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On the theory of curved anisotropic plate
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Abstract. A general theory which describes the elastic response of a curved anisotropic plate subjected
to stretching and bending will be developed by considering the nonlinear effect that reflecting the non-flat
geometry of the structure. By applying a newly derived 6 × 6 matrix constitutive relation between force
resultants, moment resultants, mid-plane strains and deformed curvatures, the governing differential
equations for a curved anisotropic plate is developed in the usual manner, namely, by consideration of the
constitutive relation and equilibrium equations. Solutions are obtained for simply-supported boundary
conditions and compared to corresponding solutions that neglecting the nonlinear effect in the analysis.
The comparisons indicate that the nonlinear terms in the equations that caused by the curvature of the
structure is crucial for the curved plate analysis. Under certain curved plate geometries the unreasonable
results will be induced by neglecting the nonlinear effect in the analysis. 
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1. Introduction

There are a number of theories for curved plates (known as shells). Novozhilov (1959), Vlasov

(1964), Kraus (1972) and Ambartsumyan (1964) have developed the equilibrium equations by

Sokolnikoff’s (1964) strain-displacement tensor relations and Hamilton’s principle for thin flat and

curved plates made of isotropic and homogeneous materials. Furthermore, Flügge (1967) used force

balance method to derive the equilibrium equations of curved plate and obtained the solution for

some special case about elliptical shell. On the subject of anisotropic plates, Lekhnitskii (1986)

published many remarkable and valuable works on anisotropic plate subjected to bending and

concentrated loading. Ambartsumyan (1964) also solved the problems of orthotropic thin flat and

curved plates by various loading. Dong et al. (1962) formulated a theory for thin flat and curved

plates consisting of laminated anisotropic materials. By applying Flügge’s theory for isotropic

material, Cheng and Ho (1963) presented a curved plate analysis for laminated anisotropic material.

Whitney (1987) and Reddy (2004) have used double Fourier series to solve some problems of thin

laminated anisotropic plates and shells. The effect of transverse shear deformation on a curved plate

analysis was considered by Gulati and Essenberg (1967), Zukas and Vinson (1971). By further

considering transverse normal strain and expansional strains except to transverse shear deformation,

Whitney and Sun (1974) developed a shear deformation theory for laminated shells. Reddy (1984),

Reddy and Wang (2000) presented a generalization of the first-order shear deformation theory of
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shells, also known as the Sanders shell theory (Sanders 1959), for laminated, doubly-curved

anisotropic shells. Due to the difficulty to obtain an analytical solution for the problems of

laminated anisotropic plates or shells, a numerical method of Chebyshev polynomials associated

with boundary conditions was proposed to obtain more general form of the laminated anisotropic

plate and shell problems (Kjellmert 1997).

In general, the analyses mentioned above are limited to the curved plate with shallow curvature

such that the classic constitutive relation of a flat anisotropic or laminated plate can still be applied

in the analysis. For example, in the work of Whitney (1987), the constitutive relation of a curved

laminate with shallow curvature was developed by simplifying the nonlinear terms induced by the

geometrical curvature of the structure into the linear terms. As a result, the derived constitutive

relation was of the same form as the 6 × 6 ABD matrix constitutive relation of the classic

lamination theory for a flat laminate. The difference of the curved laminate analysis by Whitney

from the flat laminate analysis is the retaining the displacement terms of w/R, where w is the

displacement in the z direction and R is the radius of the curved plate as seen in Fig. 1, in the

analysis. However, if the curved plate is so shallow (i.e., h/R→0; h: plate thickness) that the terms

z/R (−h/2 z h/2) can be neglected to simplify the nonlinear terms of z/(1 + z/R) into the linear

terms of z, the w/R terms should be ignored according to the analysis assumption that the plate

deformation shall be small than the plate thickness h. As a result, the Whitney analysis that

neglecting the terms of z/R but retaining the terms of w/R will predict unreasonable results under

some curved plate geometries which will be illustrated and discussed in the paper. Reddy (2004) has

advanced the Whitney analysis by considering the effect of transverse shear stresses in the curved

laminate analysis with moderate plate thickness. However, the nonlinear effect that reflecting the

non-flat geometry of the structure has also not been taken into account in the analysis. Bickford

(1998) has considered the nonlinear effect in the curved beam analysis and indicated that the

nonlinear effect becomes notable as the beam thickness is no longer negligible. In the present

analysis, a new curved anisotropic plate theory will be developed by retaining the nonlinear terms

and, therefore, the effect of the non-flat geometry can be properly taken into account in the analysis.

<
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=

Fig. 1 Geometry of a curved plate
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Actually, the difficulty and challenge on the analyses of curved structures are ascribed to the

nonlinear nature of the structure.

The present paper will devote to derive the equations that describe the elastic response of a curved

anisotropic plate subjected to stretching and bending by taking into account the nonlinear

distributions of the stresses and strains caused by the non-flat geometry of the structure. Assumed

that the curved anisotropic plate deforms according to the Kirchhoff-Love hypothesis, the strains

can be expressed in terms of the mid-plane strains and the deformed curvatures in the nonlinear

forms. Subsequently, the stresses can be evaluated from the plane stress constitutive relations. By

integrating the stresses through the plate thickness, a new 6 × 6 matrix constitutive relation between

stress resultants, moment resultants, mid-plane strains and deformed curvatures has been formulated

by Chiang (2005) for a curved plate. As similar to the classic 6 × 6 ABD matrix constitutive

relation of a flat laminate (Vinson and Sierakowski 1987, Herakovich 1998), this new constitutive

relation for curved plates will provide the fundamental basis to the analyses of curved structures

(e.g., curved beams and plates etc.) composing of either isotropic or anisotropic materials. The

anisotropic effect is exhibited on the existence of the stretching-shearing and bending-shearing

couplings by comparison with the isotropic plate.

Similar to the biharmonic equation  for a flat isotropic plate, the governing

differential equations for a curved anisotropic plate will be developed in the usual manner, namely,

by consideration of the constitutive relation and equilibrium equations. By applying the newly

derived 6 × 6 matrix constitutive relation and the strain-displacement relations, the force and the

moment resultants can be expresses in terms of the displacements. By substituting the above

resultant-displacement relations into the equilibrium equations, the governing differential equations

can be derived in terms of displacements. Solutions are obtained for curved anisotropic plates with

simply-supported boundary conditions. The nonlinear effect is demonstrated by comparing the

present solutions to corresponding solutions that neglected the nonlinear effect in the analysis. The

comparisons indicate that some unreasonable results will be incurred by the governing differential

equations derived by simplification of the nonlinear terms as the linear terms.

2. Curved plate theory

Consider a curved plate of thickness h as depicted in Fig. 1. Here, the x-axis is passing

everywhere through the centroid of the section and tangent to a circular arc of radius R, that is,

ds = Rdθ, where θ is the angular variable associated with a change in location along the curved

section. The z-axis lies along the local direction of the radius R with the y-axis such that a right-

handed coordinate system is formed.

2.1 Strain-displacement relations

Under small deformation, a curved plate is deformed by the following assumptions (Reddy 2004):

(1) The transverse normal is inextensible (i.e., εz = 0).

(2) Normals to the mid-plane (i.e., xy plane) before deformation remain straight after deformation

(Kirchhoff-Love hypothesis). 

(3) The curved plate deformations are small and strains are infinitesimal.

(4) The plane stress assumption can be invoked due to the negligence of transverse normal stress.

D∇2 ∇2
w( ) p=
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Based upon the foregoing assumptions, the strain-displacement relations of a curved plate have

been derived by Chiang (2005) by considering the nonlinear terms caused by geometrical curvature

of the structure:

(1)

where the mid-plane strains {ε 0} and the deformed curvatures {κ 0} and {κ1} are given by

(2)

(3)

(4)

(5)

(6)

(7)

(8)

where κ (i.e., κ = 1/R) is the geometric curvature of the curved plate; and u0 and v0 are, respectively,

the mid-plane displacement in the x and y direction; and w is the displacement in the z direction.

Eq. (1) indicates that the planar strains {ε} at any z-location in the curved plate are in terms of the

mid-plane strains {ε 0} and the deformed curvatures {κ 0} and {κ 1}; it is a fundamental equation of

curved plate theory.

2.2 Stress-strain relations

The stresses at any z-location can, then, be determined by substituting the strain-displacement

relations of Eq. (1) into the plane stress-strain relations, and lead to

(9)
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where  is the stiffness matrix of the material which can be either isotropic or anisotropic.

Combining Eqs. (1) and (9), a general expression for stresses at z-location in the plate is given by

(10)

The first term in Eq. (10) corresponds to the stresses associated with the mid-plane strains, and the

second and third terms correspond to the stresses associated with deformed curvatures. It is noted

that {ε 0}, {κ 0} and {κ 1}, which are only associated with the geometric curvature κ and the

displacements of u0, v0 and w, are independent of z location.

2.3 Curved plate constitutive relation

The force resultants {N} refer to the stresses integrated over the thickness of the plate. A similar

interpretation can be given to the moment resultants {M}. By carrying out the integrations, the

fundamental equation of the curved plate theory can be written in the following matrix form

(11)

where I = h3/12; and I1 and I2 are defined by

(12)

(13)

The 6 × 9 matrix form of Eq. (11) is not suitable for mathematical operations. Recalling Eqs. (6-8),

the mid-plane strain of  can relate to the deformed curvatures of  and  by 
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Substituting Eq. (14) into Eq. (11) and rearranging the matrix, the constitutive relation of Eq. (11)

becomes

 (15)

This new curved plate constitutive relation will provide the fundamental basis to the analyses of

curved structures (e.g., curved beams and plates etc.) of isotropic or anisotropic materials. For the

curved anisotropic plates, the normal responses are coupling to the shear responses by the existence

of  and  terms.

3. Governing equations

The equilibrium equations of elasticity without body forces for the curved plate under r-θ -ζ

cylindrical coordinate system, as shown in Fig. 1, can be written as

(16)
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The integrated equations of equilibrium can be obtained by carrying out the integrations of the

equations through the thickness. Multiplying Eqs. (19-21) by (1 + κ z) and integrating the equations

results in

(22)

(23)

(24)

Here, we define the shear force resultants {Q} referring to the shear stresses of τxz and τyz

integrated over the thickness of the plate as 

(25)

Plus the definitions of the force resultants and the moment resultants, Eqs. (22-24) can be written

as:
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(30)

(31)

With the definitions of the force, moment and shear force resultants, Eqs. (30-31) can be expressed

as

(32)

(33)

Thus, Eqs. (26-28) and (32-33) are five equilibrium equations for the stretching and bending of a

curved plate.

The equilibrium equations of Eqs. (26-28) and (32-33) can be further combined to eliminate the

terms of surface shear stresses and shear force resultants. Substituting Eq. (32) into Eq. (26), taking

derivatives with respect to s results in

(34)

Taking derivative of Eq. (27) with respect to y yields

(35)

Eqs. (32) and (33) can be substituted into Eq. (28) with the result of
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(37a)

(37b)

(37c)

(37d)

(37e)

(37f)

The stress σy in Eq. (36) and the shear stress τxy in Eqs. (34) and (36) can be expressed in terms of

displacements by the stress-strain relations and the strain-displacement relations given by Eqs. (1-9).

Furthermore, the integral involving rational algebraic function in Eqs. (34-36) is given in the

following:

(38)

Substituting Eqs. (37a-37f) into Eqs. (34-36) and carrying out the integrations, the equations of

equilibrium can be expressed in terms of displacements as
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(39)

(40)

 

 (41)

These are the governing differential equations for the stretching and bending of a curved plate

composed of an anisotropic material. As the radius R becomes infinite (i.e., k→0) for an isotropic

material, I2→I and Eq. (41) reduces to the biharmonic equation  for a flat isotropic

plate. These governing differential equations can be solved analytically for certain boundary

conditions.
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4. Simply-supported curved orthotropic plates

Here, we consider the curved anisotropic plate of a special orthotropic class of which fiber

placement related to coordinate system is shown in Fig. 2. Then, the stiffness matrix  is given

by

(42)

where E, ν and G are Young’s modulus, Poisson ratio and shear modulus, respectively, and

subscripts 1 and 2 indicate the fiber and transverse directions.

The simply-supported boundary conditions for a curved plate, as shown in Fig. 1, can be stated as

at s = 0 and a

v0 = Ny = 0 (43a)

w = My = 0 (43b)

at y = 0 and b

u0 = Nx = 0 (44a)

w = Mx = 0 (44b)

The governing differential equations for a curved orthotropic plate obtained by substituting

 and  into Eqs. (39-41) with the simply-supported boundary conditions of Eqs. (43-

44) can be solved by using a Fourier-series expansion. For external pressure loading p = σz(h/2) =

p1, p can be expanded in a Fourier series as

Q[ ]

Q[ ]
Q11    Q12  0

Q12  Q22  0

0  0  Q66

E11

1 ν12ν21–

-----------------------   
ν21E11

1 ν12ν21–

-----------------------   0

ν12E22

1 ν12ν21–

-----------------------   
E22

1 ν12ν21–

-----------------------   0

0  0  G12

= =

Q16 0= Q26 0=

Fig. 2 Fiber placement of the curved orthotropic plate
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(45)

where a and b are the dimensions of the curved plate in the s and y directions, as shown in Fig. 1.

The coefficient Pmn can be determined in the usual way from Eq. (45) as

(46)

The displacements u0, v0 and w can be expanded in a Fourier series as

(47)

(48)

(49)

Substituting Eqs. (47-49) and (45) into the governing differential equations for a curved orthotropic

plate results in the following equation in matrix form:

(50)

where if λm = mπ/a and λn = nπ/b

(51a)

(51b)

(51c)

(51d)

(51e)

(51f)

In the analysis of Whitney (1987) in which the nonlinear terms of z/(1 + z/R) were simplified into

linear terms of z under the assumption of z/R<<1 but retaining the terms of w/R, the matrix form for

a curved orthotropic plate was given by
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(52)

where

(53a)

(53b)

(53c)

(53d)

(53e)

(53f)

Consider the case of p (s, y) = p0, that is, the case of a uniformly load on the outer surface.

Evaluating the integrals of Eq. (46) gives

if m odd and n odd (54a)

or

Pmn = 0 otherwise (54b)

then,

if m odd and n odd (55)

if m odd and n odd (56)

        if m odd and n odd (57)

where Λmn is the determinant of the matrix in Eq. (50) and given by

(58)

Then, the displacements u0, v0 and w are, respectively, given by

(59)
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(60)

(61)

The well-known solution of transverse displacement w(x, y) for the bending of a flat isotropic plate

(Bickford 1998) can be recovered by Eq. (61) through allowing κ→0 and applying the stiffness

matrix of isotropic material:

(62)

where D = Eh3/12(1 − ν 2) is referred to as the flexural rigidity.

5. Results and discussions

The AS4/3501-6 carbon/epoxy composite, of which material properties are E11 = 128 GPa, E22 =

11.1 GPa, G12 = 6.55 GPa, ν12 = 0.28 and ν21 = (E22/E11)ν12 (Swanson 1997), is used for case study.

The transverse displacements w for the simply-supported curved orthotropic plate given by Eq. (61)

are compared to the corresponding solutions of Eq. (52) by the Whitney analysis. By taking only

the first term of the series and assuming a = b, the maximum transverse displacements w occurring

at the center s = a/2 and y = b/2 are predicted as a function of the h/R ratio for the present and
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∑
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π
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n 1 3 5 …, , ,=

∑
m 1 3 5 …, , ,=

∑=

w x y,( )
16p0

Dπ
2

-----------
1

mn λm

2
λn

2
+( )

2
---------------------------------sinλmxsinλny

n 1 3 5 …, , ,=

∑
m 1 3 5 …, , ,=

∑=

Fig. 3 The maximum transverse displacement w as a function of h/R for the case of a = h
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Whitney analyses. For the geometry of a = h, Fig. 3 shows that the present and Whitney analyses

approach to the identical result of a flat orthotropic plate as h/R→0 while the discrepancy between

two analyses becomes larger as the h/R ratio increases. In the case of a = 5h, Fig. 4 indicates that

the Whitney results will diverge and discontinue at the particulate h/R ratio and the results will turn

into different sign as the h/R ratio is larger than the discontinued site. The unreasonable results

are induced from the Whitney analysis that simplified the nonlinear terms of z/(1 + z/R), where

−h/2 z h/2, into the linear items of z under the assumption of h/R<<1 for the shallow curved

plate. However, in order to differ from the flat plate analysis the displacement terms of w/R were

retained in the Whitney analysis. This is illogical because the displacement w should be smaller

than the thickness of the plate h under Kirchhoff-Love hypothesis for curved plate deformation.

Therefore, if the curved plate is so shallow that z/R can be ignored, the terms of w/R should also be

neglected and the analysis reduces to the flat plate analysis. This is the reason why some

unreasonable results will be induced by the Whitney analysis under some curved plate geometries.

It implies that the nonlinear effect that reflecting the geometric curvature of the structure cannot be

neglected for the curved plate analysis.

The nonlinear effect can also be illustrated by the comparisons of the predictions of the

displacements u0 and v0 between the present and Whitney analyses. As shown in Figs. 5 and 6,

where the maximum mid-plane displacements u0 and v0 are, respectively, illustrated as a function of

the h/R ratio for the case of a = h, the present and Whitney analyses approach to the same result as

h/R→0 while the discrepancy between two analyses becomes larger as the h/R ratio increases. In the

situation of a = 5h, Figs. 7-8 show that the maximum mid-plane displacements u0 and v0 by the

Whitney analysis will diverge and discontinue at the h/R ratio at which the maximum displacements

w diverges. As similar to the maximum displacements w as shown in Fig. 4, the results will turn

<= <=

Fig. 4 The maximum transverse displacement w as a function of h/R for the case of a = 5h
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Fig. 5 The maximum mid-plane displacement in the x direction u0 as a function of h/R for the case of a = h

Fig. 6 The maximum mid-plane displacement in the y direction v0 as a function of h/R for the case of a = h
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Fig. 7 The maximum mid-plane displacement in the x direction u0 as a function of h/R for the case of a = 5h

Fig. 8 The maximum mid-plane displacement in the y direction v0 as a function of h/R for the case of a = 5h
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into different sign as the h/R ratio is larger than the discontinued point.

After obtaining the displacements, force and moment resultants can be given by substituting

Eqs. (59-61) into the constitutive relation of Eq. (15). In addition, the stresses can be obtained by

substituting Eqs. (59-61) into the strain-displacement relations and the stress-strain relations. The

solutions of displacements will converge more quickly than those of the stresses.

6. Conclusions

1. A general theory for a curved anisotropic plate has been developed by considering the nonlinear

effect that reflecting the non-flat geometry of the structure. By applying the newly derived

6 × 6 matrix constitutive relation by which the force and the moment resultants can be

expresses in terms of the displacements, the governing differential equations for a curved

anisotropic plate have been developed in the usual manner, namely, by consideration of the

constitutive relation and equilibrium equations. As the radius R becomes infinite (i.e., κ→0) for

an isotropic material, the governing differential equations can be reduced to the well-known

biharmonic equation  for the bending of a flat isotropic plate. 

2. Solutions are obtained for the anisotropic curved plate of a special orthotropic class with

simply-supported boundary conditions and compared to corresponding solutions that neglecting

the nonlinear effect in the analysis. In situation where the thickness-radius (h/R) ratio

approaches zero, the present and Whitney analyses approach to the identical result of a flat

plate. However, when the h/R ratio is getting larger, the discrepancy between two analyses

broadens. Under some curved plate geometries, unreasonable results will be induced by the

Whitney analysis, as indicated in Figs. 4 and 7-8. It implies that the nonlinear effect reflecting

the non-flat geometry of the structure cannot be neglected on the curved plate analysis.

3. The effect of the transverse shear stress may need to be considered in addition to the effect of

the nonlinear variation of stress-strain through the thickness as the h/R ratio is getting larger.

However, the nonlinear effect on the curved plate analysis can be indicated by the comparison

between the analyses that both didn’t account for the effect of the transverse shear stress, as

shown in Figs. 3-8.
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