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Abstract. Base isolation technology has been accepted as a feasible and attractive way in improving
seismic resistance of structures. The seismic design of new seismically isolated structures is mainly
governed by the Uniform Building Code (UBC-97) published by the International Conference of Building
Officials. In the UBC code, the distribution formula of the inertial (or lateral) forces leads to an inverted
triangular shape in the vertical direction. It has been found to be too conservative for most isolated
structures through experimental, computational and real earthquake examinations. In this paper, four
simple and reasonable design formulae, based on the first mode of the base-isolated structures, for the
lateral force distribution on isolated structures have been validated by a multiple-bay three-story base-
isolated steel structure tested on the shaking table. Moreover, to obtain more accurate results for base-
isolated structures in which higher mode contributions are more likely expected during earthquakes,
another four inertial force distribution formulae are also proposed to include higher mode effects. Besides
the experimental verification through shaking table tests, the vertical distributions of peak accelerations
computed by the proposed design formulae are in good agreement with the recorded floor accelerations of
the USC University Hospital during the Northridge earthquake.
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1. Introduction

Base isolation is an innovative seismic design approach in which flexible elements are

implemented in the foundation of a structure to lengthen the natural period of a structure and to

reduce the transmission of energy from the ground into the structure. In recent years, the

effectiveness of base isolation systems has been demonstrated through destructive seismic events,

and the base isolation of the primary structure has become crucial to protect both structural and

nonstructural components from strong earthquake impacts. Meanwhile, the interrelated building

codes and technical specifications for base-isolated structures have been revealed to accelerate their

applications in the engineering community.

The design of seismically isolated structures in the United States are currently governed by the

Uniform Building Code published by the International Conference of Building Officials (ICBO), and

the National Earthquake Hazards Reduction Program (NEHRP) Guidelines for the Seismic

Rehabilitation of Buildings (FEMA-273) and its commentary (FEMA-274) which were published by

the Federal Emergency Management Agency (Uniform Building Code 1997, FEMA-273 1993,

FEMA-274 1994). The distribution of lateral design forces over the height of the superstructure

proposed in the UBC-97 and FEMA-273 is on the basis of an inverted triangular distribution that is

generally used for fixed-base structures, as shown in Fig. 1. In recent years, this distribution of

inertial (or lateral) forces over the height of the superstructure above isolation has been found to

bound responses of most isolated structures conservatively. Tsai et al. (2001a,b, 2002a, 2003a),

analytically based on the first mode of the base-isolated structure without complex calculation, have

proposed two simple and reasonable design formulae for the lateral force distribution on an isolated

structure. These two proposed design formulae can accurately predict the lateral force distributions on

isolated structures via the computational validation and experimental verification of a full-scale

isolated structure tested on the shaking table (Tsai et al. 2001a,b, 2002a, 2003a). As shown in Fig. 2,

these two proposed design formulae assume that the vertical distribution of inertia forces on an

Fig. 1 Vertical distributions of inertia forces suggested
in UBC code provision for base isolation
system

Fig. 2 Vertical distributions of inertia forces suggested
in proposed design formulae for base isolation
system
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isolated structure should be the first mode of the base-isolated structure rather than an inverted

triangular force distribution suggested by the UBC code. Furthermore, in the UBC code, the weight

of the base floor is ignored, which will overestimate the inertial force and maximum absolute

acceleration on each floor. The proposed design formulae by Tsai et al. (2001a,b, 2002a, 2003a) also

reasonably incorporate the influence of the inertial force on the base floor to calculate accurately the

vertical distribution of inertial forces on a base-isolated structure. Lee et al. (2001) also proposed a

formula derived by combining the fundamental mode shape of the isolated structure idealized as two

degrees of freedom system and the fundamental mode shape of a fixed-based structure to compute

the vertical distribution of seismic load. However, the above-mentioned methods may not be

applicable for the irregular or high-rise buildings in which higher mode responses are significant.

In this paper, to obtain more accurate results for base-isolated structures in which higher mode

responses are expected during earthquakes, as shown in Fig. 3, there are another four inertial force

distribution formulae proposed by considering higher modes of the base-isolated structures and the

superstructures based on the theory of structural dynamics (Kelly 1997, Naeim and Kelly 1999,

Kelly 1999, Chopra 1995, Chopra and Goel 2002, Jan et al. 2002). The effects of the first two

modes of the base-isolated structure and the superstructure are included to improve accuracy of the

lateral force distribution without surrendering simplicity (Tsai et al. 2003b, Chen 2003).

To compare the lateral force distributions computed from the proposed design formulae and UBC

code provision, the experimental verification of a multiple-bay base-isolated steel structure in the

shaking table tests at the National Center for Research on Earthquake Engineering in Taiwan has

been carried out. Besides the experimental verification through shaking table tests, the recorded

floor accelerations of the USC University Hospital during the Northridge earthquake were also

adopted to investigate the suitability of the proposed design formulae considering higher mode

effects in this paper. It is illustrated from comparison results that the proposed design formulae can

well predict the vertical distributions of lateral forces on isolated structures during earthquakes, and

that the lateral force distributions calculated by the UBC code are too conservative. Moreover, it

will obtain more satisfactory results by considering the contributions of higher modes for irregular

base-isolated structures.

Fig. 3 Vertical distributions of inertia forces suggested in proposed design formulae considering higher mode
effects for base isolation system
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2. Linear theory of base-isolated structures

In order to gain insight into the behavior of base-isolated structures, the linear theory of base

isolation has already been developed by J. M. Kelly using a simple 2-DOF model with linear spring

and linear viscous damping (Kelly 1997, Naeim and Kelly 1999, Kelly 1999). As shown in Fig. 4,

one is the degree of freedom of the superstructure, and the other is the degree of freedom of the

base isolator.

In most structural applications it is assumed that the damping is small enough and that effect of

the off-diagonal components is negligible. The equations of motions are written by (Kelly 1997,

Naeim and Kelly 1999, Kelly 1999):

(1)

and

(2)

where q1 and q2 are time-dependent modal coefficients;  denotes the absolute acceleration of the

ground. The analytical solution of natural frequencies and damping ratios of the base-isolated

structure can be given by:

(3)

and

(4)

where
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and

(6)

Two important parameters are defined as

(7)

where m and mb represent the mass of the superstructure (i.e., without base slab) and the mass of

the base floor, respectively; cb and kb are the linear viscous damping coefficient and effective

stiffness of the base isolator, respectively; cs and ks depict the damping coefficient and stiffness of

the superstructure, respectively. 

The participation factors, L1 and L2, for the first two modes in these equations are given by

(8)

Then, the maximum values of q1 and q2 can be given by

(9)

where  is the displacement response spectrum for the ground motion, , at frequency ω

and damping ratio β.

Moreover, the mode shapes are given by:

 (10)

If γε << 1, Eq. (10) can be rewritten as (Kelly 1997, Naeim and Kelly 1999, Kelly 1999):

(11)

As shown in Fig. 5, the superstructure nearly moves as a rigid body in the first mode shape ϕ1;

whereas in the second mode shape ϕ2, the displacements of the superstructure and the base isolator

are opposite in direction.

If one normalizes the mode shapes of interstory drifts of the superstructure equal to 1. As shown

in Fig. 6, with the aid of Eq. (10), then the mode shapes of the 2-DOF model can be given by
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dynamics, as Tsai et al. (2003b), Chen (2003)

F
f1

f2⎩ ⎭
⎨ ⎬
⎧ ⎫

ωn

2
Mϕ

n
qn max

n 1=

2

∑= =

ω1

2 m mb+   m

m  m

1 γε–

ε
--------------

1⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

q1 max
ω2

2 m mb+   m

m  m

γ 1 ε+( )
1 γε+

-------------------–

1⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

q2 max
+=

Fig. 5(a) First mode shape of two-degree-of-freedom
base isolation system (If )φb

1
1=

Fig. 5(b) Second mode shape of two-degree-of-
freedom base isolation system (If )φb

2
1=

Fig. 6(a) First mode shape of two-degree-of-freedom
base isolation system (If )φs

1
1=

Fig. 6(b) Second mode shape of two-degree-of-
freedom base isolation system (If )φs

2
1=



Vertical distributions of lateral forces on base isolated structures considering higher mode effects 549

(13)

where

(14)

and

(15)

where f1 and f2 represent the base shear and story shear forces, respectively.

3. Rational design formulae for vertical distribution of lateral forces

In the UBC code, the lateral forces are assumed to be distributed over the height of the

superstructure above the isolation interface in accordance with the formula (Uniform Building Code

1997, FEMA-273 1993, FEMA-274 1994):

(16)

Fx represents the inertia force at level x above the isolation level; wx and wi represent the weight at

level x and level i, respectively; hx, hi are the heights of the xth and ith story above the isolation,

respectively; Vs is the lateral seismic shear force; N is the total number of stories of the

superstructure. The superstructure above the isolation system is designed and constructed to

withstand a minimum shear force, Vs, using the formula

(17)
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the base isolator at the design displacement; RI portrays the design force reduction factor (ductility

factor), which is intended to account for the inelastic response in the superstructure. 

It is evident that Eq. (16) leads to an inverted triangular vertical distribution of the inertia force

over the height of the superstructure, as shown in Fig. 1. Furthermore, the inertia force on each

floor above the base floor computed from Eq. (16) seems to be overestimated because the weight of

the base floor is neglected. In view of this, Tsai et al. (2001a,b, 2002a, 2003a), have proposed two

rational and simple design formulae for the vertical distributions of the lateral forces over the height

of the superstructure while only considering the influence of the first mode of the base-isolated

structure. The inertia force at each floor is given as (as shown in Fig. 5(a)) (Tsai et al. 2001a,b,

2002a, 2003a)

(18)

and

(19)

where  is the square of the ratio of natural frequencies, and also represents the ratio of

the displacement at the top of superstructure relative to the base floor to that of the base floor (see

Fig. 5(a)); H represents the total height of the base-isolated structure above isolation level; 

represents the first mode shape of the fixed-base structure (i.e., without any isolator);  and

 describe the values of the first mode shape at level x and level i, respectively, when the

superstructure is rigidly fixed. It should noted that the value of the first mode shape at the top of the

superstructure, , should be normalized and equal to 1. The aforementioned two design
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proven by computational and experimental verification, and can accurately predict the lateral force
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4. Higher mode effects on vertical distributions of lateral forces

The aforementioned four design formulae can obtain satisfactory predictions of the vertical

distribution of inertia forces under cases mostly restricted to the superstructures that are almost rigid

body motions and that the frequencies of the first and second modes on isolated structures are well-

separated. Up to now, no researcher has accounted for the contributions of higher modes to the

lateral force distributions of base-isolated structures. To overcome these limitations, suitable vertical

distribution formulae for inertia forces by considering the second mode contribution of a base-

isolated structure are proposed in this paper. With the aid of Eq. (13), two design formulae are

given as:

(22)

and

(23)

where the maximum values of q1 and q2 can be obtained by numerical analyses (Chopra 1995).

Moreover, in Eqs. (21) and (23), one presumes that the deflected shape of the superstructure

relative to the base floor is the first mode shape  of the fixed-base structure (i.e., without any

isolator). However, such satisfactory predictions are restricted to more regular structures. It is an

important issue for an irregular structure to reasonably redistribute inertia forces on the

superstructure by considering the contributions of higher modes on the superstructure (Chopra and

Goel 2002). To overcome these limitations, several researchers have proposed adaptive force

distributions to provide better estimates of the fixed-base structure (Chopra and Goel 2002, Jan et al.

2002). Chopra and Goel (2002) have developed an improved modal pushover analysis (MPA)

procedure. Jan et al. (2002) have proposed an alternative method to simply estimate the lateral force
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Goel (2002) and Jan et al. (2002), one can combine the first- and second-mode contributions to
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represent the first- and second-mode shapes of the fixed-base structure at level x, respectively;

 and  are the first- and second-mode shapes of the fixed-base structure at level N and

are normalized to 1. It should noted that the value of the vector component at the roof level, αN,

should be equal to 1; and

(25)

where the nth-mode participation factor, Γn, is given by (Chopra 1995, Chopra and Goel 2002, Jan

et al. 2002)

(26)

where  indicates the nth-mode shape of the fixed-base structure; m represents the mass matrix

of the fixed-base structure; Dn represents the nth-mode spectral displacement; ξn denotes the nth-

mode damping ratio of the fixed-base structure; ν depicts the influence vector.

If one only considers the influence of the first mode of the base-isolated structure and
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formula is given as:

(27)

Besides, to obtain more accurate results, one can take into account the influence of the second mode

of the base-isolated structure and the higher mode contributions of the superstructure, and the design

formula can be expressed as:

(28)

5. Experimental verification for a multiple-bay base-isolated structure

In order to verify the accuracy and suitability of proposed design formulae considering higher

mode contributions of the isolated structure, a series of shaking table tests of a multiple-bay isolated

structure were carried out, and given as an example to investigate the distinction among these

proposed design formulae, the UBC code provision, and experimental results. As shown in Figs. 7

to 9, a 40% scale three-story base-isolated steel structure is constructed as a moment-resisting

frame. The structure used for mounting base isolators is rectangular in shape, rising 4.25 m

vertically and occupying a plane of 4.5 m × 4 m horizontally. The weights from the base floor to the

roof were approximately estimated equal to 108, 93, 93, and 85 kN, respectively.

The isolation system was composed of five natural rubber bearings (NRB) and four stirrup rubber

φs

1( )N
*

φ s

2( )N
*

q2

*

max

q1

*

max

--------------
Γ2D2 ωs2 ξ2,( )
Γ1D1 ωs1 ξ1,( )
------------------------------------=

Γn

ϕs

n( )*
T

mν

ϕs

n( )*
T

m ϕs

n( )*
--------------------------------=

ϕs

n( )*

Fx Vs

wx
1 γε–

ε
-------------- αx+

wi
1 γε–

ε
-------------- α i+

i 0=

N

∑

---------------------------------------------=

Fx Vs

wx ω1

2 1 γε–

ε
-------------- αx+⎝ ⎠

⎛ ⎞ ω2

2 q2 max

q1 max

--------------
γ 1 ε+( )
1 γε+

--------------------– αx+⎝ ⎠
⎛ ⎞

+

wi ω1

2 1 γε–

ε
-------------- αi+⎝ ⎠

⎛ ⎞ ω2

2 q2 max

q1 max

--------------
γ 1 ε+( )
1 γε+

--------------------– αi+⎝ ⎠
⎛ ⎞

+

i 0=

N

∑

----------------------------------------------------------------------------------------------------------------------------------=



Vertical distributions of lateral forces on base isolated structures considering higher mode effects 553

bearings (SRB) (Tsai et al. 2002b), as shown in Fig. 7. Fig. 10 shows that the type of natural rubber

bearings tested is 146 mm in diameter and 84 mm in height. They consist of 10 rubber layers of

5 mm thickness each, 9 steel plates of 1 mm thickness each and 3 mm rubber cover, and each end

plate is 12.5 mm thick with bolted connections. Fig. 11 shows that the type of stirrup rubber bearing

(noted as SRB) tested is also 146 mm in diameter and 84 mm in height. Each bearing consists of a

Fig. 7 Typical plan of test base-isolated structure

Fig. 8 Longitudinal direction elevation of test base-isolated structure
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lump of rubber materials of 54 mm in thickness, 4 external steel rings of 6 mm, 3 mm rubber cover,

and a plate of 15 mm thickness at each end with bolted connections. The SRB bearing research

conducted by Tsai in Taiwan (2002b), experimental examinations via the component and shaking

table tests, indicate that the SRB bearing possesses higher damping ratios at higher strains, and

lower horizontal effective stiffness than other kinds of rubber bearings even when the vertical axial

load is slight.

The base-isolated structure was subjected to the 1940 El Centro and the 1994 Northridge (New

Hall) earthquakes in U. S. A., the 1995 Kobe earthquake in Japan, and the 1999 Chi-Chi (TCU129)

earthquake in Taiwan. Table 1 lists test results conducted in the longitudinal direction of the base-

Fig. 9 Transverse direction elevation of test base-isolated structure

Fig. 10 Schematic of natural rubber bearing (NRB) Fig. 11 Schematic of stirrup rubber bearing (SRB)
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isolated structure. The first two natural frequencies are 2.91 Hz and 11.91 Hz in the longitudinal

direction of the structure without isolators. The mode shapes of the multiple-bay steel structure

without isolators are shown in Table 2. The mass ratio γ (= m/M) is equal to 0.714. In this study, the

main goal of experiments is to probe into the vertical distribution of lateral forces and verify the

new proposed design formulae in comparison with the UBC code provision. Therefore, the design

force reduction factor RI is not included (i.e., RI =1) in this study.

Table 3 exhibits the magnitude of the ε (= ) value through the shaking table test. It was

computed based on the experimental first mode frequency of the fixed-base structure and the base-

isolated structure during different earthquake simulation tests. It shows the effectiveness of the

rubber bearings mounted on this three-floor steel frame. Table 4 represents the magnitudes of the

 of Eqs. (22) and (23) and  of Eq. (24) values through numerical

analyses. It represents the second-mode contributions of the base-isolated and fixed-base structures,

respectively. Table 5 exhibits lateral force distribution vector components αx at each floor for the

fixed-base steel structure during different ground motions.

In order to reasonably compare the experimental results and computational results, the base shears

were obtained based on the summations of the inertia force at each floor through the shaking table

ωb

2
/ωs

2

q2 max
/ q1 max

q2

*

max/ q1

*

max

Table 1 List of earthquake simulation tests conducted in longitudinal direction of a
multiple-bay base-isolated structure

Test No. Input earthquake Direction PGA (g)

1 Chi-Chi (TCU129) EW 1.022

2 El Centro NS 0.601

3 Kobe EW 0.701

4 Northridge (New Hall) NS 0.317

Table 2 Prototype mode shapes for fixed base steel structure

Longitudinal direction

Floor First mode shape Second mode shape

Roof 1.000 1.000

2F 0.754 −0.306

1F 0.442 −1.021

Table 3 ε Values in shaking table tests

Earthquake ε

Chi-Chi (TCU129) 
(PGA = 1.022 g)

0.146

El Centro 
(PGA = 0.601 g)

0.113

Kobe 
(PGA = 0.701 g)

0.138

Northridge (New Hall)
 (PGA = 0.317 g)

0.142
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tests. Figs. 12 to 15 depict the normalized peak accelerations on each floor calculated by Eqs. (18)

and (28), the formula provided by the UBC code, and experimental results through shaking table

tests. The computationally normalized peak accelerations on each floor were obtained by dividing

the inertia forces by the corresponding masses times the peak ground accelerations. From these

figures, it proves that results obtained from proposed design formulae are in good agreement with

the experimental results. Moreover, it will be more accurate by considering higher mode effects of

the base-isolated structure and the superstructure. It is also illustrated that will overestimate the

maximum absolute acceleration on higher floors in the UBC code.

Table 4  and  values from numerical analyses

Earthquake

Chi-Chi (TCU129) 
(PGA = 1.022 g)

0.020 0.045

El Centro 
(PGA = 0.601 g)

0.014 0.019

Kobe 
(PGA = 0.701 g)

0.016 0.039

Northridge (New Hall) 
(PGA = 0.317 g)

0.010 0.031

q2 max

q1 max

--------------
q2

*

max

q1

*

max

--------------

q2 max

q1 max

--------------
q2

*

max

q1

*

max

--------------

Table 5 Lateral force distribution vector components α
x
 at each floor for 

longitudinal direction of fixed-base steel structure

TCU129 El Centro Kobe New Hall

Roof 1.000 1.000 1.000 1.000

2F 0.328 0.547 0.369 0.428

1F −0.207 0.097 −0.150 −0.067

Fig. 12 Comparisons of normalized peak story accelerations of multiple-bay isolated steel structure under Chi-
Chi (TCU129) earthquake
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Fig. 13 Comparisons of normalized peak story accelerations of multiple-bay isolated steel structure under El
Centro earthquake

Fig. 14 Comparisons of normalized peak story accelerations of multiple-bay isolated steel structure under
Kobe earthquake

Fig. 15 Comparisons of normalized peak story accelerations of multiple-bay isolated steel structure under
Northridge (New Hall) earthquake
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6. Verification of proposed formulae through recorded data

In addition to the experimental verification, recorded floor accelerations for the University

Hospital of the University of Southern California during the 1994 Northridge earthquake, as shown

in Figs. 16 and 17 (Asher et al. 1990, Komodromos 2000), are adopted to investigate distinctions

among the proposed design formulae, UBC code provision, and recorded data. The USC University

Hospital is an eight-story, steel braced frame structure that is seismically isolated on a combination

of 68 lead-rubber and 81 elastomeric bearings at the University of California Medical Campus

(Asher et al. 1990). Significant higher mode effects on seismic responses are expected during

earthquakes due to its irregular geometry. It is the world’s first base-isolated hospital. It is also the

first base-isolated building in the United States that has experienced a significant earthquake ground

motion during the 1994 Northridge earthquake. Fig. 17 shows the recorded peak accelerations of the

Fig. 16 USC University Hospital floor plan

Fig. 17 Recorded floor accelerations of USC University Hospital
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ground and certain floors of the USC University Hospital in the north-south direction (Komodromos

2000). The peak free-field and peak foundation accelerations in the north-south direction were

0.49 g and 0.37 g, respectively. The maximum floor accelerations were recorded at the base and the

roof of the hospital to be 0.13 g and 0.21 g, respectively. The peak floor accelerations were also

recorded at the 4th floor and 6th floor to be 0.10 g and 0.11 g, respectively. In this study, linear

interpolation is utilized to obtain other floor accelerations without instrumentation. The mass from

the base floor to the roof were equal to 33.275, 14.874, 13.709, 12.354, 12.233, 12.146, 9.769,

8.897, 10.942 slugs, respectively. The first two natural frequencies are approximately 1.93 Hz and

4Hz in the north-south direction of the fixed-base USC University Hospital. The mode shapes of the

fixed-base hospital are shown in Table 6.

The mass ratio γ (= m/M) is equal to 0.74, and the magnitude of the ε (= ) value is equal to

0.15. The magnitudes of the  and  values are 0.0317 and 0.2290,

respectively. Table 7 displays the lateral force distribution vector components αx at each floor for

the fixed-base case. Table 8 exhibits the comparisons of results calculated from the UBC code

provision, the proposed design formulae, and the recorded acceleration data in the north-south

direction of the USC University Hospital. It is illustrated that the vertical distributions of peak

accelerations computed by proposed design formulae are in good agreement with the recorded floor

accelerations. Fig. 18 illustrates the normalized peak accelerations on each floor calculated by

Eqs. (18) and (28), the formula provided by the UBC code, and the recorded acceleration data. It

demonstrates that the proposed design formulae can well predict the vertical distributions of peak
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max

Table 6 Prototype mode shape for north-south direction of fixed-base USC University Hospital

Floor First mode shape Second mode shape

Roof 1.000 1.000

7F 0.791 0.235

6F 0.568 −0.508

5F 0.350 −1.026

4F 0.188 −1.105

3F 0.132 −0.955

2F 0.085 −0.691

1F 0.040 −0.357

Table 7 Lateral force distribution vector components α
x
 of each floor for

 north-south direction of fixed-base USC University Hospital

Floor α
x

Roof 1.000

7F 0.418

6F 0.030

5F −0.371

4F −0.508

3F −0.461

2F −0.376

1F −0.214
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accelerations in actual earthquakes. When the higher mode effect is considered, better agreement

with the recorded data is observed. Furthermore, it also demonstrates that the acceleration at each

floor calculated by the UBC code provision has been found to be remarkably distinct in contrast

with the recorded acceleration data and too conservative.

7. Conclusions

The design of seismically isolated structures is mainly governed by the Uniform Building Code

(UBC) published by the International Conference of Building Officials. Nevertheless, the vertical

distribution of lateral forces over the height of the superstructure in the UBC code provision is on

the basis of an inverted triangular force distribution. It has been found to bound responses of most

Table 8 Acceleration comparisons of results obtained from proposed design formulae, UBC code provision,
and recorded acceleration data in north-south direction of USC University Hospital during ground
motions

Base 1F 2F 3F 4F 5F 6F 7F 8F

Equation (18) 0.120 0.122 0.124 0.126 0.129 0.131 0.133 0.136 0.138

Equation (19) 0.122 0.123 0.123 0.124 0.125 0.128 0.132 0.137 0.141

Equation (20) 0.118 0.121 0.124 0.126 0.129 0.132 0.135 0.137 0.140

Equation (21) 0.121 0.122 0.123 0.124 0.125 0.129 0.133 0.138 0.143

Equation (22) 0.110 0.115 0.121 0.126 0.132 0.137 0.143 0.148 0.154

Equation (23) 0.115 0.117 0.119 0.121 0.123 0.131 0.141 0.151 0.161

Equation (27) 0.128 0.124 0.120 0.118 0.117 0.120 0.129 0.138 0.151

Equation (28) 0.131 0.119 0.111 0.107 0.104 0.111 0.132 0.153 0.183

UBC Code N/A 0.041 0.082 0.123 0.163 0.204 0.245 0.286 0.327

Recorded Data 0.130 0.122 0.115 0.109 0.104 0.105 0.106 0.149 0.205

Units: g

Fig. 18 Comparisons of normalized peak story accelerations of USC University Hospital under 1994
Northridge earthquake
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isolated structures conservatively, even when higher mode contributions are generated. The design

formulae proposed in this paper can reasonably incorporate the influence of the inertial force on the

base floor to accurately calculate the lateral force distributions on isolated structures via the

verification of the experimental and recorded data. Meanwhile, the proposed design formulae

considering higher mode effects are in good agreement with the actual vertical distributions of

lateral forces on base-isolated structures.
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