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An incremental convex programming model of the elastic 
frictional contact problems 
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Abstract. A new incremental finite element model is developed to simulate the frictional contact of
elastic bodies. The incremental convex programming method is exploited, in the framework of finite
element approach, to recast the variational inequality principle of contact problem in a discretized form.
The non-classical friction model of Oden and Pires is adopted, however, the friction effect is represented
by an equivalent non-linear stiffness rather than additional constraints. Different parametric studies are
worked out to address the versatility of the proposed model.
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1. Introduction

Friction between deformable bodies can be viewed as an additional resistance to relative sliding

motion. This type of resistance is mainly depending on the applied normal load, relative material

properties, quality and treatment of the mating surfaces. The classic laws of static dry friction as

they evolved from early studies by Amonotons, Coulomb and others, asserts that only macro level

sliding between two bodies in contact, will occur once the applied tangential force reaches a critical

value. This tangential force is proportional to the net normal force, pressing the two bodies together,

and independent of the apparent contact area. Those classical laws are eventually capable to

describe only the friction effects between rigid bodies. Several friction theories have been proposed

in the last five decades to explain the nature of dry friction between the surfaces of deformable

bodies and accordingly, most of the laws of classical friction theory developed by Coulomb have

been found to be incorrect. The friction physical model, proposed by Bowden and Tabor (1950), is

now widely accepted for metal friction. The model states that once the normal load is applied on

the two contacting bodies high pressure will be developed at individual contact spots and causing

local welding. The junctions thus formed by welding are subsequently sheared by any relative

sliding of the two surfaces. Ploughing by asperities of the harder surface through the matrix of the

softer material contribute an additional component of friction. Accordingly we may assume that the
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evolved friction force consists of two independent components, adhesion component, due to the

welding of the junctions, and grooving component, due to the ploughing of asperities. In most

cases, the ploughing term is insignificant and we can assume that the adhesion component

contributing only the entire friction resistance to motion.

The welding-ploughing theory implies that by increasing the capacity of the monotonic tangential

force, the welded junctions of asperities start compliance gradually until A complete fracture of all

junctions occurs, causing a macro slip motion. Therefore, the state of motion is switched from

quasi-static to rigid body motion.

In the present paper, we adopt the adhesion-ploughing theory to propose a non-classical friction

model (section 2). This model is similar to that developed by Oden and Pires (1983). In section 3

we present the variational inequality formulation of the frictional Signorini’s problem. The proposed

friction model is incorporated in the framework of an incremental convex programming model

developed by Mahmoud et al. (1993, 1998) to solve variational inequality. In section 4 we present

the details of the proposed incremental procedure including: the finite element implementation,

determination of the incremental size and updating the stiffness matrix by adding the contribution of

friction during successive increments. The contact problem of an elastic block on a rigid foundation

is solved by the proposed solution model and the results of some parametric studies are discussed in

section 5.

2. The proposed friction model 

To model friction phenomenon the welding-ploughing theory is employed. Due to the roughness

of the contacting surfaces, actual contact occurs only at individual spots. Application of a normal

force, not only increase the actual contact area but also cause local welding between the contacting

spots forming individual junctions. The strength of each of these junctions is proportional to the

induced normal stress σn at its location.

If a tangential force T is applied and increased steadily, the induced shear stress at the contact

surface will continuously increase but not exceed certain level τ that cause fracture of all junctions.

The application of T creates also a tendency for the two bodies to slip relative to each other. If the

relation between the induced shear stress and micro-slip is assumed linear and that micro-slip

Fig. 1 Welding-ploughing model Fig. 2 Coulomb’s friction model (ε = 0)
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approaches the value ε when the critical stress τ is approached, then the parameter ε can be

regarded as a measure of the stiffness of elastic junctions. When the shear stress reaches τ , grooving

motion starts up with a neglected resistance (Fig. 1). In contrast, the classical Coulomb’s friction

model is represented in Fig. 2. 

The shear stress limit τ is directly proportional to the induced normal stress σn, or

 where µ is the coefficient of friction, u(x) is the displacement at location x. The

nonlinear relation between the shear (frictional) stress and the tangential displacements along the

contact surface can be represented as:

   (1)

where the scalar function  is defined as: 

  (2)

3. The variational inequality formulation 

Consider a linearly elastic body, which occupies a smooth bounded domain . Its boundary

Γ consists of three disjoint parts: ΓD, ΓF, ΓC . On ΓD, u = 0. The body is pressed against a rigid

foundation. Beside the external boundary traction t along ΓF, external body force with intensity f is

applied in Ω. ΓC is the candidate contact region but the actual contact region is unknown a priori

and is dependent on the displacement field u of the elastic body. The initial gap between ΓC and the

rigid foundation is represented by a smooth function g. Along ΓC, contact conditions should ensure

that the normal stress is compressive  and that the displacements satisfy the kinematical

constraint  to prevent interpenetration, where n the outward unit normal to ΓC.

The variational formulation of Signorini problem (Kikuchi and Oden 1988, Duvaut and Lions

1976, Baiocchi and Capelo 1984, Haslinger 1992, Helal 2000, Rocca and Cocu 2001) can be

obtained if we consider the constrained space K of admissible displacements defined on  such

that:  implies that v = 0 on ΓD and  on ΓC

τ u( ) µ σn u( )=

σ t u( ) τ u( )ϕε uT( )
uT

uT

--------–=

ϕε uT( )

ϕε uT( )
uT /ε if uT ε≤

1        if uT ε>⎩
⎨
⎧

=

Ω R
2⊂

σn u( ) 0≤( )
u n⋅ g–( ) 0≤

Ω
v K∈ u n⋅ g– 0≤

Fig. 3 An elastic body in contact with a rigid foundation
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The frictional contact problem is formulated using the virtual work principle as the following

variational inequality. 

Find  such that

  (3)

where (4)

(5)

(6)

where Eijkl are elastic constants of the material,  and  is defined such that

its derivative  equals the function  given by Eq. (2). Thus  can be

constructed as:

 (7)

 

Using inequality (3) and the regularization function  Eq. (7), existence and uniqueness of

solution of Signorini problem with friction have been addressed by Oden and Pires (1983) for a

nonlocal friction law and by Rocca and Cocu (2001) for local one.

4. The proposed solution of the variational inequality

The solution procedure of variational inequality (3) starts by assuming that τ (u) is initially known

rather than being a function of the unknown field u. Using this assumption, the functional Jε given

by Eq. (5) depends only on one argument.

(8)

Accordingly, inequality (3) can easily be put in the following constrained minimization problem

Find  such that

(9)

where (10)

u K∈

a u v, u–( ) Jε u v,( ) Jε u u,( )–+ f v u–( ) v K∈∀≥

a u v,( ) Ei jkluk l, vi j, Ωd
Ω
∫=

Jε u v,( ) τ u( )ψε vT( ) Γd
Γ
C

∫=

f v( ) f
Ω
∫ v Ωd⋅ t

Γ
F

∫ v Γd⋅+=

uk l, ∂ uk/∂ xl= ψε uT( )
ψε′ uT( ) ϕε uT( ) ψε uT( )

ψε uT( )

1

2ε
----- uT

2
if uT ε≤

uT
ε

2
--- if uT ε>–⎩

⎪
⎨
⎪
⎧

=

ψε uT( )

Jε v( ) τψε vT( ) Γd
Γ
C

∫=

u K∈

F u( ) F v( ) v K∈∀≤

F v( ) 1

2
---a v v,( ) f v( )– Jε v( )+=
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By obtaining the solution u of the minimization problem, τ (u) = µσn(u) is directly computed and

substituted for τ in Eqs. (8) and (10) to obtain a better minimum solution of the updated functional

F(v). Convergence of this iterative procedure has been proven in Oden and Pires (1983), Kikuchi

and Oden (1988). Usually two or three of such iterations are sufficient to converge to the solution

of variational inequality (3).

4.1 Solution of the constrained minimization problem

In order to solve the minimization problem defined by Eqs. (9) and (10), the Lagrangian L is

constructed as: 

   (11)

where , , G is the space of admissible functions defined on ΓC ,  implies that

 and V is the space of admissible displacements defined on  such that:  implies that

v = 0 on ΓD. In Eq. (11), C is an operator such that Cv = n · v and  is defined by  =

Both the functional F and the contact constraints are convex and Gâteaux differentiable; it is

coercive on V; then there exist a unique solution , which is satisfying Kuhn-Tucker

condition of minimization and characterized as the solution of the system (Kikuchi and Oden 1988):

(12)

where (13)

The finite element approximation of the regularized problem on the discretized domain Ωh is

characterized by:

(14)

where Vh 

and Gh are spaces of finite elements approximation for displacements and contact pressure,

respectively.

The solution of Eq. (14) is still difficult due to the presence of the nonlinear term 

and the variational inequality. Between other possible iterative and incremental techniques (see for

example, Zboinski and Ostachowicz 1997, Refaat and Meguid 1996, Chabrand et al. 2005,

Klarbring 1992, Christiansen et al. 1998), we adopt here the application of the incremental convex

programming procedure developed by Mahmoud et al. (1993, 1998).

L v Σ,( ) F v( ) Σ Cv, g–[ ]+=

Σ G∈ v V∈ Σ G∈
Σ 0≥ Ω v V∈

· ·,[ ] σ u,[ ]
σ

Γ
C

∫ udΓ⋅

u σ,( ) V G×∈

find u σ,( ) V G× :                                                           ∈

a u v,( ) DJε u( ) v,〈 〉 σ Cv,[ ]+ + f v( ) v∀ V∈=

σ Σ– Cu g–,[ ] 0                                 Σ G∈∀≥ ⎭
⎪
⎬
⎪
⎫

DJε u( ) v,〈 〉 τϕε uT( )
uT vT⋅

uT

--------------- Γd
Γ
C

∫=

find uh σh,( ) Vh Gh× :                                                           ∈

a uh vh,( ) DJε uh( ) vh,〈 〉 σh Cvh,[ ]+ + f vh( ) vh∀ Vh∈=

σh Σh– Cuh g–,[ ] 0                                          Σh Gh∈∀≥

DJε uh( ) vh,〈 〉
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4.2 The incremental procedure

This procedure has the advantage that it provides continuous information about induced stresses,

deformations and development of contact versus the increase of loading. The size of load increment

is chosen adaptively, such that the linearity of the system is preserved during an increment.

Let the solution uh , σh of Eq. (14) be the sum of corresponding incremental values 

 (15)

where  are the incremental displacement vector, Lagrange multiplier in increment r,

respectively and m is the total number of increments. Also, the tangential displacement vector on ΓC

can be expressed by its incremental components as follows:

  (16)

T is the unit tangent vector on ΓC. Introducing Eq. (16) in Eq. (2), the nonlinear function 

can be represented as the sum of linear scalar functions 

    (17)

where (18)

Note that the displacement of a point in micro-slip motion is constrained by

     (19)

Introducing Eqs. (16-18) into Eq. (13), then

  (20)

where    (21)

is a bilinear form and

(22)

uh uh
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,
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∑= σh σ h

r( )

r 1=
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Γ
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A possible method for the numerical solution of the variational inequality in Eq. (14) is

constructed by introducing the “slack variable”  such that  which implies:

. Now introducing Eq. (15) yields the equivalent incremental constraints:

(23)

where    (24)

Note that a point on ΓC in contact during increment (r) is constrained by

(25)

Also, the condition for a point on ΓC to be separated from foundation during increment (r) is that 

(26)

Introducing Eqs. (15, 20, 23) into the minimization problem (Eq. 14), it is easy to show that a

typical iteration (r) is characterized by:

(27) 

4.3 Determination of the incremental size

For each candidate node , the node status must be checked within an increment (r)

according to the following procedure:

(1) if β is assumed to be an open node, then according to Eq. (26), , and the constraint

 must be an inactive one. Otherwise a fraction  of the load

can only be applied, where

 

(2) if β is assumed to be a contact node, then the corresponding constraint is considered active.

Therefore, according to Eq. (25),  and the constraint  must be

satisfied. Otherwise the incremental load is scaled by the factor  where 
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(3) if β is in a micro-slip contact node, then Eq. (19) must be satisfied. Otherwise the incremental

load must be scaled by 

 

For each of the above cases, if the associated constraint is fulfilled, the scale factor is set equal to 1.

The scale factor for increment (r) is defined by:

 

If < 1 then only  can actually be applied to ensure the linearity of increment r while

the remaining part  is to be transferred to the next increment.

4.4 The finite element discretization for an increment

Defining global basis functions , and  for the displacement, and the contact

pressure, respectively, then we have the following expressions for the corresponding incremental

quantities. From now and up to the end of this subsection we will drop writing the increment index

r for simplicity keeping in mind that these expressions represent incremental quantities 

 

   p is the total number of nodes in 

   q is the total number of nodes in 

 

Accordingly, the bilinear forms  and the linear form  in Eq. (27) are given

as follow:

(28)

respectively, where:
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finite element approximation of Eq. (27) yields the discrete linear system: 

(30)

 (31)

where 

Eqs. (30) and (31) can also be put in the following partitioned matrix form:

  (32)

where 

(33)

is the general entry in the 2p × 2p overall stiffness matrix K(u) including the equivalent stiffness of

frictional effect. Matrix C has dimension 2p × q whereas each of displacement vector {u} and force

vector { f } has 2p components and each of the vectors {σ} and {g − S} has q components.

According to the status of contact, the set of interpenetrating constraints could be divided into

active and inactive subsets. The active subset corresponds to contact points set, while the inactive

subset corresponds to the non-contact set. By Eqs. (25) and (26), inactive constraint is characterized

by σ = 0 while an active one is characterized by S = 0. So Eq. (32) can be repartitioned as:

(34)

where the subscripts A and N correspond to active and inactive constraints. It should be noticed that

both sets of the active and inactive constraints are not known a priori. The state of each constraint

could be changed from active to inactive one, and vice-versa according to the level of the applied

load vector.

The effect of friction is implied in the stiffness matrix K(u) which is a function of u according to

(22,29,30). These equations state that incremental micro-slip against resistance with stiffness = τ /ε

starts and may continue as long as the total tangential displacement is less than or equal to ε. This

stiffness reduces to zero for the nodes whose total tangential displacements reach or exceed the

specific value ε. Non zero contribution  occurs if α, β are adjacent nodes (or the same

node) and both α and β are in micro-slip motion. For simple integration schemes, non-zero

contribution occurs only on the diagonal (2 × 2) submatrices corresponding to nodes in micro-slip

motion. If the transition from increment (r) to increment (r + 1) is due to the event that micro-slip

motion is terminated at node α, matrix K(u) is updated in the new increment by removing the local

frictional stiffness at node α by setting  equal zero for all β.
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5. Numerical results 

In the following numerical examples, nondimensionalized units are used and deformations may be

in exaggerated scale so as to clearly exhibit features of the deformed geometry and to illustrate the

proposed approach rather than solving specified contact problem.

Example 1: Hertz problem 

The frictionless Hertz problem of a long circular cylinder resting on a flat foundation and

subjected to a uniform load along top is considered for the purpose of comparison. It is a plane

strain problem and its geometry, loading, material constants are shown in Fig. 4. 

This problem has the following exact solution (Kikuchi and Oden 1988):

The half width of the contact surface b is given by: 

 (35)

and contact pressure P(x) 

 (36)

where x is the distance from the center line on the contact surface, R is the radius of the cylinder

and F is the applied load per unit length.

The Hertz problem is solved for two different applied loads (F = 1600 and F = 800). The

procedure starts by assuming that just the point at the center line is initially in contact then with the

increase of load, it automatically predicts continuous extension of the contact area. The computed

contact pressure distributions are compared with the exact vales in Fig. 5. Good agreement is

observed for the two cases.

b 2 FR 1 ν
2

–( )/Eπ=

P x( ) 2F

πb
2

-------- b
2

x
2

–=

Fig. 4 The Hertiz problem
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Example 2: Contact of an elastic block on a rigid foundation

To study the effect of the regularized parameter ε on the solution of Signorini’s problems, the

simple problem of an elastic block resting on a rigid foundation is solved for two different values of

ε, namely ε = 0.0001 and ε = 0.01. 

The block is shown in Fig. 6 and is subjected to a fixed uniform distribution of normal load P

and an increasing tangential force T on the left side of the block. The material of the elastic block is

homogenous with Young’s modulus E = 5 * 107 (F/L2) and Poisson’s ratio γ = 0.25. The coefficient

of friction is taken µ = 0.3.

The evolutions of micro-slip of contact nodes according to the increase of side force T are shown

in Fig. 7 and Fig. 8 for ε = 0.0001 and ε = 0.01, respectively. It is noticed that the micro-slip for the

case of zero side force is symmetric in magnitude but different in direction with respect to the

Fig. 5 Computed contact pressure distributions compared with exact ones (Kikuchi and Oden 1988) for two
different values of applied loads 

Fig. 6 An elastic block configuration
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centerline of the block; meanwhile it is noticed that the relative micro-slip of the contacting point at

the centerline of the block equals zero, where no slip occurs. This is true for both values of ε

(Fig. 7(a) and Fig. 8(a)). Applying the side force, the contacting points tend to slip in the forward

direction (direction of the applied tangential force). We will follow the micro-slip until the global

sliding of the block occurs. Global sliding takes place once all of the contacting nodes move a

tangential displacement equal to or larger than the value of ε. The resultant slip due to both P and T

is shown in Figs. 7(b), (c), (d). for different values of T for the case ε = 0.0001. These figures

illustrate that a macro-slip region starts and spreads continuously until the complete sliding of the

block. 

For the larger value ε = 0.01, Figs. 8(a), (b), (c) show the tangential displacements of the

Fig. 7 Micro-slip of contacting points for different T = kT0, T0 = 20 F/L (ε = 0.0001)
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contacting points for different values of T. The figures show the increase of the slip with the

increase of T. In this case, it is noticed that the slip is almost uniform for all contacting points, and

hence no partial sliding region can be found, until the sudden sliding occurs. 

However, we have to precisely notice that the growth of the value of ε does not affect the critical

capacity of T required to make gross sliding of the body. For the two previous cases, and according

to Figs. 6, 7 and 8, the value of T causing gross sliding (63 T0 = 63(20) (50)) equals the normal

force multiplied by the coefficient of friction (µ P = 0,3(2100)(100)). The deformed configuration of

Fig. 8 Micro-slip of contacting points for different T = kT0, T0 = 20 F/L (ε = 0.01)
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Fig. 9 Deformed configuration of the elastic block at the instant of gross sliding

Fig. 10 Distribution of normal and frictional stresses along the contact length for different T and ε = 0.0001
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the block under the action of both P and T = µ P is represented in Fig. 9 for the two different

values of ε.

Fig. 9(a) shows the computed deformed shape of the block for ε = 0.0001. The deformed

configuration shows small tangential displacement of the contacting points with respect to the

tangential displacement of points on other sides of the block. In contrast Fig. 9(b), representing the

deformation at ε = 0.01, shows that the tangential deformation is almost uniform for all points of

the block.

Contact pressure and friction stress distributions along the contact length are plotted in Fig. 10

Fig. 11 Distribution of normal and frictional stresses along the contact length for different T and ε = 0.01 
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and Fig. 11 for ε = 0.0001 and ε = 0.01, respectively. In each of these figures, a dotted curve

representing the ultimate permissible tangential stress τ = µ |σn| is plotted. Contact pressure

distribution due to the normal load only is almost uniform and symmetric specially when the value

of ε is relatively large (Fig. 11(a) for ε = 0.01). When a tangential force is applied, the contact

pressure increases in the forward direction (near point B in Fig. 6) and decreases in the other. When

this tangential force reaches its maximum admissible value, the contact pressure distribution seems

to be independent of the value of ε, Figs. 10(d) and 11(d) show identical contact pressure

distributions for the cases ε = 0.0001 and ε = 0.01, respectively.

As one would expect, the tangential stress |σT | does not exceed the dotted τ curve in each of the

Figs. 10 and 11. Moreover one can recognize the micro-slip region as the set of contacting points

for which |σT | curve lies on τ curve. Full sliding of the block occurs when the |σT | curve lies

completely on the τ curve. We can conclude from Fig. 10 for ε = 0.0001 that increasing the

tangential applied force T, a macro-slip region starts at point A (see Fig. 6) and increases gradually

in the forward direction to reach point B when T reaches the value µ P. In Fig. 11 where ε = 0.01,

no macro-slip region can be found until T reaches the full frictional capacity µ P.

6. Conclusions

An incremental finite element model is developed to simulate the frictional contact problems.

Friction effect is accounted for according to the welding-ploughing theory rather than the classical

Coulomb theory. Mathematical friction model of Oden and Pires is adopted and incorporated in the

framework of an incremental convex programming model developed by Mahmoud et al. (1993,

1998). The friction effects are accounted for as an additional tangential stiffness. The effects of the

regularization parameter ε on the variation and progress of micro slip, frictional stress, and contact

pressure are studied. 
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Notation

ε : regularization parameter for the tangential stress-displacement relation at the contact surface.
τ : ultimate permissible tangential stress.

: scalar functions representing the proposed friction model and such that 
S, Sh : slack variables used to represent inequalities as equations.
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