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Mode localization and veering of natural frequency loci 
in two circular plates coupled with a fluid
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Abstract. An analytical method for the free vibration of two circular plates coupled with an inviscid
and compressible fluid is developed by the Rayleigh-Ritz method. The fluid is bounded by a rigid
cylindrical vessel and two circular plates with an unequal thickness and diameter. It was found that the
theoretical results could predict well the fluid-coupled natural frequencies with an excellent accuracy when
compared with the finite element analysis results. As the fluid thickness increases or the plate thickness
difference increases, an abrupt curve veering in the natural frequency loci of the neighboring modes and
drastic changes in the corresponding mode shapes are observed. The mode localization frequently appears
in the higher modes and in the wide gap between the plates because of a decrease in the fluid coupling
owing to the fluid dispersion effect. 

Keywords: hydroelastic vibration; fluid-structure interaction; circular plates; mode localization; veering
of natural frequency loci; Rayleigh-Ritz method.

1. Introduction

It is well known that the presence of a fluid surrounding an elastic structure reduces the natural

frequency of the structure and increases the damping of the fluid-coupled system. The dynamic

characteristics of the structure in contact with the fluid are one of the most fascinating problems for

engineering applications. However, it is not a simple task to clearly analyze the dynamic behavior

of the fluid-coupled system since the movement of the structure imparts on the fluid motion.

Recently a circular plate floating on a fluid has been studied. A single circular plate in contact with

a fluid has been investigated by several researchers (Amabili 1995, 1996, Amabili and Kwak 1999,

Amabili 2001, Bauer 1995, Cheung and Zhou 2002, Chiba 1994, Jeong and Kim 2005, Kwak 1997,

Kwak and Kim 1991, Kwak 1991, Kwak and Han 2000). On the other hand, only a few papers

have focused on the dynamics of double circular plates coupled with bounded water using the

Rayleigh-Ritz method (Amabili 2000, Jeong 2003). However, some discrepancies were reported in

the lower modes with a zero nodal diameter because the theory was developed based on the

assumption of an incompressible fluid (Jeong 2003) and the fluid-filled hermetic can problem is

very complicated owing to a flexible cylindrical wall (Amabili 2000).
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This paper is motivated by the need to extend the previous study (Jeong 2003) into a more

general case that can conveniently encompass the hydroelastic vibration of two arbitrary circular

plates coupled with a compressible fluid. Especially, in the light water cooled nuclear reactor, it is

well known that the density of the water decreases to about 70% and the bulk modulus of the water

is also reduced to about 15% under a normal operational condition. Therefore, the coolant can not

be considered as an incompressible fluid any more while identifying the dynamic characteristic of

the reactor internals. The bottom screen assembly is one of the reactor internal components of an

integrated modular nuclear reactor. The shape of the bottom screen assembly is a stack of several

circular plates through gap holders. This assembly is submerged in the coolant during the normal

operation and provides a shield for the reactor vessel bottom against any radiation damage due to

the neutron flux from the core. This study can provide an insight into the fluid–structure interaction

phenomena of the multiple circular plates submerged in a compressible fluid such as the bottom

screen assembly.

Also this paper will demonstrate the existence of a mode localization and a curve veering of the

natural frequency loci in the fluid-coupled circular plates. It is well known that the propagation of

the vibration in nearly periodic structures can be inhibited and the vibration modes may be localized

owing to small irregularities. According to the magnitude of the disorder and the strength of the

internal coupling in the system, the irregularities may localize the vibration modes and confine the

vibrational energy to a region close to the source. This phenomenon is referred to as a “normal

mode localization” (Pierre 1988, Pierre and Dowell 1987). On the other hand, when a family of the

natural frequencies is plotted versus a system parameter, the loci of the natural frequencies converge

and abruptly diverge in a specific parameter region. This is called a “curve veering” (Perkins and

Mote 1986). The curve veering of the natural frequency loci and the mode localization in the fluid-

structure interaction problem will be investigated.

2. Theoretical formulation

 

2.1 Formulation for the circular plates

We investigated a system which is composed of two circular plates coupled with a fluid. The

geometry of the plates needs not to be identical. The circular plates with radius Rj and thickness hj

( << Rj) are fixed by the rigid cylindrical vessel with radius a as illustrated in Fig. 1. The contained

fluid is in contact with the upper and the lower plates, and the fluid is bounded at r = a and x = ±d/2

by the rigid cylindrical vessel walls. The upper circular plate is referred to with a subscript “1”

while the lower one is denoted by a subscript “2”. Each wet mode shape can be expanded in a

series by using a finite number of admissible functions Wnmj (m = 0, 1, 2, …, M; j = 1, 2), and

appropriate unknown constants such as qm and pm. For an arbitrary nodal diameter n (n = 0, 1, 2, …)

of the circular plates, the wet modal displacements w1 and w2 can be assumed in the form of

 (1a)

 (1b)

w1 r θ t, ,( ) w1 r θ,( )exp iω t( ) cos nθ( ) qmWnm1 r( )exp iω t( )
m 1=

M

∑= =

w2 r θ t, ,( ) w2 r θ,( )exp iω t( ) cos nθ( ) pmWnm2 r( )exp iω t( )
m 1=

M

∑= =



Mode localization and veering of natural frequency loci 721

where , ω is the fluid-coupled natural frequency of the plates and t is the time. By way of

a simplicity, the eigen-functions of the plates in air which satisfy the boundary conditions along the

plate edges are considered as the admissible function, . In the equation, m represents the

number of nodal circles of the plates in air, at the same time it will be the number of expanding

terms for the radial modal functions for the wet modes. When it is assumed that the edge of the

plates are clamped, obviously the displacement of the plates at r = Rj must be zero, that is, Wnmj = 0.

Therefore, the admissible functions in Eqs. (1a) and (1b) can be reduced to:

(2)

Since the slope along the edge must disappear, that is, dWnmj /dr = 0 at r = Rj, the frequency

parameter for the plates in air, λnmj, can be calculated:

(3)

where Jn and In of Eqs. (2) and (3) are the Bessel function and modified Bessel function of the first

kind, respectively.

2.2 Velocity and displacement potentials

As it is known that the effect of a compressibility on the natural frequencies cannot be neglected

when the circular plate is coupled with water as depicted by Jeong (2003), Jeong and Kim (2005), a

compressible and inviscid fluid is assumed in the theoretical formulation. The fluid between the two

plates is vertically bounded by the upper and the lower rigid walls, and it is restricted by the vessel

wall in the radial direction at r = a as shown in Fig. 1. The oscillatory fluid flow induced by the

plate motion can be described in terms of the velocity potential that satisfies the Helmholz equation:

i 1–=

Wnmj r( )

Wnmj r( ) Jn λnmr( ) Jn λnmRj( )In λnmr( )/In λnmRj( )–=

Jn′ λnmRj( )
Jn λnmRj( )
------------------------

In′ λnmRj( )
In λnmRj( )
------------------------=

Fig. 1 Two unequal circular plates coupled with a compressible fluid



722 Kyeong-Hoon Jeong

(4)

in which c is the sound speed in the fluid medium and the comma in Eq. (4) denotes a partial

derivative. It is possible to separate the velocity potential Φ with respect to r, θ and x. Thus:

(5)

where φ indicates the displacement potential because the first derivative of φ corresponds to the

dynamic displacement of the fluid. The solution of Eq. (4) for the arbitrary nodal diameter n can be

derived by using a separation of the variables:

(6)

where

(7)

Since the fluid is bounded by the rigid cylindrical wall as illustrated in Fig. 1, the radial

displacement of the fluid at r = a must be zero:

(8)

Substitution of Eq. (6) into Eq. (8) gives Eq. (9) and the parameter βns can be determined with

respect to every s and n:

(9)

2.3 Method of the solution

We assume that the fluid particles in contact with the surface of the plates are an equilibrium

state, and remain so during the movement. The compatibility condition results from a slipping of

the fluid, which is equivalent to the normal displacements from an instantaneous configuration of

the fluid-structure contact surface being equal to: 

(10a)

(10b)

The unknown coefficients Ens and Fns of Eq. (6) describing the fluid motion can be determined

when the above two compatibility conditions are considered. Substitution of Eqs. (1a), (1b), (2), (6)

into Eqs. (10a) and (10b) gives;

∇2
Φ r θ x t, , ,( ) Φ r θ x t, , ,( ),tt/c

2
=

Φ r θ x t, , ,( ) iωφ r θ x, ,( )exp iω t( ) iωη r x,( )cos nθ( )exp iω t( )= =

φ r θ x, ,( ) cos nθ( ) Jn βnsr( ) Enssinh αnsx( ) Fnscosh αnsx( )+{ }
s 1=

∞

∑=

βns

2
αns

2
ω /c( )2+=

∂φ r θ x, ,( )
∂r

-------------------------
r a=

0=

Jn′ βnsa( ) 0=

∂φ r θ d/2, ,( )
∂ x

-------------------------------
w1 r θ,( ), 0 r R1≤ ≤

0,               R1 r< a≤
=

∂φ r θ d/2–, ,( )
∂ x

----------------------------------
w2 r θ,( ), 0 r R2≤ ≤

0,               R2 r< a≤
=
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(11a)

(11b)

However, we still cannot obtain the relationship between the unknown coefficients (Ens and Fns) of

the fluid and the modal unknown constants (qm and pm) directly. So we multiply each side of both

equations by  and integrate them over their respective domains, then the equations can be

obtained;

(12a)

(12b)

We integrate Eqs. (12a) and (12b) over the radius of the vessel, term by term and arrange both the

equations simultaneously. Finally the unknown coefficients Ens and Fns can be written in terms of

the unknown constants qm and pm.

 (13a)

(13b)

(13c)

(13d)

αns Enscosh αnsd/2( ) Fnssinh αnsd/2( )+[ ]Jn βnsr( )
s 1=

∞

∑

qm Jn λnmr( ) Jn λnmR1( )In λnmr( )/In λnmR1( )–[ ], 0 r R1≤ ≤
m 1=

M

∑

0, R1 r< a≤

=

αns Enscosh αnsd/2( ) Fnssinh αnsd/2( )–[ ]Jn βnsr( )
s 1=

∞

∑

pm Jn λnmr( ) Jn λnmR2( )In λnmr( )/In λnmR2( )–[ ], 0 r R2≤ ≤
m 1=

M

∑

0, R2 r< a≤

=

rJn βnsr( )

qm Jn λnmr( ) Jn λnmR1( )In λnmr( )/In λnmR1( )–[ ]rJn βnsr( ) rd
m 1=

M

∑
0

R
1

∫

αns Enscosh αnsd/2( ) Fnssinh αnsd/2( )+[ ]rJn

2
βnsr( ) rd

s 1=

∞

∑
0

a

∫=

pm Jn λnmr( ) Jn λnmR2( )In λnmr( )/In λnmR2( )–[ ]rJn βnsr( ) rd
m 1=

M

∑
0

R
2

∫

αns Enscosh αnsd/2( ) Fnssinh αnsd/2( )–[ ]rJn

2
βnsr( ) rd

s 1=

∞

∑
0

a

∫=

Ens

2αns

σnscosh αsnd/2( )
---------------------------------------- qmΓnms1 pmΓnms2+{ }

m 1=

M

∑=

Fns

2αns

σnssinh αsnd/2( )
--------------------------------------- qmΓnms1 pmΓnms2–{ }

m 1=

M

∑=

Γnms1

R1

2
λnmR1( )2 λnmR1( )Jn′ λnmR1( )Jn βnsR1( ) βnsR1( )Jn λnmR1( )Jn′ βnsR1( )–[ ]

βnsR1( )4 λnmR1( )4–

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

Γnms2

R2

2
λnmR2( )2 λnmR2( )Jn′ λnmR2( )Jn βnsR2( ) βnsR2( )Jn λnmR2( )Jn′ βnsR2( )–[ ]

βnsR2( )4 λnmR2( )4–

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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(13e)

The displacement potential of the compressible fluid can now be rewritten by a substitution of

Eqs. (13a)-(13e) into Eq. (6).

(14)

where

(15a)

(15b)

Now we apply the classical energy method to obtain the fluid-coupled natural frequencies of the

two unequal circular plates coupled with the compressible fluid:

(16)

where Vp and  are the potential and reference kinetic energies of the plates. The term  is the

reference fluid energy term including the fluid kinetic and potential energies which can be evaluated

from the surface motion of the fluid;

(17)

where ρo is the mass density of the compressible fluid. By substituting Eqs. (5) and (10a, b) into

Eq. (17), it reduces to;

(18)

where

(19)

The reference kinetic energy of the two circular plates, as obtained, can be expressed as;

(20)

σns αnsa
2( ) 1

n
2

βnsa( )2
-----------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

Jn βnsa( ){ }2
=

φ r θ x, ,( ) cos nθ( ) qmNnms x( ) pmMnms x( )+{ }Jn βnsr( )
s 1=

∞

∑
m 1=

M

∑=

Nnms x( )
2αnsΓnms1

σns

------------------------
sinh αnsx( )

cosh αnsd/2( )
--------------------------------

cosh αnsx( )
sinh αnsd/2( )
-------------------------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Mnms x( )
2αnsΓnms2

σns

------------------------
sinh αnsx( )

cosh αnsd/2( )
--------------------------------

cosh αnsx( )
sinh αnsd/2( )
-------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

ω
2 Vp

Tp
* UF

*
+

------------------=

Tp
* UF

*

UF
* 1

2
---ρo

∂φ r d/2,( )
∂ x

-------------------------⎝ ⎠
⎛ ⎞ φ r d/2,( )cos

2
nθ( )r rd θd

0

R
1

∫
0

2π

∫=

 
1

2
---ρo

∂φ r d/2–,( )
∂ x

----------------------------⎝ ⎠
⎛ ⎞ φ r d/2–,( )cos

2
nθ( )r rd θd

0

R
2

∫
0

2π

∫+

UF
* 1

2
---ρoκθ w1η r d/2,( )r rd

0

R
1

∫ w2η r d/2–,( )
0

R
2

∫ r rd+⎝ ⎠
⎛ ⎞

=

κθ

2π  for  n 0=

π    for  n 0>
=

Tp
* ρ

2
--- h1 w1

2

0

R
1

∫ r rd h2 w2

2

0

R
2

∫ r rd+ θd
0

2π

∫=
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where ρ is the density of the plates. The maximum potential energy of the two plates can be

simplified as;

(21)

where Dj = E hj
3/12 (1 – μ2) is the flexural rigidity of the circular plates; μ and E are the Poisson’s

ratio and the modulus elasticity of the plates, respectively. Taking the variation with respect to the

unknown constants qm and pm in order to perform the numerical calculations for each fixed n value,

we can write the energies in a matrix form;

(22a)

(22b)

(22c)

The column vectors q, p and Q of the unknown parameters are defined as follows:

(23a)

(23b)

(23c)

The matrices in Eqs. (22a)-(22c) can be derived by integrations of the equations. The 2M × 2M

matrix G in Eq. (22a) will be written as;

(24)

(25a)

(25b)

(25c)

(25d)

Vp
1

2
--- D1 ∇2

w1( )
2

r rd
0

R
1

∫ D2 ∇2
w2( )

2

r rd
0

R
2

∫+ θd
0

2π

∫≅

UF
* ρoκθQ

T
GQ=

Tp
* ρκθQ

T
ZQ=

Vp κθQ
T
PQ=

q q1  q2  q3  …  qM{ }T
=

p p1  p2  p3  …  pM{ }T
=

Q
q

p⎩ ⎭
⎨ ⎬
⎧ ⎫

=

G G1  G2

G3  G4
=

G1ik 4
Γnis1

σns

----------- Γnks1tanh
αnsd

2
-----------⎝ ⎠

⎛ ⎞ Γnks2cosh
αnsd

2
-----------⎝ ⎠

⎛ ⎞
+

⎩ ⎭
⎨ ⎬
⎧ ⎫

s 1=

∞

∑=

G2ik 4
Γnis1

σns

----------- Γnks1tanh
αnsd

2
-----------⎝ ⎠

⎛ ⎞ Γnks2coth
αnsd

2
-----------⎝ ⎠

⎛ ⎞
–

⎩ ⎭
⎨ ⎬
⎧ ⎫

s 1=

∞

∑=

G3ik 4
Γnis2

σns

----------- Γnks1– tanh
αnsd

2
-----------⎝ ⎠

⎛ ⎞ Γnks2coth
αnsd

2
-----------⎝ ⎠

⎛ ⎞
+

⎩ ⎭
⎨ ⎬
⎧ ⎫

s 1=

∞

∑=

G4ik 4–
Γnis2

σns

----------- Γnks1tanh
αnsd

2
-----------⎝ ⎠

⎛ ⎞ Γnks2coth
αnsd

2
-----------⎝ ⎠

⎛ ⎞
+

⎩ ⎭
⎨ ⎬
⎧ ⎫

,  i k, 1 2 … M, , ,=

s 1=

∞

∑=
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The matrix Z in Eq. (22b) is the 2M × 2M matrix given as;

(26)

(27)

where δik is the Kronecker delta. As the term  in Eq. (21) is identical to , the 2M ×

2M diagonal matrix P in Eq. (22c) will be reduced as;

(28)

(29)

From the correspondence between the kinetic and the potential energies of the plates and the

compressible fluid, the Galerkin equation can be obtained by minimizing the Rayleigh quotient with

respect to the unknown parameters qm and pm. 

(30)

In Eqs. (25a)-(25d), the sum of s must be stopped for a numerical computation, at an integer value

large enough to give the required accuracy. Since the matrix G is a function of ω, Eq. (30) can not

be an ordinary eigenvalue problem. Therefore, the eigenvalue problem cannot be obtained directly.

The determinant of the left side in Eq. (30) must be zero to obtain the non-trivial solution. 

3. Verification of the theory

3.1 Theoretical and finite element models

An example was numerically solved, because one of the aims of this analysis is to verify the

proposed theoretical formulation. Initially, in order to obtain the natural frequencies of the two

unequal aluminum circular plates coupled with water, theoretical calculations were carried out so

that the determinant of the left side in Eq. (30) could be zero. Although Eq. (30) is not an ordinary

eigenvalue problem, the calculations could be performed by using an iterating process of the

commercial software, MathCAD (version 2000). The initial values were obtained from the

incompressible fluid case which leads to an ordinary eigenvalue problem, and the expected

frequency zone was swept to calculate the coupled natural frequencies. In the theoretical calculation,

the frequency equation derived from the preceding sections involved a double series of expansions

in terms of s and m. Hence the expansion term s is taken as 200 and the expanding term m for the

admissible function is taken as 30 to obtain a converged solution. The geometric and the physical

Z
Z1  0

0  Z2

=

Zj i k,( ) hj

Rj

2

2
----- Jn λniRj( ){ }2

δik= ,  i k, 1 2 … M, , ,=

∇2
wj( )

2

λni

4
wj

2

P
P1  0

0  P2

=

Pj i k,( )

Dj λniRj( )4

2Rj

2
------------------------- Jn λniRj( ){ }2

δik= ,  i k, 1 2 … M, , ,=

PQ ω
2

ρZ ρoG+( )Q– 0{ }=
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properties of the fluid-coupled system are listed in Table 1.

Additionally, in order to validate the proposed theory, finite element analyses were also performed

for the water-coupled system using a commercial computer code, ANSYS (release 7.0). An

axisymmetric two dimensional model was constructed with the same geometry, boundary conditions

and material properties used in the theoretical calculation. In the finite element analysis, the

axisymmetric harmonic fluid elements (FLUID81) and axisymmetric harmonic shell elements

(SHELL61) were used. The viscosity of the water was neglected both in the theoretical calculation

and in the finite element analyses. The fluid domain of the finite element models was divided into

960 fluid elements and the upper and the lower plates were also discretized with 88 shell elements

as illustrated in Fig. 2. The fluid movement at r = a namely along the rigid cylindrical wall is only

restricted in the radial direction but slips between the rigid wall and the water are allowed along the

azimuthal and vertical directions. In a similar manner, an additional restriction should be imposed so

that the fluid movement at x = ±d/2 and , namely along the rigid upper and the lowerRj r a≤ ≤

Table 1 Specifications of the two fluid-coupled circular plates 

Upper plate Lower plate Rigid cylinder Fluid

Radius, [mm] R1 = 150.0 R2 = 120.0 a = 180.0 –

Thickness, [mm] h1 = 3.0 h2 = 2.0 – –

Mass density [kg/m3] ρ  = 2700.0 ρ  = 2700.0 – ρο  = 1000.0

Modulus of elasticity [GPa] E = 69.0 E = 69.0 – B = 2.2

Poisson’s ratio μ = 0.3 μ = 0.3 – –

Distance between the plates [mm] – – – d = 40.0

Fig. 2 Axisymmetric two dimensional finite element analysis model for two unequal aluminum circular plates
coupled with water
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walls can be zero in the vertical direction only, but those slips between the rigid wall and water are

allowed along the azimuthal and the radial directions. These restrictions for the fluid displacement

simulate Eq. (8) and the lower parts of Eqs. (10a) and (10b). The vertical displacement of the fluid

element nodes adjacent to each surface of the wetted circular plates coincides with those of the

circular plates so that the finite element model can simulate the compatibility condition of the upper

parts of Eqs. (10a) and (10b). A fixed boundary condition along each plate edge was imposed on

the finite element model. For every nodal diameter n, fifty modal frequencies and mode shapes

were extracted from the frequency range of 30 Hz ~ 8000 Hz. In the finite element analyses, the

reduced method was used for the eigenvalue and eigenvector extractions, which employs the Block-

Lanczos extraction technique.

3.2 Theoretical and finite element results

The coupled natural frequencies for the unequal aluminum plates coupled with water are listed in

Table 2 for the range of 0 ≤ n ≤ 4 and 1 ≤ m' ≤ 6, where the radial mode number is denoted by m'.

In this range, it is shown that the theoretical natural frequencies agree well with the finite element

results to within a 2.5% error range. The difference between the theoretical and the finite element

natural frequencies is negligible from an engineering sense. It seems that the discrepancy is caused

by the weighted integration process of Eqs. (12a) and (12b). In spite of the discrepancy, this

weighted integration process is identical to the Bessel-Fourier series expansion process (Jeong 2003)

when R1 = R2 = a.

When the two plates are the same in material property and geometry, all the mode shapes can be

classified into two transverse vibration mode categories according to their relative motion direction

between the two plates during a vibration; that is, the in-phase and the out-of-phase modes (Jeong

2003). However, it is inappropriate for all the mode shapes to be simply categorized as either in-

phase or out-of-phase modes for a system with unequal plates, since they do not maintain a

symmetrical in-phase and out-of-phase mode. Strictly speaking, the mode shapes can be grouped

into three classes; pseudo-in-phase modes, pseudo-out-of-phase modes, and mixed modes, as shown

in mode shapes A2~A6, B2~B6, …, F2~F6 of Figs. 5, 7, 9 and 11. From the verification model of

Table 1, it is observed that the relative dynamic displacement difference between the two plates for

the in-phase mode shapes is smaller than that of the corresponding out-of-phase mode shapes. An

important point to note arises from the fact that the stiffness difference between the plates affects

the out-of-phase mode shapes more than the in-phase mode shapes. Since the vertical fluid flow

direction coincides with the dynamic displacement of the plates for the in-phase modes, the

dynamic displacement of the stiff plate encourages the flexible plate to move in the same direction.

On the contrary, for the out-of-phase modes, each plate hinders it’s oppositely facing plate from

moving in the opposite direction through the contained fluid. As the number of the vibration modes

increases in the radial direction, the number of the nodal circles of the two plates does not match at

the higher modes. These modes are called mixed modes. The mixed modes frequently appear at the

higher modes when the difference in the structural stiffness of two plates is small, and they are also

observed at the lower modes when the difference in the structural stiffness of two plates is large. As

listed in Table 2, the first out-of-phase mode with n = 0 cannot appear because the vibration mode

violates the fluid volume conservation.



Mode localization and veering of natural frequency loci 729

4. Mode localization and the curve veering of the natural frequency loci 

4.1 Mode localization

It is well known that a disorder in nearly periodic structures tends to inhibit the propagation of a

motion and to localize the vibration modes (Pierre and Dowell 1987, Pierre 1988). The mode

Table 2 Comparison of the FEM and theoretical natural frequencies of the two circular plates coupled with
water

Mode Natural frequency (Hz) Discrepancy1)

(%)
Mode shape

n m' FEM Theory

0

1 — — — —

2 255.0 255.6 −0.24 In-phase mode

3 688.7 674.4 2.07 Out-of-phase mode

4 1062.3 1077.7 −1.44 In-phase mode

5 2172.2 2119.1 2.44 Mixed mode

6 2595.1 2651.4 −2.17 In-phase mode

1

1 275.6 275.7 −0.04 Out-of-phase mode

2 548.6 549.7 −0.20 In-phase mode

3 1342.2 1318.0 1.80 Out-of-phase mode

4 1704.6 1733.4 −1.69 In-phase mode

5 3198.5 3178.2 0.63 Out-of-phase mode

6 3639.7 3686.3 −1.28 Mixed mode

2

1 663.9 663.8 0.02 Out-of-phase mode

2 939.9 941.3 −0.15 In-phase mode

3 2154.1 2131.2 0.16 Out-of-phase mode

4 2495.1 2520.2 0.92 In-phase mode

5 4401.8 4329.6 1.64 Out-of-phase mode

6 4848.6 4861.8 −0.27 Mixed mode

3

1 1163.2 1163.2 0.00 Out-of-phase mode

2 1438.7 1440.7 −0.14 In-phase mode

3 3067.4 3051.3 0.52 Out-of-phase mode

4 3438.0 3457.0 −0.55 In-phase mode

5 5736.2 5688.9 0.82 Out-of-phase mode

6 6224.2 6306.6 −1.32 Mixed mode

4

1 1761.1 1761.8 −0.04 Out-of-phase mode

2 2052.4 2055.1 −0.13 In-phase mode

3 4077.7 4069.0 0.21 Out-of-phase mode

4 4521.2 4535.9 −0.33 In-phase mode

5 7180.5 7151.3 0.41 Out-of-phase mode

6 7749.0 7797.0 −0.62 Mixed mode

1)Discrepancy (%) = (FEM – Theory) × 100 / FEM
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localization and frequency loci veering phenomena were observed in some simple vibration systems

(Kim 1998, Liu and Chan 1999, Liu 2002). The mode localization was also observed in the

hydroelastic vibration of two circular cylindrical shells coupled with a fluid (Jeong 1998). By the

same token, the mode localization appears in the free vibration of two circular plates coupled with a

fluid. Fig. 3 shows two categories of the typical mode localization. The first four modes of Fig. 3

correspond to the first category which has a higher mode number and a relatively narrow fluid gap

(d = 40 mm). The other four correspond to the second category and they have a lower mode

number and a wide fluid gap (d = 400 mm). The first mode with m' = 12 and n = 0 in Fig. 3 shows

that the modal displacement mainly takes place at the lower plate, but the second mode with m' = 13

and n = 0 at the upper plate. As the vibration modes increase, the hydrodynamic coupling effect

gradually decreases owing to the dispersal (separation) effect of the fluid (Jeong and Lee 1998).

Therefore the main fluid oscillates near only one plate at the higher modes. It is observed that the

mode localization happens alternately at the upper and the lower plates as the number of the modes

Fig. 3 Mode localization of two unequal aluminum circular plates coupled with water ( ; upper plate,
---- ; lower plate)
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increases. Because of this reason, the mode localization happens at the higher modes when the fluid

gap is small.

On the other hand, the mode localization can also take place in the relatively lower modes since

the hydroelastic coupling effect is remarkably reduced according to an increase of the distance

between the plates such as the 5th~8th modes of Fig. 3. These vibration modes correspond to m' = 4

or 5 for n = 0, and m' = 3 or 4 for n = 1 when d = 400 mm. If the distance is large enough to

diminish the fluid coupling, it seems that the two plates behave in such a manner that they

independently float on an infinite fluid.

4.2 Natural frequency loci veering

Figs. 4 and 6 show the natural frequencies of the two circular plates with R1 = R2 = a for n = 0

and n = 1 respectively as a function of the thickness difference factor. The thickness difference

factor is defined as  where the sum of the plate thickness  is taken as a

constant.

When the difference factor is zero or in the identical plates case, the natural frequency ‘A1’ in

Fig. 4 corresponds to the fundamental in-phase mode. As the difference in the plates thickness

increases, the fundamental frequency decreases as indicated by ‘A1’~‘A6’. The first mode gradually

h1 h2– / h1 h2+( ) h1 h2+

Fig. 4 Curve veering of the natural frequencies of two unequal circular plates coupled with water according to
a plate thickness variation for n = 0, d = 15 mm and R1 = R2  = a = 150 mm
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Fig. 5 Change of the mode shapes according to the thickness difference factor for n = 0 ( ; upper plate,  ----; lower plate)
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changes from a symmetric in-phase mode to a psudo-symmetric in-phase mode with the thickness

difference factor, and it eventually converges to a mode when the stiff plate has a considerably

small displacement and the flexible plate has one nodal circle so that the fluid volume conservation

requirement can be satisfied (A6 of Fig. 5). The second mode of Figs. 4 and 5 initiates from the

out-of-phase mode (B1) with a nodal circle and the natural frequency gradually increases with the

thickness difference factor. The mode moves to an in-phase mode (B6 of Figs. 4 and 5) when the

thickness difference factor increases. The second mode shape (B6) resembles the in-phase mode

(A2) of the first mode. The third mode of Fig. 4 starts from the in-phase mode (C1) with a nodal

circle. As the thickness difference factor increases, the natural frequency decreases and the mode

shape gradually changes to a mode (C6), which has a small deflection at the lower plate and two

nodal circles at the upper plate. The fourth mode of Fig. 4 initiates from the out-of-phase mode

(D1) with two nodal circles. The natural frequency increases to the point ‘D4’ which corresponds to

the in-phase mode, and after the inflection point ‘D5’, the natural frequency abruptly decreases. The

symmetric mode shape with two nodal circles dramatically changes near the inflection point as

illustrated from ‘E4’ to ‘E6’ of Fig. 5 and the corresponding natural frequency locus also abruptly

changes as shown in Fig. 4. After ‘D5’, the locus of the 4th mode looks like it has extended from

the adjacent 5th mode locus near the two inflection points ‘D5’ and ‘E5’ in Fig. 4. Therefore at a

first glance the two loci seem to be crossed. But, in fact, the loci do not encounter each other.

Fig. 6 Curve veering of the natural frequencies of two unequal circular plates coupled with water according to
a plate thickness variation for n = 1, d = 15 mm and R1 = R2 = a = 150 mm 
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Fig. 7 Change of the mode shapes according to the thickness difference factor for n = 1 ( ; upper plate,  ----; lower plate)
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Similar results can be observed in Figs. 6 and 7 for n = 1.

At this pint, let’s summarize these two points. One is a relationship between the slope of the

frequency loci and the mode shapes. When the in-phase mode shape shifts to an out-of-phase mode

or a localized mode, the corresponding natural frequency tends to decrease, and vice versa. The

other is the fact that similar mode shapes with different natural frequencies can be repeated in the

higher modes when the thickness difference factor increases.

Figs. 8 and 10 plot the loci of the coupled natural frequencies of the two circular plates with an

unequal thickness and R1 = R2 = a for n = 0 and n = 1 respectively as a function of the distance

between the plates. The figures also show the loci of the natural frequencies as a curve veering one.

As the distance between the plates increases at the first mode, the natural frequency gradually

increases and the out-of-phase mode (A1 of Fig. 9) with one nodal circle is converted to an in-

phase mode (A6 of Fig. 9) with a zero nodal circle as illustrated in Fig. 8. The second mode starts

from the out-of-phase mode shape (B1 of Fig. 9) with two nodal circles and changes to an in-phase

mode shape (B3 of Fig. 9) with a zero nodal circle. Eventually it moves to a mixed mode (B6) with

a zero nodal circle at the upper plate and with one nodal circle at the lower plate. The natural

frequency increases to the inflection point and it finally decreases as the fluid gap increases. One of

the remarkable observations is that the fundamental mode shape for n = 1 does not change

regardless of the fluid gap as shown in Fig. 11. It is apparent that the complicated mode shape can

Fig. 8 Curve veering of the natural frequencies of two unequal circular plates coupled with water according to
a distance between the plates for n = 0, h1 = 3 mm, h2 = 2 mm and R1 = R2 = a = 150 mm
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Fig. 9 Change of the mode shapes according to the distance between the plates for n = 0 ( ; upper plate,  ----; lower plate)
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be shifted to a simple mode shape and it can also return to a complex mode shape again as shown

in Figs. 9 and 11 as the fluid gap increases.

5. Conclusions

An analytical method to estimate the natural frequencies of two unequal circular plates with an

unequal thickness and diameter and coupled with an inviscid and compressible fluid is developed

using the Rayleigh-Ritz method. It is verified that the proposed theoretical approach can predict the

coupled natural frequencies well. The following was observed in the present work:

1. The veering of the natural frequency loci curve and the mode localization phenomena appear in

the system by increasing the distance of the plates and the thickness difference factor.

2. The natural frequency decreases when the in-phase mode shape shifts to the out-of-phase mode

during a veering of the natural frequency loci curve, and vice versa.

3. The mode shape of two circular plates coupled with a fluid abruptly changes near the inflection

point of the locus of the corresponding natural frequency.

Fig. 10 Curve veering of the natural frequencies of two unequal circular plates coupled with water according
to a distance between the plates for n = 1, h1 = 3 mm, h2 = 2 mm and R1 = R2 = a = 150 mm.
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Fig. 11 Change of the mode shapes according to the distance between the plates for n = 1 ( ; upper plate,  ----; lower plate)
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