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Stability of a slender beam-column with 
locally varying Young’s modulus

Vladimír Kutiš
†
 and Justín Murín

‡

Department of Mechanics, Slovak University of Technology, Faculty of Electrical Engineering and 

Information Technology, Ilkovi ova 3, Bratislava, 81219, Slovakia

(Received January 31, 2005, Accepted January 18, 2006)

Abstract. A locally varying temperature field or a mixture of two or more different materials can cause
local variation of elasticity properties of a beam. In this paper, a new Euler-Bernoulli beam element with
varying Young’s modulus along its longitudinal axis is presented. The influence of axial forces according
to the linearized 2nd order beam theory is considered, as well. The stiffness matrix of this element
contains the transfer constants which depend on Young’s modulus variation and on axial forces.
Occurrence of the polynomial variation of Young’s modulus has been assumed. Such approach can be
also used for smooth local variation of Young’s modulus. The critical loads of the straight slender
columns were studied using the new beam element. The influence of position of the local Young’s
modulus variation and its type (such as linear, quadratic, etc.) on the critical load value and rate of
convergence was investigated. The obtained results based on the new beam element were compared with
ANSYS solutions, where the number of elements gradually increased. Our results show significant
influence of the locally varying Young’s modulus on the critical load value and the convergence rate.
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1. Introduction

The critical load of a slender column depends (after Euler buckling theory) on stiffness, column

length and on boundary conditions. The buckling stiffness of the column is given by the cross-

section moment of inertia and by the Young’s modulus. In most cases a constant Young’s modulus

of the beam along its longitudinal axis is considered. The cross-sectional characteristics could be

either constant or variable (Banerjee and Williams 1986, Chugh and Biggers 1976, Lee and Oh

2000, Li 2001, Murín and Kutiš 2002, Rubin 1996, Sapountzakis and Mokos 2004). Recently, new

beam elements with functionally graded materials have been developed. Here the material properties

change over the beam thickness (Chakraborty, Gopalakrishnan and Reddy 2003, Librescu, Oh and

Song 2004, Sankar 2001). Less attention has been paid to variation of the elasticity modulus along

the beam length.

Numerical analysis results show a strong influence of the cross-sectional characteristics variation

on the slender beam-column stability. Therefore, it can be assumed, that the local variation of
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Young’s modulus along the length will have a significant influence too (Murín and Kutiš 2004).

Varying temperature field or composition of two or more materials mixed together can bring

about the elastic property variation. Such beams with varying elastic properties could be found not

only in the special mechatronics and micromechanical systems, but also in the classical frame

structures (Su and Banerjee 2004).

The Hermite or isoparametric beam elements are usually used for statical analysis of a frame

structure containing beams with the stiffness variation. The stiffness matrix of this beam element

contains an average value of Young’s modulus. The average Young’s modulus is derived from its

nodal point values. Because these elements do not fulfil the equilibrium equations (in the local

sense), a very fine mesh of elements is needed to get the correct results. To overcome this problem,

a new beam element with varying Young’s modulus along its longitudinal axis, under assumption of

Euler-Bernoulli beam theory – the 1st order (geometric linear, small elastic displacements) and

linearized 2nd order (small but finite elastic displacements, the equations of equilibrium are written

in terms of geometry of deformed systems, the internal axial force is assumed as static determined –

this theory is geometric linear too, (Rubin and Schneider 1996, Mehlhorn 1995)), is proposed in this

paper. A polynomial variation of the Young’s modulus has been assumed. The influence of local

variation of Young’s modulus, as well as the type of this variation, on the critical load value will be

shown in several numerical examples. The results of these analyses will be compared with the ones

obtained using the above mentioned classical beam elements.

2. Stiffness matrix of the beam element with varying Young’s modulus

2.1 Variation of the beam stiffness

The 2-nodal straight 2D-beam element in the initial configuration is depicted in Fig. 1. Its axial

stiffness at point x is defined as , where E(x) is the varying Young’s modulus and

A is the cross-sectional area. The flexural stiffness about y-axis is , where Iy is the

area moment of inertia about the y-axis. The variation of the Young’s modulus is described by the

polynomials 

(1)

BA x( ) E x( )A=

BI x( ) E x( )Iy=

E x( ) Ei 1 ηEk x
k

k 1=

t

∑+

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Fig. 1 Beam element with variation of Young’s modulus
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where Ei is the value of the Young’s modulus at the nodal point i, the parameters t and ηEk depend

on variation of the Young’s modulus along the longitudinal axis of the beam element.

The variation of Young’s modulus can be defined directly through the parameters ηEk – Eq. (1) or

by defining Young’s modulus in equidistant points.

The stiffness of the beam using Eq. (1) is defined as:

• axial stiffness 

(2)

• bending stiffness about the y-axis 

(3)

2.2 Axial loading

In the case of axial loading, the situation has not changed if compared with the 1st order theory.

The differential equation for the axial loading is

(4)

The displacement  and internal axial force  is shown in Fig. 2.

BA x( )

BA x( ) AEi 1 ηEk x
k

k 1=

t
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=
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BI x( ) IyEi 1 ηEk x
k

k 1=

t

∑+

⎝ ⎠
⎜ ⎟
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=

ud x( )
xd

-------------
N x( )
BA x( )
--------------=

u x( ) N x( )

Fig. 2 Initial and deformed configuration – linearized 2nd order beam theory
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The solution of differential equation for the axial loading is

(5)

where ui, Ni and BAi are the displacement, axial force and axial stiffness at the node i respectively,

and  is the transfer function for the 1st order beam theory, dealt with in section 3. The sign

of second term on the right side in Eq. (5) depends on positive orientation of force Ni. According to

Fig. 2, this sign is minus.

2.3 Bending

The beam element with internal forces and with deformation variables in the deformed

configuration (the linearized 2nd order beam theory) in the xz-plane is shown in Fig. 2. The

physical representation of these parameters is shown in this figure. As we can see, there are two

possible configurations,  and  (R is the transversal and Q is the shear force, M is the

bending moment). The basic beam equations are derived in the  configuration, but the final

FEM equations are transformed to the  configuration. The transformation equations between

both formulations can be found in Rubin (1996). Both configurations coincide in the case of the 1st

order beam theory.

In case of transversal bending around the y-axis we have

(6)

(7)

and the differential equation of equilibrium is

(8)

The relationship between  and  is expressed by the following conditions: the angular

displacement is small, i.e.,  and . Using Eq. (7) this relationship can be

written in the form

(9)

The solution of these differential equations of the linearized 2nd order beam theory has been

derived in Murín and Kutiš (2003) and it has the following form (under assumption of nodal loads

only):

• deflection in the z-direction

(10)

u x( ) ui

Ni
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• angular displacement about the y-axis

(11)

where  and BIi is displacement, angle, moment, shear force and bending stiffness  at

node i respectively, and  and  are transfer functions for linearized 2nd

order beam theory, which are dealt with in section 3.

2.4 Stiffness matrix for 2D beam element

The stiffness matrix of the beam element with varying Young’s modulus can be derived by the

direct stiffness method, or using new shape functions (Murín and Kutiš 2003). 

The stiffness matrix has the form

(12)

where ,  and . All transfer functions

in Eq. (12) are evaluated at  and they are called transfer constants.

Displacement vector u and load vector f have the form

(13)

(14)

The final local relationship can be written in classical FEM form

(15)

3. Solution of the transfer constants

The transfer functions  and their first derivatives (denoted by ( ' )) depend on the

variation of Young’s modulus and on the internal axial force. It should be noted that a constant

internal axial force along the length of the beam has been assumed. Meanwhile, the transfer

function  depends on the Young’s modulus variation only. For  we get the transfer

constants of the beam element – by2, by3 and their derivatives  and  for linearized 2nd order
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beam theory and  for the 1st order beam theory. The transfer functions are derived from the

analytical solution of the differential equations with non-constant parameters of the beam (Rubin

1996, Kutiš and Murín 2002).

The transfer functions  and  for the linearized 2nd order beam theory can be rewritten

as

 for (16)

where  is given by the expression

(17)

and  is defined as

(18)

Single parameters are given by

and initial values are

                                 

The previous numerical procedure is developed for the linearized 2nd order beam theory, but if in

Eq. (17) is put , the procedure can be also used for the 1st order beam theory.
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Fig. 3 Beam-column with non-constant Young’s modulus along its length
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4. Numerical examples

Five numerical examples show the accuracy and effectiveness of the beam element. The beam

cross-section is constant, but the material property – Young’s modulus, is in some regions non-

constant. In all examples, the goal is to determine the critical force Fcrit using our beam element and

to compare the obtained results with the ANSYS solution (ANSYS 6.1 2002), where the number of

elements is gradually increased.

In all the examples, with the only exception of Example 5, abbreviation NOE represents the

number of elements in each model part p - Fig. 3. In Example 5, NOE is the total number of

elements.

In the first two examples, the Young’s modulus in regions p2 and p3 varies linearly – Fig. 3. In

these examples, influence of value of L1 and L2 on Fcrit and NOE is examined. In Example 3 and

4, the influence of a different type of Young’s modulus variation on Fcrit and NOE is examined.

And finally, Example 5 investigates four basic types of Euler buckling, where the Young’s

modulus varies quadratically.

4.1 Example 1

Fig. 3 shows the simple supported beam-column with a constant circular cross-section. The

diameter of the cross-section is d = 0.02 [m]. The beam-column length is L = 1 [m]. The material

properties are non-constant along the beam length; the variation of Young’s modulus is also shown

in this figure. As presented in Fig. 3, the non-constant Young’s modulus is characterized by its two

values:  and . The position of E2 is located at the mid-

point of length L2. Lengths L1 and L2 characterize the regions with the non-constant Young’s

modulus. In this example, the length L2 is constant with the value L2 = L/3. The length L1 gradually

decreases according to the second row of Table 1. The objective is to determine the critical force of

the beam-column.

E1 2.1 10
11

Pa[ ]×= E2 1 10
11

Pa[ ]×=

Table 1 The critical force in Example 1

New beam element – Fcrit [N]

NOE L1 = 12L/24 L1 = 10L/24 L1 = 8L/24 L1 = 7L/24

1 12782 12932 13387 13741

ANSYS Beam3 element – Fcrit [N]

1 13362 13495 13885 14165

2 12933 13084 13532 13859

3 12847 13000 13459 13795

4 12814 12971 13432 13772

6 12793 12949 13413 13755

8 12786 12941 13407 13750

10 12782 12938 13404 13747

20 12782 12933 13399 13743
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The problem has been solved by our beam element with transfer constant, as well as with FEM

ANSYS program. The model is divided into four parts – p1 to p4 (Fig. 3). Parts p1 and p4 have

constant material properties; the variation of Young’s modulus along the parts p2 and p3 is linear.

Using our beam element, each part was modeled by only one element. In the ANSYS program, the

number of elements was gradually increased. The number of elements – NOE – in Table 1

represents the number of elements in each part, i.e., when the NOE in a single part is 3, the total

number of elements of the system is 12. The results are shown in Table 1.

Assuming Young’s modulus constant along the length (equal to E1), the critical force is Fcrit,const =

16278 [N].

As it can be seen from Fig. 4, the minimal value of the critical force is reached, when the

position (L1) of local variation of Young’s modulus is in the midspan. Conversely, if a non-

constant Young’s modulus region is moved closer to the left or right end of the beam, the critical

force is increased.

Comparing to the case with the constant Young’s modulus in case of E1 > E2, the value of the

critical force is considerably decreased by the local variation of the Young’s modulus.

Fig. 4 The critical force dependence of length L1 – Example 1 (symmetric about the midspan)

Table 2 The critical force – Example 2

New beam element – Fcrit [N]

NOE L2 = L/2 L2 = L/3 L2 = L/4 L2 = L/5 L2 = L/6 L2 = 8L/100

1 11693 12782 13465 13935 14273 15250

ANSYS Beam3 element – Fcrit [N]

1 12609 13362 13904 14289 14572 15404

2 11929 12933 13586 14033 14357 15293

3 11799 12847 13520 13980 14311 15270

4 11753 12814 13496 13961 14295 15262

6 11720 12793 13479 13947 14283 15256

8 11709 12786 13473 13942 14279 15254

10 11703 12782 13470 13939 14277 15253

20 11696 12782 13467 13936 14275 15251
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4.2 Example 2

The second example analyses the effect of length L2 on the critical force in the same system as in

Example 1. The only parameter changed is the length L2 – its value is gradually decreased

according to the second row in Table 2. The length L1 has been chosen as L1 = L/2.

From Fig. 5 can be seen, that with increasing the length L2 of the local Young’s modulus

variation, the first critical force decreases, as expected. It is clear, that the critical force is closer to

Fcrit,const, when the length L2 is smaller.

Fig. 5 The critical force dependence on length L2 (symmetric about the midspan)

Table 3 The critical force – Example 3

New beam element – Fcrit [N]

NOE Type 1 Type 2 Type 3 Type 4

1 12782 13844 14409 14763

ANSYS Beam3 element – Fcrit [N]

2
6
10
20

12933
12793
12782
12782

14181
13880
13854
13840

14855
14468
14426
14407

15273
14842
14784
14762

Fig. 6 Variations of Young’s modulus along the length L2
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4.3 Example 3

The third example analyses the effect of Young’s modulus type variation in parts p2 and p3 on

Fcrit. The geometry is identical with Example 1, i.e., length L1 = L/2 and L2 = L/3. The Young’s

modulus is E1 = 2.1 × 1011 [Pa] and E2 = 1 × 1011 [Pa], still, the variation is different in parts p2 and

p3 – the length L2. For part p2, variations are as follows.

Type 1: 

Type 2:

Type 3:

Type 4:

For part p3, the Young’s modulus is symmetric about the central point of beam - Fig. 6. 

The results for individual types are shown in Table 3.

As we can see from Table 3, the beam with linear Young’s modulus variation has minimal critical

force. The critical force increases, when the order of polynomial, which describes the Young’s

modulus variation becomes higher, as expected.

E x( ) 2.1 10
11× 6.6 10

11
x Pa[ ]×–=

E x( ) 2.1 10
11× 3.96 10

12
x
2

Pa[ ]×–=

E x( ) 2.1 10
11× 2.376 10

13
x
3

Pa[ ]×–=

E x( ) 2.1 10
11× 1.4256 10

14
x
4

Pa[ ]×–=

Fig. 7 Convergence of results of the Hermite beam element to our new element results – Example 3 (NES –
new element solution)
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Fig. 7 shows a very good effectiveness and accuracy of our new beam element. As it can be seen

from the figure, the convergence of a classical beam element to our solution is very rapid mainly in

the first two types of the Young’s modulus variation. In Types 3 and 4, where the Young’s modulus

is described by higher order polynomial, the convergence rate is not so rapid and it is necessary to

use more elements to obtain relevant results.

Table 4 The critical force – Example 4 

New beam element – Fcrit [N]

NOE K = 1/10 K = 1/5 K = 1/2 K = 2 K = 5 K = 10

1 12077 13181 14858 17803 19919 21539

ANSYS Beam3 element – Fcrit [N]

2
6

10
20

14371
12906
12509
12207

14628
13565
13345
13212

15324
14928
14879
14857

17665
17794
17804
17808

19874
19918
19926
19929

21430
21545
21551
21553

Fig. 8 Convergence of results of the Hermite beam element to our new element results – Example 4 (NES –
new element solution)
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4.4 Example 4

This example examines the influence of magnitude E2 on Fcrit and NOE. All parameters are

identical with those of the previous example – type variation 4, but the Young’s modulus E2 can be

written as . The parameter K is changed from 1/10 to 10. The obtained results are

shown in Table 4.

Fig. 8 shows a very good effectiveness and accuracy of our new beam element. As we can see

from Table 4 and Fig. 8, the rate of convergence is faster in cases when K > 1 than it is in cases

when K < 1. In cases when K > 1, the increase of K yields an increase of the convergence rate, and

in cases when K < 1, the decrease of K yields a decrease of the convergence rate.

4.5 Example 5

This example investigates four basic types of Euler buckling where the cross-section is constant,

but the Young’s modulus varies quadratically. The diameter of the cross-section is d = 0.02 [m], the

length is L = 1 [m] and the variation of Young’s modulus is, as shown in Fig. 9,

The obtained results for individual types of buckling are shown in Table 5.

E2 K E1⋅=

E x( ) 2.1 10
11× 2.2– 10

11
x× 1.1+ 10

11
x
2

Pa[ ]×=

Table 5 The critical force – Example 5

New beam element – Fcrit [N]

NOE I II III IV

1 2955 9867 20649 41008

ANSYS Beam3 element – Fcrit [N]

2
6
10
20

2861
2944
2951
2954

9963
9874
9869
9867

20151
20593
20627
20644

40271
40954
40970
40997

Fig. 9 Four basic types of buckling with non-constant Young’s modulus
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5. Conclusions

The local Young’s modulus variation exerts an influence on the beam stiffness. This paper deals

with the new beam element with a continuous variation of Young’s modulus which can be used in

statical analysis of frame structures with such a varying stiffness. The influences of the position and

width of local Young’s modulus variation on the critical axial force of the straight column has been

investigated using this new beam element. The results of the proposed numerical examples show

that the local Young’s modulus variation has a considerable influence on the critical load of the

column. The same examples have been tacked using the Hermite beam element with an increasing

number of elements. Comparison of both solutions shows a very good effectiveness and accuracy of

our beam element.
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