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Abstract. This work presents a time-truncation scheme, based on the Lagrange interpolation
polynomial, for the solution of the two-dimensional scalar wave problem by the time-domain boundary
element method. The aim is to reduce the number of stored matrices, due to the convolution integral
performed from the initial time to the current time, and to keep a compromise between computational
economy and efficiency and the numerical accuracy. In order to verify the accuracy of the proposed
formulation, three examples are presented and discussed at the end of the article.
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1. Introduction

The Boundary Element Method (BEM) has been applied to solve time-dependent problems quite

successfully, as demonstrated by the several works, dealing with different approaches, published

during the last years. For general purposes, these approaches can be classified according to the

nature of the fundamental solution adopted. The use of time-dependent fundamental solution

originates time-domain formulations (TD-BEM). TD-BEM formulations, beside providing good

representation of causality and time response jumps and, consequently, leading to very accurate

results, fulfill the radiation condition, which makes them suitable for infinite domain analysis, e.g.

(Mansur 1983, Dominguez 1993, Mansur et al. 1998). The use of static fundamental solution, on

the other hand, originate two formulations, classified according to the maintenance or not of the

inertial domain integral in the BEM equations as: D-BEM, that keeps the domain integral (D means

domain) in the equations (Carrer and Telles 1992, Hatzigeorgiou and Beskos 2001), and DR-BEM
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(DR means Dual Reciprocity) that, by means of suitable interpolation functions, substitutes the

domain integral by boundary integrals (Kontoni and Beskos 1993, Partridge et al. 1992).

Formulations based on frequency and Laplace domains are also available, e.g., (Manolis 1983, de

Lacerda et al. 1996). More recently, a formulation based on the Operational Quadrature Method

appeared in the literature (Gaul and Schanz 1999, Schanz 2001).

This work is concerned with the solution of 2D scalar wave problem and is based on the TD-

BEM formulation. The aim here is to reduce the storage computational cost due to the evaluation of

the convolution integral that appear in the formulation. In other words, the aim is to reduce the

number of assembled matrices, necessary to take into account the time history contribution, and to

preserve the accuracy of the standard TD-BEM formulation. It seems that the best strategy to

achieve this goal is to truncate the time integration, as previously presented (Demirel and Wang

1987, Mansur and de Lima-Silva 1992, Soares Jr. and Mansur 2004): the present work is concerned

with this topic. Here, the whole time interval of analysis (0 ≤ t ≤ tn) is divided into two parts, both

constituted by time steps, Δt, of equal size: the first one is restricted to the interval tk ≤ t ≤ tn, where

tk is a specific value of time. In this first interval, the time integration is effectively done, i.e., the

matrices are assembled in the standard way. In the second interval, defined by 0 ≤ t ≤ tk , discrete

values of time are chosen and a Lagrange polynomial, passing through these discrete values of time,

is constructed. Proceeding in this way, only matrices at these specific values of time are

appropriately assembled, and matrices corresponding to intermediate values are computed by

interpolation. The numerical computation of the convolution integral is carried out in this way. In

order to simplify the nomenclature, the first interval, constituted by the last nINT time intervals, will

be referred to as integration interval; the second interval, by its turn, will be referred to as

interpolation interval. Naturally, the length of the so-called integration interval and the degree of

the polynomial in the interpolation interval are problem dependent parameters; incorrect choices of

these parameters can lead to not reliable results. 

Linear boundary elements and linear triangular cells were employed, respectively, to approximate

the boundary and the part of the domain with non-homogeneous initial conditions (note that the

solution of problems with non-homogeneous initial conditions does not present any difficulty: the

domain integrals, related to the initial conditions are computed as in the standard TD-BEM

formulation). Linear and constant time variation were assumed, respectively, for the potential and its

normal derivative (flux) and, as usual in TD-BEM formulations, time integration was carried out

analytically. 

Three examples are presented and discussed at the end of the article, in order to verify the

applicability of the proposed interpolation scheme.

2. TD-BEM formulation

The TD-BEM equations can be written by employing the kernel regularization procedure (Mansur

1983) or the concept of finite part of integrals (FPI) (Hadamard 1952). If, as it is usual in TD-BEM

formulations, time integration is performed analytically, the resulting time integrated kernels from

both representations are the same (Mansur and Carrer 1993), that is, both representations are

entirely equivalent. The use of the Hadamard’s concept, however, leads to more compact

expressions and, it is the authors’ opinion, provides an elegant representation of the equations

involved in the analysis. A brief summary of the equations is given below.
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2.1 Basic integral equation

Time-domain integral representation of the 2-D scalar wave propagation problem is written as

(Carrer and Mansur 1996):

(1)

In Eq. (1), Γ is the boundary; Ω is the domain, or the part of the domain, that presents non-

homogeneous initial conditions; the coefficient c(ξ ) assumes the same values of the static case, i.e.,

it is equal to 1 (ξ ∈ Ω) or (α /2π) (ξ ∈ Γ and α is the internal angle depicted in Fig. 1); and the

subscript ‘o’ means that τ = 0.

The fundamental solution, u*(X, t ; ξ, τ), that corresponds to the effect of a source represented by

an impulse at t = τ located at X = ξ propagating with velocity equal to c, has the following

expression:

(2)

where:

(3)

In expression (2), H [c(t − τ) − r] stands for the Heaviside function (r = r(X ; ξ ) is the distance

between the field (X) and the source (ξ ) points). 

The functions  and , in Eq. (1), are given by:
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where:

(6)

and

(7)

The symbol  on the second term on the right-hand-side of Eq. (1) stands for the FPI (Hadamard

1952):

(8)

2.2 Space derivative boundary integral equation for internal points

The derivative of Eq. (1) with respect to a generic direction m(ξ ), if ξ ∈ Ω, can be written as

(Carrer and Mansur 1996):

+

(9)

The FPI in the first term on the right-hand-side of Eq. (9) is interpreted as:
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where:

(12)

2.3 Time derivative boundary integral equation for internal points

The derivative of Eq. (1) with respect to time, if ξ ∈ Ω, can be written as (Carrer and Mansur

1996):

(13)

The FPI in the first term on the right-hand-side of Eq. (13) is interpreted as:

(14)

The function  in expression (14) is given by:

(15)

where:

(16)

The time derivative of the FPI indicated on the second term on the right-hand-side of Eq. (13) is

defined as follows:

(17)

The space and time derivatives of the initial conditions domain integrals were only indicated in

Eqs. (9) and (13). For a detailed discussion concerning domain integration, the reader is referred to

(Mansur 1983, Carrer and Mansur 1996).
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3. Numerical procedure

For the numerical solution of Eq. (1) the boundary is approximated by linear boundary elements,

and the domain (or the part of it in which non-homogeneous initial conditions appear) is

approximated by linear triangular cells. Time approximation assumes linear variation for the

potential and constant variation for the potential normal derivative (flux), along the time steps Δt in

which the overall time of analysis, 0 ≤ t ≤ tn, is divided. Time integrals are computed analytically

and the remaining kernels, in the boundary integrals, are computed numerically by the Gaussian

quadrature. 

The application of the discretized version of the boundary integral equation to all boundary nodes

produces a system of algebraic equations, which can be written according to:

(18)

In Eq. (18), diagonal matrix C is constituted by the c(ξ ) coefficients, matrices Hnm and Gnm result

from the spatial integration of the time-integrated kernels related, respectively, to  and

to , and the vector Fn contains the initial conditions contributions (see Eq. (1)). Note,

additionally, that the subscripts n and m stand for the time tn (final time) and tm (previous times),

respectively.

After imposing the boundary conditions, the system of equations represented by Eq. (18) can be

solved for the boundary unknowns.

For a more detailed discussion concerning these matters, the reader is referred to (Mansur 1983,

Dominguez 1993, Carrer and Mansur 1996).

Note that equations similar to Eq. (18) are obtained for the solution of Eqs. (9) and (13) and that,

in these equations, one has C = I . 

4. Lagrange interpolation polynomial for time truncation 

According to Eq. (1), or to its corresponding discretized version given by Eq. (18), it is necessary

to take into account the contribution of the history, i.e., it is necessary to take into account the

contribution of all responses previous to tn to obtain the response at time tn. If very large values of n

are required, i.e., if late time results are required, and if there is no memory available in the

computer, the use of time truncation procedures becomes desirable and justified. Naturally, such a

procedure introduces approximations in overall time integration: these approximations depend on

the length of the intervals in which the time integration is effectively done and the interpolation

takes place. The question that arises is: What is the best strategy for an efficient time truncation? It

is the authors’ opinion that the response to this question is not conclusive, yet. Truncation

procedures, for infinite domain applications, were first reported by Demirel and Wang (1987): in

this work, it is assumed that there is a time, say ts, before which the contributions to the response at

a late time tn, tn >> ts, can be disregarded; in this way, the convolution integrals in Eqs. (1), (9) and

(13) start at τ = ts instead of at τ = 0. Another truncation scheme, which applies quite well to

bounded domains analyses, was presented by (Mansur and de Lima-Silva 1992): now the early time

contributions are not disregarded, but the time integrals are computed in a simplified way in the

interval [0, ts]. Another work, based on multi-linear and Chebyshev-Lagrange polynomials, was
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recently presented (Soares Jr. and Mansur 2004). In order to provide topics for discussion, this work

presents a time truncation strategy based on the use of Lagrange interpolation polynomials. The

basic idea can be outlined as follows: 

i) initially, the final time of analysis, say tn, is divided in time intervals Δt, such that tn = nΔt; 

ii) the number of time intervals in which the time integrations will be carried out in the standard

way, nINT, is then defined (or specified as a input datum in the computer program). Note that

nINT defines an interval named here as integration interval and that the convolution, diversely

from the standard TD-BEM formulation, is computed from an intermediate value of time to

the current (final) time;

iii) in the remaining interval, called interpolation interval, lgr discrete values of time are selected

and the corresponding matrices are appropriately assembled. Then, the matrices corresponding

to intermediate values of time are computed by employing a Lagrange interpolation

polynomial. Therefore, if the interpolation interval is constituted by the first k time intervals

Δt, 0 ≤ t ≤ kΔt = tk, Eq. (18) can be written as follows (the same is valid for the discretized

versions of Eqs. (9) and (13)):

(19)

In Eq. (19), the interpolated matrices associated to matrices H and G are denoted by  and ,

respectively. It is important to mention that necessarily to and tk must belong to the set of selected

discrete time values. As a matter of fact, to is always the first value and tk is always the last value of

the interpolation interval; intermediate values can be equally spaced between them, or not. An

illustration of the scheme is shown in Fig. 2.

A generic interpolated matrix, say B, assumed to be a function of time, can be represented as:

(20)

in which Bnm represent the matrices computed appropriately at the lgr selected discrete time values,

for t = tn. The Lagrange interpolation polynomial can be defined according to:

(21)

and has the property:
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It is important to point out that  does not represent tj = jΔt but, instead of it,  represents

the j-th selected discrete time value and that, according to what was previously mentioned, 

and  .

Another aspect to be mentioned is the generality of the proposed procedure: it can easily be

applied to alternative TD-BEM formulations (Yu et al. 1998, Carrer and Mansur 2002).

5. Examples

In the examples presented in this work, reference will be made to the dimensionless β parameter:

(23)

in which l is the boundary element length. The choice of the value of the β parameter is a problem

dependent task: as a general rule, small and large values, inside the interval 0 < β < 1, must be

avoided. 

The following notation will be employed in the examples: n represents the total number of time

intervals and nINT represents the number of time intervals that constitute the integration interval;

besides, equally spaced time values were adopted to construct the Lagrange polynomial in the

interpolation interval. Along the discussion, the proposed formulation, for simplicity, will be

referred to as Lagrange formulation.

Additionally, in the first and in the second example, E is the Young’s modulus.

5.1 One-dimensional rod under compression (waveguide)

This example consists of a one-dimensional rod fixed at one extreme and free at the other, that is

subjected to a compression load suddenly applied at t = 0 and kept constant during the analysis, see

Fig. 3. The material is such that c = 1. The boundary discretization employed 24 elements, as

depicted in Fig. 4. The number of time intervals is n = 320, and the time interval length was defined

for β = 0.6. Results furnished by the standard TD-BEM formulation, corresponding to the potential

at node A(a, b/2) and to the flux at node B(0, b/2), are presented in Figs. 5 and 6, respectively, and

were included to demonstrate how the proposed interpolation scheme can produce reliable results,

t j t j

to to=

t lgr tk=

β
c tΔ
l

--------=

Fig. 3 One-dimensional rod: geometry and loading
definition

Fig. 4 One-dimensional rod: boundary discretization
and selected nodes
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even at a reduced storage cost: the results presented here were obtained by adopting nINT = 40 and a

Lagrange interpolation polynomial of 14th order. In the interpolation interval, the discrete time

values, say , are equally spaced, i.e., j = 0, 20, 40, …, 280, always bearing in mind that  = jΔt.

It is important to mention that only 2 (41 + 14) = 110 matrices were assembled and stored, instead

of the (321 + 320) = 641 matrices required by the standard TD-BEM formulation; in other words,

t j t j

Fig. 5 One-dimensional rod: potential at boundary
node A(a, b/2): standard TD-BEM

Fig. 6 One-dimensional rod: flux at boundary node
B(0, b/2): standard TD-BEM

Fig. 7 One-dimensional rod: potential at boundary
node A(a, b/2): Lagrange formulation with
n = 320, nINT = 40, and 14th order polynomial

Fig. 8 One-dimensional rod: flux at boundary node
B(0, b/2): Lagrange formulation with n = 320,
nINT = 40, and 14th order polynomial
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the proposed scheme reduces the number of the stored matrices to 17.2% of the total number

required by the standard TD-BEM. Results for to the boundary nodes A(a, b/2) and B(0, b/2) are

presented in Figs. 7 and 8, respectively. Results for the potential, and its space and time derivatives

Fig. 9 One-dimensional rod: potential at point
C(a/2, b/2): Lagrange formulation with n =
320, nINT = 40, and 14th order polynomial 

Fig. 10 One-dimensional rod: potential space
derivative ∂u/∂x at point C(a/2, b/2):
Lagrange formulation with n = 320, nINT

= 40, and 14th order polynomial

Fig. 11 One-dimensional rod: potential time
derivative ∂u/∂ t at point C(a/2, b/2):
Lagrange formulation with n = 320, nINT

= 40, and 14th order polynomial 

Fig. 12 One-dimensional rod: potential at boundary
node A(a, b/2): Lagrange formulation with
n = 320, nINT = 40, and 7th order polynomial
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at internal point C(a/2, b/2) are presented in Figs. 9, 10 and 11. Note that, from Fig. 5 to Fig. 11,

the BEM results are always compared with the corresponding analytical solution. The oscillations

around the analytical solution, in Figs. 8, 10 and 11, appear even in the results from the standard

TD-BEM formulation, and better results can be obtained only with the use of a more refined

boundary element mesh. It is important to mention that several analyses have been performed by

the authors, aiming at finding a pattern for the adoption of the best length for the integration

interval and the order of the interpolation polynomial. The conclusion is that the choice of these

parameters depends on the problem; thus, the experience of the analyst plays an important role in

this matter. To illustrate this, another analysis was included; see Fig. 12, in which results not so

accurate (when compared to those from Fig. 7) were achieved for the potential at node A(a, b/2):

although the integration interval was kept the same, nINT = 40, a poor interpolation polynomial of

7th order was adopted: the values  are equally spaced but, now, one has j = 0, 40, 80, 120…, 280.

Now, the number of matrices assembled and stored is equal to 2 (41 + 7) = 96, which means that

only 15% of the total number of matrices are effectively stored.

5.2 Circular cavity in an infinite medium

This example consists of a circular cavity, in an infinite medium, subjected to an internal pressure

suddenly applied at t = 0 and kept constant during the time, see Fig. 13. The boundary

discretization, shown in Fig. 14, employed 24 elements. The number of time intervals is n = 380,

and the time interval length was defined for β = 0.645. The results presented here were obtained by

adopting nINT = 80 and a Lagrange interpolation polynomial of 15th order, with discrete time values,

, equally spaced, i.e., j = 0, 20, 40, …, 300. In this example, the advantage of the TD-BEM

formulation becomes more evident: only the cavity boundary needs to be approximated and the

results at any internal point, no matter how far it is from the cavity centre, can be computed without

any domain discretization. The results furnished by the proposed formulation are compared with

those furnished by the standard TD-BEM formulation in Fig. 15, for the potential at node A(R, 0),

and in Figs. 16 to 18 for the potential and its space and time derivatives at internal point B(2R,0).

The results related to the potential, in Figs. 15 and 16, are in very good agreement. The results

related to space and time derivatives, furnished by both formulations, present oscillations around

t j

t j

Fig. 13 Circular cavity: geometry and loading
definition

Fig. 14 Circular cavity: boundary discretization and
selected nodes
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their asymptotic values: in the results from the Lagrange formulation, the oscillation is more

pronounced, but are still in agreement with the corresponding ones from the standard formulation.

In this example, the number of matrices required by the proposed scheme is given by

2(81 + 15) = 192; comparing this value with the number of matrices required by the standard TD-

Fig. 15 Circular cavity: potential at boundary node
A(R, 0): Lagrange formulation with n = 380,
nINT = 80, and 15th order polynomial

Fig. 16 Circular cavity: potential at point B(2R, 0):
Lagrange formulation with n = 380, nINT =
80, and 15th order polynomial 

Fig. 17 Circular cavity: potential space derivative
∂u/∂x at point B(2R, 0): Lagrange formula-
tion with n = 380, nINT = 80, and 15th order
polynomial

Fig. 18 Circular cavity: potential time derivative ∂u/
∂ t at point B(2R, 0): Lagrange formulation
with n = 380, nINT = 80, and 15th order
polynomial
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BEM formulation, given by (381 + 380) = 761, one can verify that the analysis was performed by

employing only 25.2% of the matrices originally required.

5.3 Square membrane under prescribed initial velocity

The square membrane depicted in Fig. 19, with initial velocity field vo = c prescribed over the

sub-domain Ωo and with zero displacements prescribed all over the boundary, is analysed in this

Fig. 19 Square membrane: geometry and loading
definition

Fig. 20 Square membrane: boundary and domain
discretization and selected nodes

Fig. 21 Square membrane: flux at boundary node
A(a, a/2): Lagrange formulation with n =
200, nINT = 60, and 14th order polynomial 

Fig. 22 Square membrane: potential at point B(4a/5,
a/2): Lagrange formulation with n = 200,
nINT = 60, and 14th order polynomial



276 J. A. M. Carrer and W. J. Mansur

example. The boundary discretization employed 32 elements and Ωo was divided into four cells, as

shown in Fig. 20. As previously pointed out (Mansur 1983), the adoption of β < 0.6 does not

introduce any great amount of noise in the BEM results. For this reason, the value β = 0.2 was

adopted. Besides, as the number of discrete values increases, a better picture of the results can be

inferred from the numerical results. Fig. 21 presents the results for the flux at boundary node

A(a, a/2). Potential, space and time derivatives results, for internal point B(4a/5, a/2), are presented

in Figs. 22, 23 and 24, respectively. This analysis was carried out by adopting n = 200, nINT = 60,

and an interpolation polynomial of 14th order, with discrete time values, , equally spaced, i.e.,

j = 0, 10, 20, …, 140. In this example, the number of matrices required by the proposed scheme is

equal to 2 (61 + 14) = 150 whereas the number of matrices required by the standard TD-BEM

formulation is (201 + 200) = 401; consequently, the analysis was performed by employing only

37.4% of the matrices originally required. Finally, one can conclude that the numerical results agree

quite well with the analytical solution (Morse and Ingard 1968).

6. Conclusions

In this work, a strategy for the solution of the 2-D scalar wave propagation problem, by the TD-

BEM formulation, is developed. The aim is to reduce the computational costs from the assemblage

and from the storage of the matrices related to the time-history contributions to the results at a

specific value of time. These matrices are due to the convolution integral presented in the basic TD-

BEM formulation. Computational costs are reduced by partially computing the convolution integral,

i.e., the time integration is no longer performed from to to tn but, instead of it, from some value tk to

tn; the interval [tk, tn] is designated integration interval, meaning that the matrices are appropriately

t j

Fig. 23 Square membrane: potential space derivative
∂u/∂x at point B(4a/5, a/2): Lagrange formula-
tion with n = 200, nINT = 60, and 14th order
polynomial 

Fig. 24 Square membrane: potential time derivative
∂u/∂ t at point B(4a/5, a/2): Lagrange formula-
tion with n = 200, nINT = 60, and 14th order
polynomial
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computed there (BEM matrices). In the remaining interval, [to, tk], designated interpolation interval,

the matrices are computed by interpolation. To do so, a Lagrange polynomial is constructed by

selecting discrete lgr values of time in the interval [to, tk]: BEM matrices are computed for these lgr

values and, finally, matrices corresponding to values of time different from the selected ones are

computed by interpolation. It is important to mention that the Lagrange interpolation formulation

was also adopted for the computation of space and time derivatives of the potential at internal

points and for the analysis of problems with non-homogeneous initial conditions. For the chosen

examples, the numerical results can be considered good. As the experience plays an important role

in the choice of the new parameters, i.e., the integration interval length and the order of the

interpolation polynomial, in the absence of a study concerning error estimation, two practical

recommendations are suggested by the authors: i) the use of interpolation polynomials of order

greater than or equal to 10, with equally spaced time values; ii) the ratio between nINT and n must

belong to the interval: 0.15 ≤ nINT/n ≤ 0.30. Note that the proposed procedure can easily be extended

to elastodynamics, as well. 
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