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Fuzzy reliability analysis of laminated composites 
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Abstract. The strength behaviors of Fiber Reinforced Plastics (FRP) Composites can be greatly
influenced by the properties of constitutive materials, the laminate structures, and load conditions etc,
accompanied by many uncertainty factors. So the reliability study on FRP is an important subject of
research. Many achievements have been made in reliability studies based on the probability theory, but
little has been done on the roles played by fuzzy variables. In this paper, a fuzzy reliability model for
FRP laminates is established first, in which the loads are considered as random variables and the strengths
as fuzzy variables. Then a numerical model is developed to assess the fuzzy reliability. The Monte Carlo
simulation method is utilized to compute the reliability of laminas under the maximum stress criterion. In
the second part of this paper, a generalized fuzzy reliability model (GFRM) is proposed. By virtue of the
fact that there may exist a series of states between the failure state and the function state, a fuzzy
assumption for the structure state together with the probabilistic assumption for strength parameters is
adopted to construct the GFRM of composite materials. By defining a generalized limit state function, the
problem is converted to the conventional reliability formula that enables the first-order reliability method
(FORM) applicable in calculating the reliability index. Several examples are worked out to show the
validity of the models and the efficiency of the methods proposed in this paper. The parameter sensitivity
analysis shows that some of the mean values of the strength parameters have great influence on the
laminated composites’ reliability. The differences resulting from the application of different failure criteria
and different fuzzy assumptions are also discussed. It is concluded that the GFRM is feasible to use, and
can provide an effective and synthetic method to evaluate the reliability of a system with different types
of uncertainty factors.

Keywords: laminated composites; fuzzy reliability; Monte Carlo simulation; generalized limit state
function.

1. Introduction

By virtue of its excellent properties, such as the high specific strength and stiffness, anti-fatigue,

vibration absorption and corrosion resistance, the Fiber Reinforced Plastics (FRP) is widely used in

automobile, ship, pipe, aircraft, space vehicle etc. In general, these structures are in service under

special and severe circumstances, so high reliability is required of them. On the other hand, the

inherent anisotropic behavior of composite materials leads to the high sensitivity of strength to load

conditions and other factors, and composite materials generally exhibit large statistical variations in
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their mechanical properties. So the probabilistic analysis should play an important role in the

structural assessment (Cruse 1994, Ben 1994) and the reliability study of composite materials is of

great importance.

Several methods have been developed recently to probabilistically assess the static strength of

fibrous composites (Lin and Kam 2000, Murotsu and Miki 1994, Gurlich and Pipes 1995). Zhao

and Gao (1995), Mark and Gurlich (1998) researched the reliability of composite laminates by

enumerating significant failure modes, and three kinds of load are considered, in-plane tension load,

shear load and general in-plane load. Philippidis and Lekou (1998) considered strength parameters

as random variables of two-parameter Weibull distribution under in-plane loads. These random

parameters were transformed into standard normal distribution parameters to calculate the

probability of failure. Gurvich and Pipes (1995) analyzed the reliability of laminated composite in

bending by using the multi-step failure method, and the Monte Carlo method was utilized in the

reliability computation. Jeong and Shenoi (1998) studied the reliability of composite laminate under

transverse loads by considering the distributed loads, the strength parameters and the material

properties as random variables. To evaluate the system reliability, the Tsai-Hill failure criterion and

the direct simulation method were used. 

Most of these studies used the first ply failure (FPF) assumption, that is, if any one of the plies in

a laminate fails, the entire laminate is considered a failure. In fact, a composite laminate consists of

plies that join and work together to resist external loads. If only one ply or several plies in a

laminate has failed, the external loads will be redistributed among the remaining plies, and the

laminate is capable of resisting the loads continually until it is completely fractured. A progressive

damage process can characterize the failure process. It is generally too conservative to ignore the

residual strength of a laminate after the first ply failure.

Some researchers (Mahadevan et al. 1997, Chen et al. 2002a, 2002b) considered the composite

laminate as a structural system. It was assumed that the system will not fail until all the plies have

failed. The system failure was estimated by identifying possible failure sequences, which lead to

system failure. As the number of the possible failure sequences is very large for complicated

laminates, efficient search techniques are needed to identify important failure sequences, and the

system failure can be approximated as the union of these identified important failure sequences.

In a classical reliability model, some of the variables such as loads and strengths are considered

as random and the rest deterministic. The binary state assumption is adopted for the structure

system. That is, a system is either in function or failure state. The system reliability is evaluated

based on the probability theory (Melchers 1999, Kogiso et al. 1997, Jeong and Shenoi 2000,

Sciuva and Lomario 2003). However, in certain cases, consideration of the random uncertainty

alone cannot help satisfactorily evaluate the reliability of a structural system. For example, the

binary state assumption that a system is either in function or failure state is not rational since there

are a series of states between the two limit states. So the fuzzy concept is necessary in analyzing

the reliability. 

The fuzzy concept has been introduced and developed in the reliability theory recently (Cai et al.

1993, 1995, Wei and Chen 2004, Lev et al. 1996, John et al. 1995). Several forms of fuzzy

reliability theories are studied by making new assumptions to replace the probability assumption or

the binary-state assumption.

In this paper, first we consider the strength parameters as fuzzy variables and the loads as random

variables, and construct a fuzzy reliability model for composite materials. A simulation method of

calculating failure probability is developed. Numerical examples are worked out to show the
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validity and the necessity of the method proposed. Then the fuzzy state assumption together with

the probability assumption is employed to establish a generalized fuzzy reliability model (GFRM)

for laminated composites, and the corresponding computation method by introducing a generalized

performance function is developed. Examples are given to demonstrate the validity and efficiency of

the model proposed. The influence of the strength parameters, the failure criteria, and the fuzzy

parameters are also discussed.

2. A fuzzy reliability model 

2.1 Basic theorem of fuzzy mathematics (Zimmermann 1991)

Based on the nature of fuzzy human thinking, L.A. Zadeh originated the fuzzy logic theory. Set A

is a common set in the universe of discourse U. For any element u in U,  or , a map

from U to {0, 1} can be defined as

 (1)

Here A(u) is the characteristic function of the common set A. It can be rewritten as CA(u).

Suppose the map  from U to [0, 1] defined in the universe of discourse U is

 (2)

 is called the fuzzy set in U.  is the membership function of u to  and can be expressed as

. When  is 0 or 1, the fuzzy set  degenerates to a common set A and  changes

into the characteristic function CA(u). 

Below we introduce an important decomposition theorem in fuzzy mathematics.

2.1.1 λ Truncated subset

Let  be a fuzzy set in the universe of discourse U. For a given threshold , define

(3)

We call Aλ the λ truncated subset to . From the definition, we know that Aλ is a common set.

2.1.2 Decomposition theorem

If  is a fuzzy set in the universe of discourse U, then  is also a fuzzy set, and its

membership function is

(4)

The symbol  means an operation of taking the smaller value. With these definitions, we can

decompose the fuzzy set into a series of common sets as follows:
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Ã
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(5)

The symbol  denotes an operation of taking the larger value.

2.2 Formulation of fuzzy reliability

The stress-strength interference model is utilized and expanded to analyze the fuzzy reliability of

laminated composites. The strengths and stresses are modeled as fuzzy variables and random

variables, respectively. A fuzzy reliability model is constructed as follows. 

The fuzzy strength is expressed as

 (6)

in which  is the membership function of the fuzzy strength. A symmetrical triangular

distribution type membership function as shown in Fig. 1 is utilized to describe  in this paper

(Jiang and Chen 2003). Generally, there exists much difficulty in directly calculating the fuzzy

random reliability (Liu et al. 1997). Here a transferring process is adopted to calculate the fuzzy

reliability. Let the probability density function of stress be fS (s), the fuzzy strength be , and its

membership function be . For the fuzzy variable , given a threshold , then the

corresponding λ truncated subset rλ whose region is  can be obtained. Suppose the fuzzy

variable submits to a uniform distribution on the region , i.e., its probability density

function can be expressed as

 (7)

According to the stress-strength interference model, the safe probability at the threshold λ is

computed as:
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Fig. 1 The membership function Fig. 2 A schematic illustration of ϕ (s, λ) function
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 (8)

The function  is defined as (Fig. 2)

(9)

in which aλ , bλ are dependent on the threshold parameter λ, but are independent of the stress

distribution. Integrating Eq. (8) in the extent [0, 1], one obtains the safe probability as follows (see

Appendix):

(10)

For a constant stress s0, fs(s) is reduced to a Dirac’s delta function . By virtue of

this, Eqs. (8) and (10) become

 

(11)

 (12)

2.3 Monte Carlo simulation procedure

Integration of Eq. (12) to get the fuzzy reliability is not straightforward. In this paper, the Monte

Carlo Method is used to compute the fuzzy reliability of composite materials (Sciuva and Lomario

2003, Dong and Zhu 2000). The computing steps of the lamina reliability are as follows:

(1) Generating the stress specimen  according to the stress distribution;

(2) Calculating the reliability Ri according to Eq. (12), i.e., 

 (13)

(3) The reliability of the lamina is obtained as

 (14)

The step (1) can be realized by a simulating method when the stress distribution fS (s) is known. The

step (2) is further decomposed as follows: 

(1) Generating the uniform distribution  in the region (0, 1). 

(2) By taking λj as the threshold, and using Eqs. (11) and (12), the reliability under stress si is
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2.4 Numerical examples 

The example shown in Fig. 3 deals with a square laminated plate subjected to bi-axis tension

loads Nx and Ny. The stacking structure is , a × b = 20 × 12.5 cm2, and the thickness of

each ply is 0.125 mm. The composite material is a typical graphite/epoxy (T300/5208). Mechanical

properties of the material and the load conditions are listed in Table 1. The tension loads are

assumed to be normally distributed random variables. A symmetrical triangular distribution type

membership function (Fig. 1) is proposed in which the left and right distribution parameters are

taken as a/m = 0.90, b/m = 1.10 (Table 2).

The maximum-stress criterion is used in the example, i.e.,  for tension,

 for compression. Here Xt and XC are the longitudinal tension and

compression strengths, Yt and YC the transverse tension and compression strengths, S the shear

0/θ/ θ– /0( )s

σ1 Xt≤ σ2 Yt≤ τ12 S≤, ,
σ1 Xc σ2 Yc≤ τ12 S≤, ,≤

Fig. 3 A laminate subjected to bi-axis tension loads

Table 2 Fuzzy strength parameters (MPa)

Mean value m
Left distribution 

parameter a
Right distribution 

parameter b

Xt 1500 1350 1650

Xc 1500 1350 1650

Yt 40 36 44

Yc 246 221.4 270.6

S 68 61.2 74.8

Table 1 Loading conditions and the mechanical properties

Units Mean
Standard 
deviation

Nx kN/m 1000 100

Ny kN/m 100 10

E1 GPa 181.0

E2 GPa 10.7

G12 GPa 7.17

ν12 0.28
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strength. With the previously mentioned Monte Carlo simulation method, the system fuzzy

reliability (safe probability) is obtained and listed in Table 3. The conventional reliability results and

the comparison are also shown in the table. 

From Table 3, we can see that the fuzzy reliability and the conventional reliability have similar

variation tendency as θ, and the maximum reliability is within the fiber degree range of 24-26

degrees. Within the range of 24 to 34 degrees, we have a relatively high reliability that is basically

required in practice. The results show that the difference between the two reliability models within

the range is very small. This is because the symmetrical triangle distribution pattern around the

mean value (Fig. 1) was assumed for the fuzzy strengths, which consequently results in almost the

same reliability as the case that strengths are deterministic and stresses are random. In fact, as long

as the strength – stress interaction model is used in structural reliability analyses, the present fuzzy

reliability model is nearly equivalent to the randomization of material strengths and stresses in the

conventional way. The model developed above can provide an alternative method assessing

structural reliability in the case where the distribution pattern of strength parameters is hard to

determine. The other application of this model lies in that it can extend the concept of “safety”.

Treating the strengths as “fuzzy” variables substantially implies that a “fuzzy” judgment is made for

the structure state. A structure may be in neither a completely safety situation, nor a failure state,

rather it is in a safe status to a certain degree. The extension of this idea leads to a generalized

fuzzy reliability model as will be treated in Section 3. 

Figs. 4-7 show the influence of the mean values of the fuzzy strength parameters on reliability.

The fiber orientation is fixed to 30 degrees, and the Maximum stress criterion is utilized in the

calculation. These figures show that Xt makes positive contributions to fuzzy reliability of the

system. But Xc, Yt and Yc exert little influence on the reliability in the case studied. This is because

the layers in the laminate are either 0 degree or 30 degree, and the tension loading is primarily in

the 0 degree direction. So the tension strength Xt has the most important effect on the reliability. For

other combinations of stacking structures and loading conditions, different dependence features on

the mean values of strengths may exist.

Table 3 The fuzzy reliability and the conventional reliability of the FRP

Angle No fuzzy Fuzzy Change (%)

20 0.1114 0.1195 7.27

22 0.7442 0.7346 −1.3

24 0.9993 0.9983 −0.1

26 0.9973 0.9942 −0.3

28 0.9897 0.9859 −0.4

30 0.9725 0.9642 −0.9

32 0.9353 0.9184 −1.8

34 0.8268 0.8134 −1.6

36 0.4553 0.4567 0.3

38 0.1952 0.2104 7.8
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3. A generalized fuzzy reliability model

3.1 Theoretical consideration

In the previous section, a fuzzy reliability model in which strengths and stresses are modeled as

fuzzy variables and random ones respectively, and the binary-state assumption for a system was

adopted in the formulation. In the light of the safety degree of a system, a generalized fuzzy

reliability model of composite materials can be constructed by making new assumptions to replace

the binary-state assumption. By virtue of the fact that there may exist a series of states between the

failure state and the function state, a fuzzy assumption for the structure state together with the

probabilistic assumption for strength parameters is made in the following analysis.

Let the basic random variables of a structure be , the corresponding

probability density function , and the performance function . According to the

reliability theory, the failure probability can be expressed as Melchers (1999)

X X1 X2 … Xm, , ,{ }T
=

fX x( ) Z g X( )=

Fig. 6 Influence of the mean value of Yt Fig. 7 Influence of the mean value of Yc

Fig. 4 Influence of the mean value of Xt Fig. 5 Influence of the mean value of Xc
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(17)

From the probability density function , we can get the density function of Z, fZ (z) = fX (x)

, so the failure probability expression can be changed to

 (18)

Define an event , and then the structure reliability takes the form 

 (19)

in which  is the characteristic function of the common event A.

 (20)

Now we introduce a fuzzy state assumption in the reliability analysis of structures. Let 

represent the fuzzy safety event,  , and the membership function of  is 

(as shown in Fig. 8). From the analogy to Eq. (19), the structure reliability is computed as follows:

(21)

The above formulation is based on the probabilistic assumption together with the fuzzy state

assumption, called a generalized fuzzy reliability model. Let the membership function  be

expressed as 

(22)

in which  is utilized to describe the fuzziness, and the parameter . For the case

, the structure is in a safe state. If , the structure is in a failure state. When

 follows in the region [0, 1], the structure is in a safe state at degree . Let c = 0, then

 reduces to , the characteristic function of the common event A. The assumption (22)
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Fig. 8 Fuzzy safety state of a structure and the membership function
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means that the completely fail region is decreased as compared with Eqs. (19), (20). For z < 0, a

structure may not be necessarily in a failure status. By using (22), Eq. (21) becomes

 

(23)

The first term in the above equation gives the conventional reliability formula, and the second one

is the added part by introducing the fuzzy assumption Eq. (22) in the region [−c, 0] (Dong 2000).

Instead reducing the failure region as Eq. (22) does, an assumption that decreases the safe region

can be made. In that case, the reliability becomes smaller as compared with the conventional one.

3.2 FORM - Computation procedure of reliability 

The decomposition theorem indicates that any fuzzy set can be represented by a number of

common sets. By applying this theorem, we can transfer a fuzzy set problem into a common set

problem. For the computation of reliability, the λ truncated subset concept is utilized to transform

the fuzzy reliability problem into conventional reliability problems.

For a fuzzy safety event , given threshold , the truncated subset

corresponding to λ is defined as

(24)

Based on the conventional reliability theory, the safety probability of a system at the threshold λ can

be expressed as:

(25)

The system reliability is computed as (see Appendix)

(26)

Eq. (25) is the point crucial to the reliability computation. If the limit state function is nonlinear, it

is very difficult to directly calculate the integral of Eq. (25). Here the FORM (first-order reliability

method) is used to solve this problem.

Define a generalized limit state function at the threshold λ as

(27)

The second term on the right side represents the inverse function of . From Eqs. (24)
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be written as 
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Since the above equation has the same form as the conventional reliability computation formula

(19), we can use the methods available in the reliability theory to assess the system reliability

(Melchers 1999, Mahadevan 1997). Here the first-order reliability method (FORM) is used for

calculating the reliability.

In the first-order reliability method, the random variable vector X is firstly transformed to Y, the

vector of equivalent uncorrelated standard normal variables. The component reliability index is

computed as  in which y* is the point in the limit state G(Y) = 0 at a minimum

distance from the origin. A geometrical illustration for a limit state involving only two random

variables is shown in Fig. 9. The failure probability is computed as , where Φ
is the cumulative distribution function of the standard normal variable.

In Fig. 9, y* is referred to as the design point, or the most probable failure point (MPP), which

can be found using the following iterative formula.

 (29)

where  is the gradient vector of the limit state function at yi, and αi the unit vector normal

to the limit state surface away from the origin. 

By using FORM the reliability index  corresponding to the threshold λ is obtained and the

reliability  is computed as . A simulation method is utilized to complete the fuzzy

reliability assessment procedure as follows:

(1) Generate the uniform distribution  in the region (0, 1). 

(2) Compute the reliability  corresponding to the threshold λi by using the FORM.

(3) The system reliability is obtained as 

(30)

3.3 Numerical examples 

A structure shown in Fig. 3 is used as an example again. We assume that the strength parameters
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Fig. 9 Geometrical illustration of the reliability index β
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are independent normally distributed random variables. Their distribution properties are shown in

Table 4. The loads are Nx = 300 kN/m, Ny = 250 kN/m.

The Tsai-Wu failure criterion is used in the example, i.e.,

(31)

(32)

in which Xt, XC represent the longitudinal tension and compression strengths, Yt and YC the

transverse tension and compression strengths, S the shear strength of a ply.

The following expression is used for the membership function of the fuzzy state 

(33)

 (34)

in which  is computed from Eq. (31) by letting all the random variables take their mean values.

G 1 FLLσL
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2
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⎧
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c 0.1G=

G

Table 4 Random variables

Units Mean Standard deviation

Xt MPa 1500 150

XC MPa 1500 150

Yt MPa 40 4.0

YC MPa 246 24.6

S MPa 68 6.8

Table 5 The fuzzy reliability and the conventional reliability

Angle Fuzzy No fuzzy Change

40 −9.2859 −9.5916 3.2%

45 −6.3891 −6.8533 6.8%

50 −3.1231 −3.3087 5.6%

55 −0.9109 −0.9630 5.4%

60 0.5483 0.5241 5.0%

65 1.4989 1.4348 4.2%

70 2.0609 1.9834 3.9%

75 2.0034 1.9288 3.9%

80 1.8083 1.7381 4.0%

85 1.6717 1.6106 3.8%

90 1.6324 1.5663 4.2%
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3.4 Results and discussion 

Using the generalized fuzzy reliability model and computation method mentioned above, the

reliability index of the laminate is computed and listed in Table 5. The conventional reliability index

is also listed in the Table. The fuzzy reliability and the conventional reliability have similar change

tendency as θ. The comparison shows that the former is higher than the conventional one as

expected from Eq. (23)

Fig. 10 shows the difference in the reliability by applying different failure criteria. The following

integrated expression for the maximum stress failure criterion is used (Jeong and Shenoi 1998,

Ochoa and Reddy 1992): 

(35)

(36)

From Fig. 10 we can see that the selection of failure criteria greatly influences the reliability of

composite materials. When the fiber orientation is less than 45 degrees,  and . So

what we are concerned about is the region of  degrees in this case. We see that the results of

Tsai-Wu failure criterion are larger than the maximum stress criterion. In the maximum stress

criterion, stresses in the principal axis directions of a composite material must be less than the

strengths in the same directions simultaneously, or the structure will fail. The maximum stress

failure criterion is somewhat conservative, and the result of Tsai-Wu failure criterion is closer to the

reality in general (Zhang et al. 1993). We also find from Fig. 10 that the reliability index reaches

maximum when  regardless of the failure criterion used.

Let , and the fuzzy region parameter c in Eq. (34) be = 0, 0.1, 0.2 respectively, then

the reliability index takes the values of 1.98, 2.06, and 2.14 correspondingly. The reliability index

G 1 FLLσL

2
FTTσT

2
FSSσS

2
2FLTσLσT FLσL FTσT+ + + + +( )– 0= =

FLL 1/ Xt XC( ) FTT, 1/ Yt YC( ), FSS 1/S
2

= = =

FL 1/Xt 1/XC,  FT 1/Yt 1/YC,  FLT 1/2–( )FLFT=–=–=

β 6–< Pf 1≈
θ 45>

θ 70
o≈

θ 70
o≈ c/G

Fig. 10 Influence of different failure criteria on the
reliability 

Fig. 11 Influence of load ratio on the reliability
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increases almost proportionally as the parameter c becomes greater, owing to the fact that a larger

parameter c means a smaller definitely failure region. Let a parabolic function [(z + c)/c]2 replace

the linear membership function (z + c)/c in Eq. (33), a value of 2.03 for the reliability index was

obtained, implying that the distribution form of the membership function has weak influence on the

result.

By using the optimum toolbox in Matlab, we get the reliability index of the optimum structure at

different load ratios K = Ny/Nx. The results are shown in Table 6 and Fig. 11.

It’s found that under a certain load ratio, the optimum fiber orientation takes almost the same

value whenever the Tsai-Wu failure criterion or the Maximum stress failure criterion is used, but

quite different reliabilities are obtained. As the load ratio increases, the reliability index of the

optimum structure drops sharply, and the difference between the two criteria becomes more

significant. The reliability index from Tsai-Wu theory is larger than that of maximum stress failure

criterion as mentioned above. For deterministic analyses, the optimum fiber orientation for K = 0

and K = 1 should be 0 degree and 90 degrees, respectively. Table 6 shows that the optimum fiber

orientations from the present model are different from the results of deterministic cases for K = 0

and K = 1.

Figs. 12-15 show the influence of the mean values of strength parameters on reliability. The fiber

Table 6 The optimum fiber orientation and reliability index for different load ratios K

Load 
ratio K

Optimum fiber orientation Reliability index

Tsai-Wu criterion Max-stress criterion Tsai-Wu criterion Max-stress criterion

0.0 5.564 5.175 29.288 29.360

0.2 41.000 42.088 11.783 11.252

0.4 50.051 49.945 4.319 4.038

0.6 57.958 58.367 3.240 2.767

0.8 69.415 69.402 2.318 1.599

1.0 89.248 89.731 1.406 0.318

Fig. 12 Influence of the mean value of Xt Fig. 13 Influence of the mean value of Xc
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orientation is fixed at 75 degrees, and the Tsai-Wu criterion is utilized in the calculation. These

figures show that Xt and Yt have positive contributions to fuzzy reliability index β. As Xc increases,

β decreases gently, while Yc has little effect on the reliability. In a laminated composite, Yt has the

smallest value, so a laminate’s strength may greatly depend on Yt. Fig. 14 shows that the sensitivity

of β to Yt is largest as expected.

The model proposed in Section 2 can also be regarded as a kind of generalization of the concept

of “safety” as mentioned previously, with each strength fuzziness effect being treated individually.

The generalized fuzzy reliability model developed in this section combines the effects in an

integrated form. It not only extended the “safety” concept by introducing the fuzzy state assumption

to replace the conventional binary-state one, it is feasible to treat other fuzzy information, thus

providing an effective and synthetic method to evaluate the reliability of a system with different

types of uncertainties. 

4. Conclusions

The fuzzy concept is first introduced to describe the strength in the reliability computation of

composite laminates. Then, the fuzzy state assumption is used to substitute the two-value state

assumption to construct a generalized fuzzy reliability model. In the first model, the strength

parameters are considered as fuzzy variables and the loads as random ones. The model can provide

an alternative method assessing structural reliability in the case where the distribution pattern of

strength parameters is hard to determine. Furthermore, treating the strengths as “fuzzy” variables

means a “fuzzy” judgment is made for the structure state. This can be regarded as a special case of

the fuzzy state assumption.

In the second model, a generalized fuzzy reliability model (GFRM) is established on the basis of

the fuzzy state assumption together with the probabilistic assumption, which can effectively evaluate

the reliability of a system with different types of uncertainty factors. 

In the analysis of fuzzy reliability, how to convert the fuzzy reliability problem into a

conventional reliability problem is the key point for computation. The truncated subset concept and

Fig. 14 Influence of the mean value of Yt Fig. 15 Influence of the mean value of Yc
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the decomposition theorem in fuzzy mathematics are applied to transforming the fuzzy reliability

problem into a set of conventional reliability ones. Numerical examples are given to illustrate the

validity and efficiency of the method proposed.

The GFRM provides a method that can evaluate the reliability of composite materials more

naturally and synthetically, and makes an offer to the theoretical support in fuzzy reliability

optimum design analyses of composite materials that is under way by the authors. 
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Notation

A : common set, common event
a, b, m : fuzzy strength parameters

: fuzzy set, fuzzy event
Aλ : λ truncated subset to 
aλ , bλ : end points of the region of λ truncated subset
CA(u) : characteristic function of A

: probability density function of stress S
: probability density function of rλ
: probability density function of X
: probability density function of Z 
: performance function or limit state function
: generalized limit state function

Pf : failure probability
: fuzzy strength variable
: λ truncated subset to 
: the fuzzy safe probability of a structure
: the safe probability at the threshold λ

S : the shear strength of a ply
X : a vector of basic random variables

: the longitudinal tension and compression strengths of a ply
: the transverse tension and compression strengths of a ply
: the membership function of 

λ : threshold
: the membership function of 
: a function related to the stress s and the threshold λ defined in 2.2

θ : fiber orientation
β : reliability index

Ã
Ã

fS s( )
frλ r( )
fX x( )
fZ z( )

g X( )
G X λ,( )

r̃
r̃λ r̃
R̃
R̃λ

Xt XC,
Yt YC,
μ

A
˜ u( ) Ã

μr
˜

r( ) r
˜ϕ s λ,( )
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Appendix

The principle based on which Eq. (10) holds is explained in this appendix.
Let X denote a random variable, the probability density function of X is , the membership function of X

belonging to the fuzzy event  is , then the probability of the fuzzy event  can be expressed as

(A1)

If  is a convex fuzzy set defined in the real number field, then its λ truncated subset Aλ , which is deter-
mined by the inequality , is a common set:

(A2)

Aλ is a region on a real number axis. The region  may be an open one, i.e.,  or .
The feature function of the common event Aλ is written as

(A3)

So, the probability of the λ truncated subset Aλ of  is computed as

(A4)

Eq. (A4) is the probability of fuzzy event  when the threshold is λ.
Suppose that there exists a point c at which  (c is a real number), and  is strictly mono-

tonic and derivable in the extents  and , then the probability of the fuzzy event  expressed
by Eq. (A1) can be rewritten as

(A5)

To prove Eq. (A5), the following two propositions need to be clarified first.
Proposition 1. If the strictly monotonic function  is derivable and  is not equal to 0 in the

region , and ; function  is continuous in the region , and
 is convergent, then

(A6)

where  is the inverse function of .
Proof: Since the strictly monotonic function  is derivable, the inverse function of ,

, must exist and can be derived:

(A7)

(A8)

Noting that  when  and  when , we have

 (A9)
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Consider that 

 (A10)

Applying the method of integration by parts to Eq. (A9), one obtains

(A11)

Proposition 2. If the strictly monotonic function  is derivable and  is not equal to 0 in the
region , and ; function  is continuous in the region  and

 is convergent, then

(A12)

Proof of proposition 2 is similar to that of proposition 1. Having clarified propositions 1 and 2, Eq. (A5)
can be proved as follows:

(A13)

For , it is always possible to find a λ so that . By the use of proposition 2, one
gets

 (A14) 

And for , we can find the relation . From proposition 1, we have

(A15)
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