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A composite crack model for concrete based on 
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Abstract. A crack model for the fracture in concrete based on meshless method is proposed in this
paper. The cracks in concrete are classified into micro-cracks or macro-cracks respectively according to
their widths, and different numerical approaches are adopted for them. The micro-cracks are represented
with smeared crack approach whilst the macro-cracks are represented with discrete cracks that are made
up with additional nodes and boundaries. The widely used meshless method, Element-free Galerkin
method, is adopted instead of finite element method to model the concrete, so that the discrete crack
approach is easier to be implemented with the convenience of arranging node distribution in the meshless
method. Rotating-Crack-Model is proved to be preferred over Fixed-Crack-Model for the smeared cracks
of this composite crack model due to its better performance on mesh bias. Numerical examples show that
this composite crack model can take advantage of the positive characteristics in the smeared and discrete
approaches, and overcome some of their disadvantages.
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1. Introduction

Concrete is a typical low tensile strength material. Therefore most concrete structures have cracks.

The simulation of cracking is a key problem for the numerical analysis of concrete, as well as a

most difficult one. Generally there are three methods to simulate the cracks in concrete (Rots and

Blaauwendraad 1989, Jiang et al. 2005, Bazant and Planas 1997), which are referred as discrete

crack methods, smeared crack methods and embedded crack methods, respectively.

The discrete crack method or discrete crack approach (Rots and Blaauwendraad 1989, Jiang et al.

2005) represents the cracks with the boundaries of elements and continuously remeshes the elements

with the crack propagation. This method can clearly present the propagation path and width of

individual cracks. And by adding interfacial elements, it can simulate the aggregation interlock on the

crack surface. However, for concrete structures with normal reinforcement, a lot of efforts are needed

for discrete crack approaches to simulate a large number of micro-cracks or macro-cracks in concrete.

The smeared crack method or smeared crack approach (Rots and Blaauwendraad 1989, Jiang et al.

2005) is used most widely in common finite element (FE) codes. The cracks in concrete are
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represented with a zero or negative tension stiffness in the material constitutive law. This method

can simulate the large quantities of cracks in concrete, and it is easy to embedded into common FE

codes, because cracking is modeled as a material behavior so it does not need to remesh FE model

due to cracking. But it is difficult for this method to obtain the information such as the width or

propagation path of a certain crack. 

The embedded crack model creates special elements with embedded discontinuities to represent

the cracks inside the element (Grootenboer et al. 1981, Jirasek and Zimmerman 1998, Wells and

Sluys 2000, Zi and Belytschko 2003, Areias and Belytschko 2005, Gasser and Holzapfel 2005,

Areias and Belytschko 2005, Loblein and Schroder 2005, Schroder and Loblein 2005). It is also a

convenient method to avoid remeshing. This method initiated more than 20 years ago (Grootenboer

et al. 1981) and recent years it has received more focus. Some new conceptions with embedded

discontinuities such as Partition of Unity Finite Element Method (PUFEM) (Gasser and Holzapfel

2005) or extend Finite Element Method (XFEM) (Zi and Belytschko 2003, Areias and Belytschko

2005), are developed and introduced in concrete cracking simulation to overcome the drawbacks of

discrete or smeared crack models. 

After all, discrete and smeared crack models are still the most popular methods in concrete fracture

simulations. And for the extremely large number of micro-cracks in concrete, the smeared crack

approach is believed to be the most effective method to represent them. And some important

researches have been carried out to combine the smeared and discrete approaches to take their

advantages and to avoid their drawbacks (Munjiza et al. 1999, Munjiza 2004). But with finite element

method large efforts are still needed for remeshing of the discrete cracks. So the meshless method, in

which no element mesh is needed, can be introduced to replace finite element method for discrete

crack simulation, whilst micro-cracks of concrete are still simulated with smeared crack approach.

2. Element-free Galerkin method

2.1 Basic theory of element-free Galerkin method

The meshless method has many different branches (Liu 2002). And the meshless method used in

this paper is the widely used element-free Galerkin method (EFGM), which was developed by

Belytschko (Belytschko and Lu 1994, Belytschko 1996). Its basic procedure is expressed as follows:

For a field function u*(x) in a domain of Ω, its approximate function can be built as:

 (1)

where  is the factor vector, which is a function of x, and  is an m-dimensional

polynomial. In this study, a linear polynomial  is adopted so that for planar problems:
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Factor  will be determined by weighted moving least-square (MLS) fitting for the local

approximation, which is obtained by minimizing the difference between the local approximation and

the original function. This yields the following quadratic form:

(4)

where  is the weight function, and  is the value of  on point xj.

Minimizing J to the factor a(x), that is, . Then yielding the factor a(x)

(5)

where 

(6a)
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So, Eq. (1) can be re-written as 
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The partial difference of function  is
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2.2 Parameters in EFGM implementation

The weight function which is developed by Zhou and Kou (1998) is chosen in this study:

(13)

where ε = 0.05, k = 2. rm is the radius of influence domain. It will be set automatically by the

program, parallel with the changing of node distribution and boundary distribution. The boundary

conditions are applied with the penalty function method, which means the displacement boundary

condition is applied with a large penalty multiplier (Luis Gavete and Benito 2000).

3. Influence domain size with discrete cracks

With the propagation of discrete cracks, the relationships between the nodes and Gauss

integration points change continuously. The following method is adopted to set up the size of the

influence domain in EFGM, and to build up the relationships between nodes and Gauss integration

points.

(1) For a certain Gauss integration point Pint, it is linked with every node with straight lines. If a

line between Pint and a node intersects some boundaries, which may be the edge of the

specimen or the surface of a crack, then the corresponding nodes will be considered as being

“shadowed” by the boundaries. And this node will not attend the following computation of this

Gauss point.

(2) For all nodes which are not “shadowed”, the closest 6 nodes are selected to attend the moving

least square (MLS) computation to buildup the approximate displacement field.

(3) And the distance from Pint to the farthest one of the 6 nodes that attends the MLS computation

is set as the influence domain radius rm in Eq. (13).

An example for the relationship between nodes and Gauss integration points obtained by the

above procedure is shown in Fig. 1. These steps are repeated for every Gauss point so that all the

geometrical parameters needed in EFGM will be obtained.
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4. Initiation and propagation of macro-cracks

4.1 Classification for the cracks

The tensile strain corresponding to concrete tensile strength is very small, which is only about 10−4.

So in the real concrete structures with normal reinforcement, there are many invisible micro-cracks.

It is almost impossible to simulate these micro-cracks one by one by discrete crack methods. And at

the same time, the widths or the shapes of cracks that are mostly concerned in practice are those

visible macro-cracks. Hence, it is rational to treated different cracks with different models, which is

shown as follows:

(1) If the tensile strain of concrete is less than a certain value εt, u, the cracks corresponding to this

strain are considered as micro-cracks. For these cracks, smeared crack approach is adopted

because it is easier to represent the average behavior of a number of micro-cracks.

(2) When the tensile strain of concrete is larger than εt, u, it is supposed that there are some macro-

cracks in the concrete. And the smeared crack model cannot describe these cracks precisely.

Hence, new nodes and boundaries are added into the numerical model to describe the discrete

macro-cracks.

From the above description it can be found that the criterion between micro and macro-cracks is

based on the tensile strain εt, u of concrete. In this study, a tension strain when the residential tension

stress of cracked concrete decreases to zero is adopted for εt, u. There are two reasons for choosing

such value of εt, u. The first reason is that when tension strain is larger than εt, u, there is no

residential tension stress in cracked concrete, so no more interfacial elements are needed for discrete

cracks to describe the residential tension stress, which will simplify the implementation of discrete

cracks. The second reason is that as no residential tension stress in cracked concrete, the shear stress

on the crack surface is mainly due to aggregate interlock, and the empirical formula for the

aggregate interlock now is suitable to model the shear behavior of the discrete cracks, which will be

explained in later content. So if a linear softening branch of stress-strain relationship of cracked

concrete is adopted (Peterson 1981, Bazant 2002), then 

(14)

where ft is the tensile strength of concrete. b is the crack band width and it equals to the diameter of

the influence domain of corresponding Gauss point. Gf is the fracture energy of concrete. It is

proposed by CEB-FIP (1993) that:

(15)

where α = 0.03 for normal concrete and fc (MPa) is the compressive strength of concrete. 

In EFGM, the function of influence domain is just like the elements in finite element method,

which is used to buildup the local approximate displacement field. And the polynomial p(x), which

makes up the local approximate displacement field, is linear in this study (Eq. 2). So the crack band

width b in EFGM is similar to the one in finite element methods with linear elements, which

basically equals to the size of the elements, or the diameter of influence domain. 
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4.2 Initiations of macro-cracks

Because the meshless method does not have any restraint from the element mesh, the cracks can

be generated conveniently by adding nodes and boundaries in any place needed. Since the RC

specimens studied in this paper are under bending or bending-shear combined load, it is assumed

that all the macro-cracks initiates from the edge of the specimen in this computation. With this

assumption, the complicated boundary intersection among crack boundaries and specimen edges can

be avoided. More researches will be carried out in future study to simulate the intersection and

separation of discrete cracks. 

The detailed implementations for the initiates of macro-cracks are illustrated as follows:

(1) In a certain load step, the tensile strain of point pext on the specimen edge is calculated by

extrapolating the tensile strain of Gauss points near to the edge. 

(2) If the maximum extrapolated tensile strain on point pext is larger than εt, u, then there will be a

macro-crack initiating from this point.

(3) Two new nodes on both sides of pext will be added along the direction of specimen edge with

a very small space Δc, i. And another node  is added inside the specimen, which is located

in the direction of principal compressive stress of pext, and this node is set to be crack tip node.

The initial distance from  to pext is two times of the Gauss point space δgauss. New

boundaries are built with these three nodes, which are referred as crack boundaries, as shown

in Fig. 2.

(4) The relationship between node and Gauss point is rebuilt with new node distribution and new

boundaries by the method introduced in Chapter 3. The current load step is calculated again to

obtain the maximum tensile strain  on the crack tip node .

(5) If , which means the length of the new crack should be larger than current one, the

crack length will be increased by extending  to one more δgauss along the current crack

direction.

(6) Step (4) and (5) are iterated until . Then it is regarded that the propagation of this

macro-crack is finished in the current load step.

It should be mentioned that there might be strain concentrations problem on the crack tip. And if

the node spacing or the crack propagation segment is too large, it will cause serious convergence

problem, and the shape of crack will be influenced by the initial node distributions. Munjiza et al.

(1999) have given a detailed discussion on this problem and they found that the maximal initial

node space h should be much smaller than the length of micro-crack zone Δcr to avoid such

problems. As the micro-crack zone changes during the computation, Munjiza et al. (1999) proposed
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Fig. 2 Initiation of macro-crack
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the following equations to roughly estimate the size of Δcr:

(16)

where E is the elastic modulus of concrete, δc is the width of crack when the residential tensile

stress of cracked concrete decreases to zero. ft is the tensile strength of concrete. So, for a normal

concrete with a tensile strength ft = 3 MPa, compressive strength fc = 30 MPa and elastic modulus

E = 30 GPa, with Eq. (15) the fracture energy of concrete Gf = 0.0647 MPa mm, and the softening

branch of cracked concrete is set to be a linear curve, then

(17)

So with Eq. (16), the length of micro-crack zone Δcr = 42.4~108 mm. 

Hence, in this study, the average space of initial node distribution h is set to be about 10 mm to

give a stable numerical result.

4.3 Propagation of macro-cracks

When a new load step is applied, the tensile strain at every crack tip node  is calculated. If

the maximum tensile strain of  is larger than , a new node N1 is added which is very close

to , and another new node N2 is added which is advanced for about 2 δgauss in the direction of

maximum compression strain of . The relationship of new nodes is shown in Fig. 3.

Set N2 to be new crack tip, modify the relationship of nodes and Gauss points, and recalculate

current load step. If the maximal tensile strain on the new crack tip node N2 is larger than , then

N2 is further moved along the original direction for δgauss space. This process is iterated until the

maximal tensile strain on the new crack tip node N2 is smaller than .

4.4 Crack surface elements

From the macro-cracks obtained by the above process, it is very convenient to stimulate the

opening and sliding of crack surface. Hence, the shear stress-slip relationship for the aggregate

interlock in the crack surface can be used directly, just like their successful application in discrete

crack models (Elfgren 1989). It should be mentioned that shear behavior of cracked concrete is a

very complicated phenomenon. Currently better understanding has been achieved for well-developed

cracks in which shear stress is mainly due to aggregate interlock, but little has been obtained for the

shear mechanism of micro-cracks, in which shear stress is a combined effect of aggregated
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Fig. 3 Propagation of macro-crack
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interlock, crack surface friction and residential shear strength of concrete. In smeared crack model,

an empirical shear modulus Gc for cracked concrete is usually used instead of elastic shear modulus

G0 to represent the shear stiffness reduction due to cracking (Rots et al. 1985, Rots and

Blaauwendraad 1989, Lu et al. 2005). And it is found that this empirical shear modulus gives a

good representation for cracks with smaller opening and shear sliding but a poor result for well-

developed cracks (Rots et al. 1985, Rots and Blaauwendraad 1989), because the opening and sliding

of well-developed cracks cannot be precisely described with the even-distributed cracking strains in

smeared crack model. At the same time, most crack surface shear tests are based on well-developed

cracks because it is very difficult to control the crack width in micro-cracks. Hence, in this study, it

is rational that the empirical shear modulus Gc is still used for smeared crack model that represent

the micro-cracks, in which Gc not only represents the aggregated interlock but also represents the

residential cohesive shear stress in concrete when crack is very small. And when cracks become

macro-ones, and the shear force in the crack face is mainly due to aggregated interlock, an

empirical relationship of shear stress vs. slip in the crack surface is adopted which is based on the

research of Fenwick and Pauley (1968):

(18)

where τa is the shear stress in the crack surface caused by aggregate interlock (MPa). w is the crack

width (mm). fc is the uniaxial compressive strength of concrete (MPa). Δ is the relative sliding

displacement of crack surface (mm). 

Once there is a macro-crack occurs or propagates, a spring element, which is referred as crack

surface element here, is added together with the new node pair of the macro-crack. The direction of

the spring is parallel to the crack surface, so as to bear the shear force. The tangent stiffness of the

spring is shown as follows:

(19)

where l is the incremental length of the macro-crack and t is the thickness of concrete. 

5. Different smeared crack models

There are two types of smeared crack models used most widely in the finite element analysis of

concrete. One is referred as Fixed-crack-model (FCM). The other is referred as Rotating-crack-

model (RCM) (Rots and Blaauwendraad 1989, Weihe et al. 1998). The main difference between the

two models is: After the first crack initiates in a certain Gauss point, FCM assumes that the

direction of crack will not change anymore, while RCM assumes the crack direction will always

perpendicular to the maximum tensile stress. 

From theoretical analysis, when cracks firstly initiate, they are very small and they do not show

strong directional consistency due to the random distribution of aggregates and initial voids. And

the major crack directions are able to change with further stress development. However, with the

increase of damage, when the cracks are wide enough, the micro-cracks connected with each other

to become a macro-one, so the major crack directions cannot rotate freely parallel with the principal

stress. Hence, because FCM assumes the crack angle will not change once the crack appears, it will
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K
∂τa

∂Δ
--------lt 3.218/w 2.281–( ) 0.271 fc 0.409–( )lt= =



A composite crack model for concrete based on meshless method 225

Fig. 4 3-point bending beams

Fig. 5 Crack patterns with FCM or RCM
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overestimate the initial damage of early cracking. On the contrary, RCM assumed crack direction is

always consistent with principal stress, so it may underestimate the influence of opened cracks.

Then it is reasonable to use RCM firstly when the cracks are relatively small, and to fix the

direction of crack when the cracks are wide enough. Consequently, in the composite crack model in

this study, RCM should be more feasible for the micro-crack stage.

In order to verify the conclusion above, numerical tests are carried out to compare RCM and

FCM in current composite crack model. A plain concrete 3-point bending beam with a notch in the

mid span is analyzed, with two types of node distribution as shown in Fig. 4. The macro-crack

pattern with the composite crack model discussed above is shown in Fig. 5. It should be mentioned

that during the crack propagation in Mesh B, it will closely pass several existing nodes. Then the

macro-cracking path has to leave the symmetric section of the beam to avoid the separations of

existing nodes. At this time, crack propagation will be affected by the accumulated errors of

numerical iterations. Because the boundary constraint of right sliding support of the beam is weaker

than the left hinge support, the accumulated error always leads the asymmetric cracking to go to the

right side of the mid-section. Then, with FCM, the crack will keep on going to the right side of the

beam because the initial error of crack direction cannot be eliminated in later iteration. If stricter

convergence tolerance is given, which is reduced from Fig. 5(b) with a 2% residential force to

Fig. 5(c) with a 1% residential force, the rotation of macro-cracks with FCM will be reduced but

more efforts are needed to get a converged result. On the contrary, because the crack direction of

RCM is able to change with the principal stress, the initial error of crack direction will be reduced

in later iteration so that RCM can effectively reduce the influence of mesh bias and the cracking is

always close to symmetric (Figs. 5d, e). So it can be concluded that RCM is preferred over FCM in

micro-crack stage.

6. Combination of concrete and rebar

Since node distribution in the meshless method is very flexible, nodes can be placed in any place

where rebar is located. Truss element which is often used to model discrete rebar is adopted in this

analysis. The rebar and concrete share the same node to achieve a compatible displacement, which

is shown in Fig. 6. The contribution of rebar stiffness is added to the global concrete matrix of

EFGM. 

Fig. 6 Connection between rebar and concrete
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7. Examples

7.1 Flexural failure of concrete beams

A plain concrete cantilever beam and a flexural reinforced concrete cantilever beam without

stirrups are analyzed with the proposed model. The dimension and initial node distribution are

shown in Fig. 7. Altogether 41 × 11 = 451 nodes and 1600 Gauss points are used. The size of beams

is 2000 × 250 × 500 mm. The cover layer thickness of B2 is 25 mm. The cube compression strength

of concrete is 30 MPa, and the equivalent compression stress-strain curve advised in “Chinese code

for design of concrete structure” (GB 2002) is adopted for concrete in this analysis, which is shown

as follows. 

(20a)

(20b)

y aax 3 2aa–( )x
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aa 2–( )x
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x 1≤+ +=

y
x
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---------------------------------=    x 1>
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Fig. 7 Dimension and initial node distribution of specimens

Fig. 8 Load-displacement curves for B1 & B2
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where . fc is the uniaxial compression strength. And εc is the compress strain

when σ = fc. aa and ad are factors. According to the Chinese code (GB 2002), aa = 2.03, ad = 1.36,

εc = 1640 με. The softening branch of stress-strain curve of cracked concrete is linear and the strain

corresponding to the end of softening branch is given in Eq. (14).

The rebar material has a yield strength of 335 MPa, with perfect elasto-plastic flow after yielding.

The load-displacement curves of the beam are shown in Fig. 8. The errors of strength and stiffness

of numerical results are less than 10%, which are compared with the empirical model of Chinese

code (GB 2002). The development of macro-cracks is shown in Fig. 9. It can be seen that this

method can correctly simulate the deformation and crack development of concrete beams.

Two typical cracks, Crack-1 and Crack-2, in Fig. 9, are selected and magnified in Fig. 10. In Crack-

1, because there is no reinforcement in the beam, the width of this crack changes almost linearly for

the edge of the specimen to the crack tip. However, for Crack-2, the crack width is relatively small

around the rebar due to the rebar’s constraint. And the largest crack width is found in the middle of

the specimen because there is no stirrup in this beam. All these are very consistent with test results.

x ε/εc= y σ/fc=,

Fig. 9 Propagation of macro-cracks

Fig. 10 Shape and width of selected cracks 
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Fig. 11 Comparison of load-displacement curves

Fig. 12 Development of cracks
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7.2 RC beam fails in diagonal tension

A reinforced concrete beam without stirrups failing in diagonal tension was tested by Gijsbers and

Smit (Rots et al. 1985), and analyzed by Rots et al. (1985) with smeared crack model based on

finite element method. As in such type of beams, the aggregate interlock plays an important role for

the shear capacity, a proper shear retention factor β is important to obtain a precise prediction.

Although many shear retention models have been developed for smeared crack model (Zhu et al.

2001), it is still difficult for smeared crack model alone to deal with such problems. However, with

the composite crack model discussed above, the aggregated interlock on the critical shear crack

surface can be precisely modeled with the empirical equation based on crack shear test. The

numerical results are shown in Figs. 11 and 12 (finite element smeared crack results were computed

by Rots et al. 1985). In the early stage of the load, when the deflection at the mid-span is about

2.1 mm, because no shear reinforcement is inside the beam, the micro-cracks with smeared crack

model cover about 2/3 of the beam height from the bottom. However, most micro-cracks are very

small and only 5 flexural macro-cracks take place in the middle span of the beam due to flexure,

whilst one more macro-crack initiates near the support due to the local stress concentration (Fig. 12b).

With load increase, the development of macro-cracks are mainly the propagation of existing macro-

cracks in early load stages. Only two more macro-cracks appear due to the large anchorage stress of

the reinforcement when diagonal shear crack is well developed (Fig. 12c). Because in current

composite crack model the macro-cracks cannot intersect with each other, the final complicated

cracking of concrete near to the bottom of diagonal shear crack (Fig. 12a) cannot be fully simulated.

After all, the proposed model correctly simulates the propagation of diagonal shear crack and gives a

precise prediction of peak shear load and corresponding deflection (Fig. 11). 

8. Conclusions

A novel composite crack model based on meshless method, which combines smeared and discrete

crack models, is introduced in this paper. The cracks in concrete are classified and modeled with

different cracking approaches. The detailed implementation for the initiation and propagation of

macro-cracks is presented, with the advantages of meshless method. FCM and RCM are compared

and RCM is proved to be able to reduce the mesh bias influence. The numerical examples show

that this method can correctly simulate the shape and propagation of macro-cracks.
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Notation 

a(x) : factor vector for moving least square (MLS) computation
B : shape function matrix
E : elastic modulus of concrete
fc : uniaxial compression strength of concrete 
Gf : fracture energy for concrete 
h : maximal initial node space 
K : global stiffness matrix for EFG
l : increment of the macro-crack length
n(x) : shape function obtained from MLS
ni(x) : partial difference of shape function n(x)
p(x) :m dimensional polynomial
rm : radius for influence domain in EFGM
t : thickness of concrete specimen

: weight function in moving least square (MLS) computation
w : crack width (mm)
β : shear retention factor 
δc : the width of crack when the residential tensile stress of cracked concrete decreases to zero
δgauss : Gauss point space
Δ : relative sliding displacement of crack surface (mm)
Δcr : length of micro-crack zone 
Δc, i : initial macro-crack width

: critical value of tensile strain to transmit the smeared model to discrete model

: tensile strain on the crack tip
τa : shear stress on the crack surface caused by aggregate interlock

w x xj–( )

εt u,

εc t,

t




