coordinate is considered. By

letting  in  of Eq. (3), the stiffness matrix of the truss element can be obtained

(Ross 1991). 

(4)

The v and w displacements are zero. Therefore, the truss element cannot take into account the

transverse and out-of-plane actions of the cables. 

The chord element is called in this paper when considering the initial axial force P0 in the truss

element. The stiffness matrix of the chord element is shown below (ARK 2003): 
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(5)

This stiffness matrix of the chord element can be obtained from the stiffness matrix of the cable

element by assuming ,  and  in  of Eq. (3). 

 The stiffness matrix of the chord element doesn’t change when u, v and w change, so the chord

element cannot be used to evaluate the parametric vibrations of cables. Moreover, it is also

confirmed in the following section that the chord element cannot simulate the parametric vibrations

of cables. 

2.3 Mass matrix of cable element

The lumped mass matrix is used for the cable element, as shown below. 

(6)

where ρc is the mass density of a cable per unit volume, Ac is the section area, and L0 is the length

of cable element. 

2.4 Procedure of nonlinear dynamic analysis

The equation of motion of a cable subjected to dynamic excitation can be expressed as follows: 

(7)

where  is the dynamic load vector,  is the self-weight load vector, and  is the restoring

load that is a combination of  in Eq. (1). 

Not only the dynamic term but also the self-weight term is included in the restoring load .

Generally, the self-weight term should be removed when performing the dynamic analysis of cables

(Irvine 1981). Therefore, in this paper, the self-weight term in Eq. (7) is removed.

The equilibrium equation of a cable under the self-weight load is as follows: 
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(8)

Substituting Eq. (8) for Eq. (7), the following equation is obtained as 

(9)

 is the restoring force of removing the self-weight term in the global coordinate of

the cable. It is obtained from the restoring force of the cable element in the local coordinate

. 

In one cable element in the local coordinate, Eq. (1) becomes the following equation if the initial

tension in one cable element is P0 under the initial self-weight load 

(10)

The restoring force in one cable element under the excitation of  is as follows: 

(11)

Therefore, the restoring force in the local coordinate that removes the self-weight term of the cable

element can be obtained as follows: 

(12)

The restoring force of the cable element is a function of nodal displacements and element forces,

and therefore, as the structure deforms, it needs to be reformulated by using the Newton-Raphson

method. The stiffness matrix  in Eq. (3) should be used during the iterative procedure. 

By using the proposed procedure of removing the self-weight term of the cable finite element, a

time-history dynamic analysis of direct integration can be applied using the direct integration

method, such as Newmark β method (Bhatt 2002). 

3. Numerical verification

In order to examine the accuracy of the cable finite element and the proposed procedure, a cable

is formulated as a continuum and analyzed, and the results are compared. 
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Fig. 2 Geometry of a horizontal cable under nodal load
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3.1 Static analysis of a cable

A static analysis is performed using a horizontal cable with a uniform cross section A and uniform

weight per unit length  and hanging between two points (Fig. 2). The span is L, the sag

is f, and the sag-to-span ratio  is 0.01. The initial horizontal tension is H and the ratio of

the elongation stiffness to the longitudinal tension  is 900 (Wu et al. 2004). A nodal

load P is applied at the center of the cable. Fig. 3(a) shows the vertical displacements v at the center

point of the cable. Fig. 3(b) shows the space shapes when P/mgL = 0.5, 1.0, 1.5 and 2.0. The

deformations derived from cable finite elements agree well with those derived from the Irvine

equation (Irvine 1981). 

m ρc Ac=

γ f/L=

k
2

EcAc/H=

Fig. 3 Displacement of a cable with γ = 0.026 and k2 = 900

Fig. 4 Geometry of an inclined cable
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3.2 Natural vibrations of cables 

An inclined cable with an inclination angle θ, a uniform cross section A, and uniform weigh per

unit length m, and hanging between two points is analyzed, as shown in Fig. 4. The horizontal

tension of the cable is H and the ratio of the elongation stiffness to the longitudinal tension

 is assumed to 900. The initial tension P0 for each cable element in the inclined

cables is obtained from . A Galerkin method is used to verify the accuracy of the

results from the cable finite element (Yamaguchi 1997). 

k
2

EcAc/H=

P0 H xd / sd⋅=

Fig. 5 Natural frequencies of in-plane modes of cables with k2 = 900
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Fig. 5(a) shows the natural frequencies of horizontal cables . Figs. 5(b) and 5(c) show

the natural frequencies of inclined cables with inclination angles of  and . The

ordinate is the sag-to-span ratio  and the abscissa is the non-dimensional frequency

.  is the circular frequency of the cable.  is the first

natural circular frequency of the inclined taut string that has a span L and no sag. 

For both horizontal cables and inclined cables, the results obtained using the cable finite element

overlap those obtained using the Galerkin method. In other word, these two methods provide the

same results. 

Therefore, the cable element method can be used to evaluate the properties of not only horizontal

cables but also inclined cables without a small-sag limitation. 

3.3 Parametric vibrations of a cable subjected to periodic support excitation

In the finial application in this section, a dynamic analysis is performed on a cable subjected to

periodic excitation at one support. Wu et al. (2004) proves that parametric vibrations can be

generated under either the excitation displacement or the excitation axial force. Therefore, this paper

uses periodic support displacement as the excitation force. 

Fig. 6 shows the geometry of a horizontal cable subjected to horizontal displacement at one

support. The sag-to-span ratio of cable  is 0.026 and the ratio of elongation stiffness to

longitudinal tension  is 900. The periodic displacement is assumed to be a sine wave

. The non-dimensional amplitude A* is set to . The frequency Ω
of the excitation displacement is assumed to be equal to the first natural frequency  of the in-

plane cable modes. In the other order, the excitation corresponds to the parametric excitation in the

second unstable region. The finite difference method is used as a method of comparison (Wu et al.

2004). 

Fig. 7 shows the nonlinear time-history responses of the cable. The responses obtained from the

cable finite element method agree well with those obtained from the finite difference method. 

The chord element is used to model the cable in certain types of numerical analyses. Fig. 8 lists

the time-domain displacement at the center point of the cable modeled by chord finite element using

TDAP software (ARK 2003). Comparing the response in Fig. 7(a) with that in Fig. 8 confirms that

the chord element cannot satisfactorily simulate parametric vibrations in cables. 

The results support the use of the cable finite element and the proposed procedure for evaluating

parametric vibrations of cables in cable structures. 
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Fig. 6 Geometry of a cable subjected to support horizontal displacement
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Fig. 7 Response in the center point of the cable with γ = 0.026 and k2 = 900 using cable element

Fig. 8 Response in the center point of the cable with γ = 0.026 and k2 = 900 using chord element
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4. Numerical evaluations of a cable-stayed bridge 

The following numerical example demonstrates the use of the cable element to model stay

cables in cable-stayed bridges. The cable-stayed bridge analyzed in this paper has three spans.

The main span is 350 m and the side spans are 160 m. The towers are A-shaped, and the cables

are a two-plane, multiple system. The cables are numbered sequentially from the side span to the

main span. 

A three-dimensional finite element model of the bridge is shown in Fig. 9. The MECS (Multi-

Element-Cable-System) models are used in this analysis (Abdel-Ghaffar et al. 1991). The girder and

towers are modeled using three-dimensional linear beam elements. Each cable is represented by

eight cable finite elements with the original modulus. Since the initial shapes of cables with sag are

taken into account, there is no need to consider the equivalent modulus that allows for sagging (Au

et al. 2001). 

Fig. 9 MECS Cable-stayed bridge models

Fig. 10 Natural frequencies of MECS model



Using cable finite elements to analyze parametric vibrations of stay cables 703

4.1 Eigenvalue analysis

A subspace iteration algorithm (Bhatt 2002) is used to extract the first 400 modes of the MECS

model. Fig. 10 shows the natural frequencies of those modes. These 400 modes range from about

0.0 Hz to 2.5 Hz. As with the common natural vibration analysis of cable-stayed bridges, the modes

of the girder/tower vibrations are very important for understanding the properties of the bridge. If

single elements are used to model the cables of the cable-stayed bridge, which is an OECS (One-

Element-Cable-System) model (Abdel-Ghaffar et al. 1991), the modes of the girder/tower vibrations

can be easily obtained. An eigenvalue analysis of the OECS model is performed to determine the

number of natural modes of the girder/tower vibrations. 23 natural modes in the range of 0.0-2.5 Hz

are obtained in the OECS model. 

How these 23 modes of the girder/tower vibrations are exacted from the 400 modes in the MECS

model is important. One method is to observe the participation factors and modal shapes of all

modes (Abdel-Ghaffar et al. 1991, Caetano et al. 2000). This is very troublesome, however, since

the MECS model produces enormous natural modes for the stay cable vibrations besides the girder/

tower vibrations. The more the stay cables are divided, the more difficult this method becomes.

Therefore, the present paper proposes, using the substructure synthesis method to calculate the

natural frequencies of the girder/tower modes in the MECS cable-stayed bridge model. 

Static condensation and dynamic condensation are two methods of mode analysis that use the

substructure synthesis method. The static condensation method (Guyan 1965, Irons 1965) correctly

represents the stiffness of the substructure but is only accurate in a dynamic context if there is no

mass within the substructure. In order to give virtually exact eigenvalues for all modes considered

in the reduced eigenproblem, the dynamic condensation method was proposed by Paz (1990).

However, dynamic condensation requires an iterative process, which slows down the calculation. 

The process of dynamic condensation can be explained by considering the generalized eigenvalue

problem expressed in the partitioned matrices below. 

(13)

where Kij and Mij are the stiffness and mass matrices and ij corresponds to the p degrees of freedom

to be remained or the s degrees of freedom to be reduced, Ys is the displacement vector

corresponding to the s degrees of freedom to be reduced, Yp is the displacement vector

corresponding to the p degrees of freedom to be remained and ωi is the eigenvalue that is

approximated at each step of the calculation. In the MECS cable-stayed bridge model, the remaining

p degrees of freedom are assigned to the girder and towers so that the reduced s degrees of freedom

are given to the stay cables.

In order to speed up the calculation, the eigenvalue analysis process using dynamic condensation

is shown in Fig. 11. This figure shows that the static condensation is the first step of the dynamic

condensation. 

The proposed process modifies the process of the dynamic condensation in the following two

ways: 

1. Iterative error ε is added so that if , it is unnecessary to perform calculations at

the maximum convergent times indexmax; 

2. The number of modes needed by the subspace method using the dynamic condensation is i, not
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⎧ ⎫
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nout. For example, when the 11th natural mode is the determined eigenvalue in 100 modes, the

number of modes needed by the subspace method using dynamic condensation is 11, not 100. 

Using the previous process, the computation becomes faster. By the way, an efficient algorithm,

for example the Cuthill-McKee algorithm or the Multiple Roots Reverse Cuthill-McKee method

(Cuthill et al. 1969, Lin 1989), can be used into the two substructures: girder/tower and stay cables

Fig. 11 Eigenvalue analysis process using dynamic condensation

Fig. 12 Natural frequencies of girder/tower modes Fig. 13 Iterative cycles in dynamic condensation
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to reduce the bandwidths of these substructures. Therefore, the calculation using dynamic

condensation can be speed up.

The natural frequencies of the girder/tower modes using dynamic condensation are shown in Fig. 12.

The frequencies obtained by dynamic condensation are identical to those obtained using global

structure (correct values). 

Fig. 13 shows the iterative cycles indexmax using dynamic condensation when . The

iterative cycles change depending on the modes. The maximum number of iterative cycles is 11 in

this analysis, not 1 or 2 (Paz 1990). The reason for this is that the three-dimensional MECS cable-

stayed bridge model has many degrees of freedom and has too many coupled deck-cable modes. 

The natural frequencies of the girder/tower modes using static condensation are also shown in

Fig. 12. The frequencies in the region of 1.2-2.5 Hz that were obtained using static condensation

differ greatly from those obtained using global structure, which confirms that static condensation

doesn’t provide great precision in the eigenvalue analysis of a MECS model. 

Therefore, by using the proposed process using dynamic condensation method, the natural modes

of the girder/tower vibrations can be calculated accurately and efficiently. 

The natural frequencies of the in-plane modes, torsional modes and out-of-plane modes for the

MECS and OECS models are shown in Fig. 14. The maximum differences in the in-plane, torsional

and out-of-plane modes of the MECS model and the OCES model are about 4%, 2% and 2%,

respectively. Therefore, not only the in-plane and torsional modes but also the out-of-plane modes

of the coupled cable-deck vibrations can be considered. 

4.2 Dynamic analysis of cable-stayed bridge

The equation of motion for a three-dimensional bridge with MDOF subjected to excitation can be

expressed as follows (Clough et al. 1975): 

 (14)

where [M], [C] and [K] are the mass, damping and stiffness matrices, respectively, {F} is the load

vector, and {Y},  and  are the displacement, velocity and acceleration vector representing

ε 10
4–

=

M[ ] Y
··{ } C[ ] Y

·{ } K[ ] Y{ }+ + F{ }=

Y
·{ } Y

··{ }

Fig. 14 Difference between MECS model and OECS model
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the displaced shape of the bridge. 

The equations of motion in Eq. (14) are directly integrated using the Newmark β method

(β = 0.25). The Newton-Raphson method is used for the iterative procedure. 

Rayleigh damping is usually adopted for general dynamic analysis of direct integration. The

damping matrix [C] using Rayleigh damping has the following formula (Caughey 1960). 

(15)

in which α and β are arbitrary proportional factors. These factors are given in terms of two different

frequencies ( fi, fj ) and the corresponding critical damping ratios (hi, hj) (i < j) and expressed as

follow: 

 (16)

Generally, the first two natural frequencies of the modes with relatively greater participation

factors are used to determine the Rayleigh damping matrix in dynamic analysis of cable-stayed

bridges. 

For example, the Rayleigh damping curve of the cable-stayed bridge described here is shown in

Fig. 15. The two frequencies are assumed to be f1 = 0.233 Hz (corresponding to the frequency of

the floating mode) and f2 = 0.297 Hz (corresponding to the frequency of the first vertical mode).

Those two modes are the main vibrations of the girder/tower vibrations. The two damping constants

are assumed to be h1 = h2 = 0.02, which is the damping ratio of the steel girder/tower system (Japan

Road Association 2002). This curve provides the damping ratio of the corresponding frequency. The

first frequency of the in-plane modes in cable C02 is 0.573 Hz, and the corresponding damping

constant of cable C02 is 0.026. The actual damping constants of the stay cables are in the range of

0.001-0.005 (Wu et al. 2003). Therefore, the damping of the stay cables is overestimated when

normal Rayleigh damping is used. 

In order to correctly evaluate the damping of the stay cables in cable-stayed bridges, this paper

proposes an extended Rayleigh damping method that takes into account element damping. 

Assuming that Eq. (15) can be applied to every element of the structure, the Rayleigh damping

C[ ] α M[ ] β K[ ]+=

α
4π fi fj hi fj hj fi–( )⋅

f j

2
f i

2
–

-----------------------------------------------= β,
hj fj hi fi–

π fj
2

fi
2

–( )
------------------------=

Fig. 15 Rayleigh damping
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matrix that takes into account element damping can be extended as follows: 

(17)

where  and  are the mass and stiffness matrix of element-k,  and  are the arbitrary

proportional factors of element-k and N is the number of elements. The αk and βk of element-k can

be obtained as follows: 

(18)

where f i
k, f j

k and hi, hj (i < j) are two different frequencies and corresponding damping constants of

element-k. 

By using extended Rayleigh damping, different damping constants can be established for stay

cables with small structural damping and for girder/tower with relatively greater damping. Table 1

shows the parameters of the damping matrix for the cable-stayed bridge presented here. 

C[ ] αk M[ ]k βk K[ ]k+( )
k 1=

N

∑=

M[ ]k K[ ]k αk βk

αk

4π fi
k

fj
k

hi

k
fj
k

hj

k
fi
k

–( )⋅

f j

k( )
2

f i

k( )
2

–

----------------------------------------------------------= βk,
hj

k
fj

k
hi

k
fi
k

–

π fj
k( )

2

fi
k( )

2

–( )
--------------------------------------=

Table 1 Damping parameters

f1 (Hz) f2 (Hz) h1 h2

Girder tower 0.233 0.297 0.02 0.02

Stay cables
First frequency of 

every cable
Second frequency of 

every cable
0.001 0.001

Fig. 16 Time-histories and frequency-domain responses of Cable C02 by cable element
(Rayleigh damping considering element damping)
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A dynamic analysis is performed on this cable-stayed bridge, which is subjected to periodic

sinusoidal loading . The excitation point is at the center of the main span and the

freedom of the point is the rotation along the longitudinal direction. The amplitude of the excitation

is assumed to be 500 kN·m and the frequency of the excitation is 1.137 Hz, which corresponds to

the first torsional frequency of the girder vibrations. 

Fig. 16 shows the time-history and frequency-domain responses of cable C02. Parametric

vibration in the principal unstable region occurs in cable C02 because the predominate frequency

(0.573 Hz) of cable C02 is close to half the frequency of the excitation (1.137 Hz). A large-

amplitude vibration is induced in this cable, while the vibrations in the girder are very small. 

Therefore, the cable finite element can take into account the parametric vibrations of stay cables

in cable-stayed bridges. 

4.3 Global and local vibrations analysis of cable-stayed bridges

The other concept that considers the vibration of stay cables is the separate treatment of the global

vibration and local vibration (Gimsing 1983). Fig. 17 shows the concept of the global vibration of

the girder/tower and local vibration of stay cables. Wu et al. (2003) used this concept to discuss the

characteristics of local cable vibrations in one cable-stayed bridge. The following are the differences

between this paper and Wu et al’s paper: 

P Asinωt=

Fig. 17 Global vibration and local vibration
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1. Three-direction excitation displacements at two supports ((XA, YA, ZA) and (XB, YB, ZB) in

Fig. 17(b)) can be considered by using cable finite elements. 

2. The loading on the stay cables (for example, earthquake) can be taken into account in this

paper. 

3. The MECS model is used in the global vibration analysis. In other words, the excitation

displacements that needed in local cable vibrations are the responses of girder and tower

obtained from the MECS model. 

Fig. 18 shows the response of cable C02 in the case of the previous periodic torsional excitation.

Similar to the previous discussion, the parametric vibration in the principal unstable region occurs in

cable C02. Comparing the cable response in Fig. 16 with that in Fig. 18, the result obtained from

global and local vibration analysis is same as that obtained from direct dynamic analysis of cable-

stayed bridges. 

These results confirm that the concept of the global and local vibrations can be used to evaluate

the parametric vibrations of stay cables in a MECS cable-stayed bridge model. 

5. Conclusions

This paper proposes the use of cable finite element that takes into account the non-linearity and

parametric vibration of sagging cables, from flat-sag cables to large-sag cables. The proposed

method of removing the self-weight term of the cable element in the dynamic analysis is verified. 

The applicability of this cable finite element for modeling the stay cables in cable-stayed bridges

is discussed using a steel cable-stayed bridge. The following conclusions are reached. 

1. The eigenvalue analysis process using dynamic condensation method is proposed for sorting out

the natural modes of the girder and tower vibrations in MECS cable-stayed bridge model. The

accuracy and efficiency are confirmed. 

Rayleigh damping that takes into account element damping is proposed as a method for

creating damping matrix for MECS cable-stayed bridges. Extended Rayleigh damping can take

into account the different damping constants of the stay cables, which have small structural

damping, and the girder/towers, which have relatively greater damping. 

2. The parametric-induced vibrations of stay cables in a MECS cable-stayed bridge model can be

Fig. 18 Time-histories and frequency-domain response of Cable C02 from global and local vibration
analysis
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taken into account by using cable finite elements.

The coupled cable-deck vibrations and the parametric vibrations of cables can be taken into

account by using finite element method for dynamic analysis of cable-stayed bridges. 

3. The concept of global and local vibrations can be used to evaluate the parametric vibrations of

stay cables in a MECS cable-stayed bridge model. 
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