
Structural Engineering and Mechanics, Vol. 23, No. 1 (2006) 1-13 1

A generalized algorithm for the study of 
bilinear vibrations of cracked structures

Tzuo-Liang Luo† and James Shih-Shyn Wu‡

Institute of Mechanical Engineering, National Chung-Hsing University, 

250, Kuo-Kuang Rd., Taichung, Taiwan 402, ROC

Jui-Pin Hung‡†

Institute of Precision Machinery and Manufacturing Technology, National Chin-Yi Institute of Technology,

35, Lane. 215, Sec. 1, Chung-Shan Rd., Taiping, Taichung, Taiwan 411, ROC

(Received February 24, 2005, Accepted January 23, 2006)

Abstract. Structural cracks may cause variations in structural stiffness and thus produce bilinear
vibrations to structures. This study examines the dynamic behavior of structures with breathing cracks. A
generalized algorithm based on the finite element method and bilinear theory was developed to study the
influence of a breathing crack on the vibration characteristic. All the formulae derived in the time domain
were applied to estimate the period of the overall bilinear motion cycle, and the contact effect was
considered in the calculations by introducing the penetration of the crack surface. Changes in the dynamic
characteristics of cracked structures are investigated by assessing the variation of natural frequencies under
different crack status in either the open or closed modes. Results in estimation with vibrational behavior
variation are significant compared with the experimental results available in the literature as well as other
numerical calculations. 
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1. Introduction

Structural components frequently fail when subjected to repeat or impact loads. Such failure

generally occurs on crack sites owing to inappropriate manufacturing, operation or fatigue. To avoid

irreparable damage, techniques for on-line crack monitoring and location are necessary. Since the

contact or impact on the crack tip creates discontinuities near the crack sites, non-linear vibration

behavior may be considered. 

To avert complex non-linearity in essence, numerous investigations of cracked structures have

been performed by assuming that the crack surface is persistently in the open state. However, this

hypothesis frequently conflicts with reality. Intermittent contact between the loosely connected
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components of a mechanical system frequently occurs during surgery. One typical example is the

roll-bearings with radial clearance, which display a non-continuous rolling motion in grooves thus

may cause changes in the dynamic characteristics of structures, including vibrating amplitudes and

natural frequencies. On the other hand, small cracks or defects in mechanical components generate

discontinuities in geometry, causing variations in structural stiffness and making dynamic

characteristics difficult to predict. Since the measurement of the change of natural frequency for

damaged structures can provide information relating crack appearance or crack depth (Chondros

et al. 1980, Liew et al. 1998), vibration monitoring has been utilized to examine cracks and flaws

in structures during the last three decades (Dimarogonas et al. 1996).

To ensure design and application safety, it is necessary to consider the dynamic behaviors of

structures with embedded micro-cracks. Consequently, several different approaches based on either

analytical or numerical analyses have been adopted for identifying such characteristics in cracked

beam structures during the past decade. In certain cases, both sides of the crack were assumed to

constantly be in an open state (Hjelmstad et al. 1996, Krawczuk et al. 1993, Kikidis 1992, Murphy

et al. 2000). Some investigations used the Rayleigh principle and Wavelet theory to estimate the

change in natural frequencies and dynamic sensitivity to surface crack (Chondros et al. 1989, Liew

et al. 1998). However, the crack front, remaining in an open or closed state during vibration, is

influenced by the degree of amplitude or by mutual collision of crack front surface. A cracked

structure with a breathing crack thus may exhibit non-linear characteristics with different extents of

motion (Kisa et al. 2000, Nandi et al. 2002, Chondros et al. 2001), where such extents depend on

the vibrational amplitude and its mode shape. This increases the vibrational behavior complexity of

cracked structures with a breathing crack. Therefore, to solve breathing crack problems in beams,

numerous investigations used an elastic rotational spring to represent the discontinuous stiffness or

local flexibility on the cracked section (Narkis 1994, Lee et al. 1994, Yokoyama et al. 1998, Chen

et al. 1997, Lin et al. 2004, Fernandez et al. 2002). The spring constant was obtained based on

Fracture Mechanics (Chen et al. 1997, Kisa 2004). 

Most studies adopting the analytical approach extended the one-dimensional Euler-Bernoulli beam

to simulate a uniform cracked beam with a single-edge crack or multiple cracks (Bovsunovsky et al.

2000, Chondros et al. 1998, Shen et al. 1990). The implicit solutions for natural frequency thus

could be obtained. However, such analytical methods generally cannot directly provide explicit

results for cracked beams with different boundary conditions, or with different crack types. Some

other approaches using the finite element method were demonstrated to be efficient in predicting the

dynamic behaviors of complicated crack structures (Gounaris et al. 1988, Qian et al. 1990, Khiem

2001, 2002). These studies introduce construction of the stiffness matrix of finite element beam

models with the cracked segment.

To consider the variation in local stiffness owing to cracking, Gounaris (1988) and Khiem (2001),

respectively, proposed crack compliance matrices for conjugating with other intact beam sections in

the finite element models. Based on this idea, Khiem (2002) designed a dynamic stiffness matrix

method for simulating a multiple cracked beam. Beyond that discussed above for the analytical

approach where cracks were simulated with a rotational spring element, Chondros (1998) introduced

the continuous cracked beam vibration theory, in which the stress field induced by the crack or flaw

decays with distance from that crack or flaw. However, as discussed in Carson (1974) and

Gudmundson (1983), a breathing crack exhibits different structural stiffness before and following

the crack surfaces contact during vibration, which may change the motion behaviors in the bilinear

vibrational modes. Thus, using the single equivalent elastic spring element it is really difficult to
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effectively describe the bilinear vibration characteristics and the contact effect on the dynamic

behaviors. Generally, the mutual contact effect of crack sites during the closing period may cause

the increment of stiffness and constraint on the cracked section. For accurately forecasting crack

structure dynamic behavior, the contact effect must be considered.

This study introduces a generalized finite element procedure based on the bilinear vibration theory

with the contact effect of crack sites. The dynamic behaviors of cracked structures are also

demonstrated. The following includes all formulae derived in the time domain that include the

motion constraints in vibration. 

2. Constrained motion theory and formulation 

In practice, the displacement constraints on the crack sides affect the vibrational behavior of a

cracked structure. Any finite element nodes on both sides of the crack surface must be controlled

when the crack sides close or open during vibration. Therefore, the bilinear vibration behavior of a

cracked structure must be simulated in the form of a three-dimensional system with proper motion

constraints. The following derives the bilinear natural frequency of a vibrating system with proper

displacement constraints.

2.1 Period of bilinear motion 

In Fig. 1, a mass mi vibrates freely with amplitude x0i on one side but with an elastic boundary

placed at xci on the opposite side. When the motion is constrained at xci, the mass may penetrate

into the boundary with a depth of (xpi − xci) following contact with the elastic boundary. At this

point, bilinear motion will occur and the relationship of xi and  will exhibit the asymmetrical

motion depicted during the phase plane, as shown in Fig. 2, which differs markedly from a full

ellipse type of free vibration. The completion of one cycle thus comprises two parts: free motion

period and constrained motion period. This can be estimated using the following integrating form. 

 (1)
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Fig. 1 Schematic of a multi-degree-of-freedom system. A constrained boundary is located at xci to restrict the
motion of ith mass.
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For a multi-degree-of-freedom system, equations of motion can be expressed in dummy index form

(2)

The well-known sinusoidal solution of Eq. (2) for the ith mode equals

(3)

where j denotes the cyclic index for the nodal degrees of freedom.

Now, replacing terms by  and  in Eq. (2) yields 

(4)

An alternative form of Eq. (2) can be written as

 (5)

Eq. (4) can be integrated to yield 

 (6)

Eq. (6) is rewritten into the matrix form as
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Fig. 2 A bilinear motion plotted on the phase plane as a comparison of motion loci for opening crack mode
and breathing crack mode
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or 

 (8)

where .

 The velocity vector  in Eq. (8) can be further expressed as 

(9)

and  (10)

where 

2.1.1 Period of free motion

Using  and substituting Eq. (10) into Eq. (1), the half period for free motion T −

can be obtained by integration with respect to time as

 (11)

where  in the matrix form and  in the index form.

Clearly the derivation.

Results in Eq. (13) having the following form

 (12)
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or, in an alternative form

 

(15)

Where

 (16)

2.1.2 Period of constrained motion

In the constrained motion, if the mass oscillates with sufficient amplitude, it will have a

significant depth of contact with the elastic boundary. Generally, the depth of penetration depends

on the contact stiffness of the interface between the two contact bodies, and can be described using

the following term C, as indicated by Butcher (1999) and Todoo (1996), respectively,
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behavior in the stress field. However, this analysis expects global changes in the structural stiffness

rather than local variation in the stress field at the crack site. Additionally, the regular element was

demonstrated to yield similar findings to the model meshed with singular element near crack site

(Chatti et al. 1997). Therefore, regular hexahedron brick elements are adopted for model creation

and further calculation. 

3.1 Case 1: Single-edge crack at mid-span

To illustrate the proposed method, a cracked alumina beam used in experiment (Chondros et al.

2001) was adopted as a comparative example. The beam has a rectangular cross-section (width w =

7 mm and height h = 23 mm) and length 235 mm. The material properties are: Young’s modulus

Fig. 3 The finite element model of a cracked beam
with refined mesh at crack site

Fig. 4 Variation of the first normalized vibration
frequency as a function of crack depth,
compared with the results obtained in
Chondros et al. (2001)

 Fig. 5 Schematic of the cantilever cracked beam with a crack of depth b positioned at a 
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E = 72 GPa, density ρ = 2,800 kg/m3 and Poisson’s ratio ν = 0.3. For numerical analysis, a finite

element model of the cracked beam is created and illustrated in Fig. 3, and a sharp notch

perpendicular to the longitudinal axis is introduced at the mid span of the beam.

Fig. 4 shows the calculated results of the normalized natural frequencies versus the normalized

crack depth of the cracked beam. Comparative experimental results obtained by Chondros et al.

(2001) are also shown in Fig. 4 Clearly a crack with a large depth leads to a significant decrease in

vibration frequency owing to the decrease of beam stiffness at the crack site. The current method

also demonstrates that the vibrational frequency for the beam with a breathing crack exceeds that

with an open crack. Notably, this cracked beam has a first bending vibration mode similar to that

excited in the experiment by Chondros et al. (2001). 

3.2 Case 2: Single-edge crack at various positions 

The above-developed method was also applied to examine the effect of crack parameters (crack

depth and crack position) on the dynamic behavior of a cantilever beam, as illustrated in Fig. 5. For

validation, the beam shares the same geometry, material properties and boundary condition as the

beam considered in the reference (Chatti et al. 1997). The steel beam has length L = 10 m and cross

section area  A = 1 m2 with the following material properties: Young’s modulus E = 210 GPa,

density ρ = 7,850 kg/m3 and Poisson’s ratio ν = 0.3. This simulation assumes the crack positions of

0.2L, 0.5L, and 0.7L in FE cracked beam model and considers the first three natural modes. 

Tables 1 and 2 show the predicted natural frequency of the cracked beam with various crack

depths at different positions. Fig. 6 displays the variations of the first natural frequency expressed as

Table 1 Comparison of the fundamental natural frequency of a cracked beam with various 
crack depth and position 

Fundamental natural frequency (Hz)

Crack depth
ratio

Crack position 
(20 mm)

Crack position
(50 mm)

Crack position
(70 mm)

0.1 .81893 .82355 .82465

0.5 .63206 .76684 .82469

0.9 .18159 .27027 .75707

* Natural frequency of intact beam = .82494 Hz

Table 2 Comparison of the second natural frequency of a cracked beam with various crack 
depth and position

Second natural frequency (Hz)

Crack depth
ratio

Crack position 
(20 mm)

Crack position
(50 mm)

Crack position
(7 0mm)

0.1 4.8782 4.5672 4.9484

0.5 4.7991 3.9380 4.9193

0.9 4.1694 3.1061 4.8310

* Natural frequency of intact beam = 4.9532 Hz
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a function of the crack depth for several crack positions. As expected, the vibration frequency

decreases with crack depth, but the degree of influence depends on the crack position initiating in

the beam. Furthermore, the major stiffness is dominated by the clamped part of the cantilever beam;

as a consequence, a crack initiated near the fixed end of the beam yields a substantial decrease in

frequency compared to free end.

Fig. 6 shows the results obtained by Chatti et al. (1997), which demonstrate good agreement in

predicting frequency variation compared with the current results. A slight difference is also

observable and is ascribed to the fact that Chatti et al. (1997) did not consider the variation of

contact stiffness owing to the mutual interference of the crack interface during the crack closing

period. Chatti et al. (1997) was based on the bilinear theory, in which two crack configurations

(crack open and crack closed) were assumed in calculating the vibration frequency. In the

constrained configuration, the fully closed crack was dealt with assuming a compatibility condition

of displacement at the crack interface. This assumption may lead to the underestimation of beam

stiffness across the crack site, and thus reduce the vibration frequency corresponding to the

constrained motion, which is also referred to as the frequency of the closed crack in a bilinear

system, as indicated by Gounaris et al. (1988). In fact, the crack surfaces of a breathing crack have

restricted motion owing to interface contact during the closing period, but allowing mutual

penetration at the interface. The motion path for the crack closing period thus is shortened by the

constraint from the mutual interference at the crack interface. As a consequence, the time period of

the constrained motion phase dominates the variation of the natural frequency of the cracked

structures. Fig. 7 shows a similar comparison for the second vibration mode, which describes the

results forecast using the current method and those obtained in Chatti et al. (1997). The figure

clearly demonstrates good consistency in predicting the variation of the second natural frequency.

Referring once again to Tables 1 and 2, for a crack located at the midpoint the natural frequency

reduces by approximately 7% for first mode and 20% for the second mode when the crack grows to

half of the beam height. This implies that for a given crack location the reduction in natural

Fig. 6 Variations of first natural frequency as a
function of the crack depth at different
crack positions. Solid line: current FEM
simulation results, dotted line: by bilinear
method in Chatti et al. (1997)

Fig. 7 Variations of second natural frequency as a
function of the crack depth at different crack
positions. Solid line: current FEM simulation
results, dotted line: by bilinear method in
Chatti et al. (1997)
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frequencies increases with crack depth. The effect of the crack depth on the vibration behavior can

be further observed from the mode shapes shown in Figs. 8 and 9, in which the crack was located

at distances of 20 mm and 50 mm from the clamped end, respectively. Both of these figures

indicate the existence of a significant deviation in vibration amplitude at the crack initiating position

when the crack depth reaches a critical value. The critical value can be defined as the ratio of crack

depth to the beam section height, and has a value of 0.5, which can be useful in determining the

crack size when a certain type of vibration amplitude is obtained from modal analysis in the

experiments. 

Further comparison of the first mode shape in Figs. 8(a) and 9(a) indicates that the mode shape of

a cracked beam varies with the crack position. Notably, a distinct discontinuity appears in the

deflection curve and the slope of the mode shape at the start of the crack owing to the change in the

Fig. 8 Comparison of mode shape of cracked beam with a single-edge of different crack depth, crack
positioned at 20 mm (a) first mode (b) second mode

Fig. 9 Comparison of mode shape of cracked beam with a single-edge of different crack depth, crack
positioned at 50 mm (a) first mode (b) second mode
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structure stiffness across the crack site. As observed previously, the crack initiating position

influences not only the degree of the change in nature frequency but also the mode shape. Fig. 10

shows that the mode shape of a cracked beam differs from that of the intact one. The extent of this

discontinuity also depends heavily on the crack depth.

Results obtained using the current method also demonstrate that the crack location and crack

depth both influence the dynamic behavior of the crack beam to different degrees. Measuring the

change in natural frequencies and comparing this change to that measured for the intact beam thus

can confirm the existence of a crack. For a cracked cantilever beam, the normalized natural

frequency corresponding to different crack depths and crack positions can be forecast using the

current method, and their relationship can be further depicted using a three-dimensional diagram, as

illustrated in Fig. 11, which provides the basis for identifying crack parameters. 

Fig. 10 Comparison of mode shape of cracked beam with a single-edge crack at different position, crack
depth ratio=0.5 (a) first mode (b) second mode 

Fig. 11 Frequencies versus crack depth and crack position for a cracked cantilever beam (a) first mode (b)
second mode
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4. Conclusions

This study examines the dynamic behaviors of cracked structures using the finite element

approach. To deal with the bilinear characteristics in cyclic vibration, a breathing crack was

introduced to the cracked structures to simulate the crack in the open or closed states. The current

results closely correspond to those obtained from experiments and other numerical forecasts.

Although slight differences in the prediction of the vibration frequency were observed, these

differences can be attributed to different considerations regarding the crack closing period of cyclic

vibration. Several advantages of the proposed approach over other approaches can be summarized

as follows: 

1. The use of a single equivalent elastic spring element has difficulty in describing the bilinear

vibration characteristics and the contact effect on the dynamic behavior. Meanwhile, a breathing

crack can easily model the crack status during cyclic motion.

2. The asymmetrical motion cycle of a breathing crack was decomposed into open and closed

crack periods. The bilinear natural frequency was assessed based on the overall time period of

vibration. All formulae were derived in the time domain, which was different from the

frequency domain. 

3. The contact effect owing to mutual penetration of the crack surfaces was considered and

implemented in the FE algorithm. The assumption of a fully close crack made in other studies

thus was inadequate, since such a crack was not really a breathing crack. The time period of the

closing crack mode can thus be estimated based on the motion path, which was shortened

owing to the constrained motion. 

4. The proposed method can easily be applied to other complex structures. Analytical methods

generally cannot directly provide explicit results for cracked beams with different boundary

conditions or crack types.

Based on the current results, we believe that the proposed method can provide a reliable and

accurate means of detecting cracks initiating in other damaged structures.
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