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Abstract. The main purpose of this paper is to investigate the effect of transient stochastic analysis on
nonlinear response of earth and rock-fill dams to spatially varying ground motion. The dam models are
analyzed by a stochastic finite element method based on the equivalent linear method which considers the
nonlinear variation of soil shear moduli and damping ratio as a function of shear strain. The spatial
variability of ground motion is taken into account with the incoherence, wave-passage and site response
effects. Stationary as well as transient stochastic response analyses are performed for the considered dam
types. A time dependent frequency response function is used throughout the study for transient stochastic
responses. It is observed that stationarity is a reasonable assumption for earth and rock-fill dams to typical
durations of strong shaking.
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1. Introduction

For many years, considerable research has been directed towards the analytical and numerical

techniques for estimating the response of earth and rock-fill dams subjected to earthquake ground

motions. It is well known that the large structures such as earth and rock-fill dams obviously are

subjected to different ground motions at its foundations. Spatial variation of earthquake ground

motion, which includes the incoherence, wave passage and site response effects, has caused concern

about the safety of the earth and rock-fill dams under seismic excitation. The effect of spatially

varying ground motion (SVGM) on the response of the fill dams have been analyzed in the past

few years. Dumanoglu and Severn (1984) carried out dynamic response of earth dams and other

structures to differential ground motions. It was observed that for asynchronous dynamic analysis

the velocity of the ground motion greatly influences the responses of earth dams. Haroun and

Abdel-Haf z (1987) performed a parametric study to outline the effects of spatially varying

nonuniform, in-phase and out-of phase ground motions on the response of earth dams by using a

finite element method. Dakoulas and Hashmi (1992) presented an analytical model for steady-state

lateral response of earth-fill dams in canyons subjected to asynchronous excitation consisting of SH
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wave’s incident at an arbitrary angle. Using the finite element method, Maugeri et al. (1993) studied

the dynamic response of earth dams to travelling seismic waves along the transverse direction of

earth dams. Dakoulas and Hsu (1995) developed a new analytical solution for steady-state lateral

response of earth and rock-fill dams built in semi elliptical canyons and subjected to obliquely

incident harmonic SH waves. Comparisons were made with the response of the dam to rigid-base

synchronous excitation. Chen and Harichandran (2001) analyzed the stochastic response of the

Santa Felicia earth dam to spatially varying earthquake ground motion model including the

incoherence and propagation of seismic waves. Haciefendioglu et al. (2004) investigated the

influence of the incoherence effect on the stochastic response of nonlinear response of embankment

dams induced by the spatially varying ground motions. 

A classical stochastic method is applied only to linear elastic systems. However, the linear model

may not be always enough to predict the response of earth and rock-fill dams during earthquake

motions. Therefore, material nonlinearity must be included in the analyses. Faccioli (1976)

developed an equivalent linearization random vibration formulation to investigate the one-

dimensional amplification of soil deposits. Singh and Khatua (1978) studied to determine the

seismic stability of earth dams by using stochastic linearization technique and performing iterative

analysis which is related to finite element method. Gazetas et al. (1982) have developed a new

method to analyze the stochastic response of nonlinear systems subjected to earthquake excitation.

Haciefendioglu et al. (2004) computed stochastic dynamic analyses of linear and nonlinear

responses of earth-fill dams due to the uniform ground motion case.

Whereas the solutions of the studies above mentioned are based on the stationary behavior of

earthquake motions, this paper presents the results obtained from the stationary and transient

stochastic analysis of nonlinear response of an earth-fill dam and a rock-fill dam under spatially

varying ground motion models with using the equivalent linear method. The equivalent linear

method is used to estimate the nonlinear hysteretic response of earth and rock-fill dams to stochastic

excitation characterized by the filtered Kanai-Tajimi spectrum (Clough and Penzien 1993).

Stationary and transient responses of an earth-fill dam and a rock-fill dam are calculated and shear

strains, displacements and stresses are compared throughout this study. 

2. Numerical method for stochastic analysis of nonlinear response

The equivalent linear method (Idriss et al. 1973) is carried out to represent the strain-dependent

transient stochastic analysis of nonlinear response of earth and rock-fill dams to spatially varying

ground motions. Nonlinearity of earth and rock-fill dam materials is approached using an iterative

procedure. In this method, approximate nonlinear solutions can be obtained by series of linear

analyses provided the updated stiffness and damping are compatible with current effective shear

strain level. The equivalent effective strain is estimated as a fraction (i.e., 1.0 for stochastic analysis)

of peak shear strain in order to define modulus and damping ratio for the each iteration from the

experimentally achieved curves (Gazetas et al. 1982). Successive iterations are required until

compatible dynamic parameters with strain level are acquired. The response of the last iteration is

taken as an approximation to the nonlinear response. 
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2.1 Material properties

The dynamic behaviors of earth and rock-fill elements are described as the small strain shear

modulus, Gmax, the decrease of secant modulus G with increasing strain γ, the hysteric damping

ratio, β, which increase with increasing shear strain and Poisson’s ratio ν. Experimental data from

the literature on shear strain dependent moduli and damping for sand and rock-fill (gravel) materials

are depicted Fig. 1(a)-(b) (Seed et al. 1986, Seed and Idriss 1970). Gmax is estimated as a function

of the effective confining pressures of cohesionless materials: 

Fig. 1 The variation of shear modulus and damping ratios for (a) sand, (b) gravelly soil and (c) clay materials,
respectively
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    (1)

Values of (K2)max (square-root of stress) determined by laboratory tests have been found to vary

from 30 to about 75 for loose sands and from 90 to 188 for dense sands and is in the range of 150-

250 for compacted gravels and rock-fill. Shear modulus values for saturated cohesive soils have

been found to vary with the undrained shear strength level as

     (2)

where , is the undrained shear strength, c is the cohesion factor and φ is the

angle of internal friction. The variations of shear modulus and damping ratios with shear strain for

clay materials are presented in Fig. 1(c) (Sun et al. 1988, Idriss 1990). 

3. Finite element modelling and random vibration theory

The dynamic equations of motion of a structure discretized using the finite element method may

be written in the partitioned form;

    (3)

Where [M ], [C ], [K ] are the mass, damping and stiffness matrices, respectively;  are

the vectors of total accelerations, velocities and displacements, respectively. The subscript r denotes

the response degrees of freedom and g denotes the ground degrees of freedom. It is possible to

separate the total displacement vectors as quasi-static and dynamic parts as follow; 

    (4)

The quasi-static displacements of the structure may be obtained from Eq. (3) by not considering

the first two terms on the left-hand side of the equation an replacing  by :

    (5)

in which . Substituting Eqs. (4) and (5) in to Eq. (3), the equations of

motion of the dynamic component of the response degrees of freedom can be written as

    (6)

Using the well-known modal analysis approach and letting  decouples the above

equations to yield 

    (7)
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ratios and  are the modal loads. The modal participation factors are given by 

    (8)

3.1 Stationary response

The total mean-square responses can be computed from,

        (9)

where  and  present the dynamic and pseudo-static variances, respectively, and  is

the covariance between the dynamic and pseudo-static responses. The three components above

Eq. (9) are given by 

    (10)

  (11)

  (12)

where, ψ are the eigenvector, Γ stands for the modal participation factor,  is the cross

spectral density function of accelerations between supports l and m,  is the frequency

response function, n is the number of free degrees of freedom and r is the number of restrained

degrees-of-freedom. Ail and Aim are equal to the static displacements for unit displacements assigned

to each support point (Harichandran and Wang 1990). Frequency response function is defined as,

  (13)

where ωk is the modal circular frequency and ξk is the modal damping ratio. 

3.2 Transient response

For some linear structures, it may be important to consider transient response due to the structure

initially being at rest (e.g., long-period structures such as suspension bridges and offshore

platforms), and/or short-duration excitations (e.g., earthquakes). The aim of this study is to

investigate the effect of transient response of nonlinear systems such as earth and rock-fill dams. In

random vibration analysis, statistical averages are assumed to be independent of time for stationary

excitation. In fact, earthquake motions cannot be stationary, because they initially grow from zero,

then have a steady phase and eventually decay. Transient response due to stationary excitation

beginning at time t = 0 can be easily accommodated in to the framework developed for stationary

response, and in many cases such a model is sufficient to assess the impact of non-stationary. One

simple way to do this is to replace the modal frequency response functions  for stationary

Gi Γi( )T u··g{ }=

Γi{ } Mrr[ ] Rrg[ ] φi{ }=

σz

2
σzd

2
σzs

2
2Cov zs zd,( )+ +=

σzd

2
σzs

2
Cov zs zd,( )

σzd

2
ψijψikΓljΓmkHj ω–( )Hk ω( )Su··g

l
u··g

m

ω( ) ωd
m 1=

r

∑
l 1=

r

∑
k 1=

n

∑
j 1=

n

∑
∞–

∞

∫=

σzs

2
ω( ) AilAim

1

ω
4

------Su··g
l
u··g

m

ω( ) ωd
∞–

∞

∫
m 1=

r

∑
l 1=

r

∑=

Cov zs zd,( ) ψijAilΓmj
1

ω
2

------Hj ω( )Su··g
l
u··g

m

ω( ) ωd
∞–

∞

∫
m 1=

r

∑
l 1=

r

∑
j 1=

n

∑–=

Su··g
l
u··g

m

ω( )
H ω( )

Hk ω( ) 1

ωk

2
ω

2
– 2iξkωkω+

----------------------------------------------=

Hk ω( )



652 Kemal Haciefendioglu

response, with a time dependent modal frequency response function  given by (Lin 1963,

Caughey and Stumpf 1961)

  (14)

where  is the damped modal frequency. By using  at a given instant of

time t in place of  in the stationary formulation, the spectral moment of the transient

response at time t can be computed.

3.3 Mean of maximum value

Depending on the peak response and standard deviation (σz) of z(t) the mean of maximum value,

μ, in the stochastic analysis may be obtained from

   (15)

Standard deviation of μ is defined as

  (16)

where p and q are peak factors (Wung and Der Kiureghian 1989).

4. Ground motion model

Because earth and rock-fill dams are large, extended structures, the ground motion characteristics

at the different dam supports may change. Der Kiureghian and Neuenhofer (1991) identified three

phenomena that are responsible for the spatial variation of the ground motion as; the “wave

passage” effect, resulting from the difference in arrival times of seismic waves at different stations,

the “incoherence” effect, resulting from the reflections and refractions of seismic waves in the

ground and the “local-site” effect due to the differences in soil conditions at each station. These

effects are characterized by the coherency function, which is the normalized cross-power spectral

density function of motions at two different stations. 

Spatial variability of the ground motion is characterised with the coherency function domain. The

coherency function for the accelerations  and  at the support points l and m is written as 

  (17)
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where  is the coherency function and  is the power spectral density function of

uniform surface ground acceleration.

The coherency function proposed by Der Kiureghian (1996) can be written as

  (19)

where  and  indicate the incoherence, wave passage and site-response

effects, respectively. 

For the incoherence effect the model developed by Harichandran and Vanmarcke (1986), based on

the statistical analysis of strong ground motion data from the SMART-1 dense array, is considered.  

        (20)

       (21)

where dlm is the distance between support points l and m. A, a, k, f0 and b are model parameters and

in this study the values obtained by Harichandran (1991) are used (A = 0.636, α = 0.0186,

k = 31200, f0 = 1.51 Hz and b = 2.95).

The wave passage effect due to the differences in the arrival times of waves at support points is

defined as 

  (22)

where vapp is the apparent wave velocity and  is the projection of  of the ground surface

along the direction of propagation of seismic waves (Der Kiureghian and Neuenhofer 1991).

The site response effect due to the differences in the local site conditions is obtained as

  (23)

where  is the local soil frequency response function (Der Kiureghian and Neuenhofer 1991).

In this study, as the foundation of the dams are considered as the homogeneous soil, the site

response effect will not be taken into account in the analyses. 

The power spectral density function of ground acceleration characterizing the earthquake process
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density function of this ground motion for the medium soil type is shown in Fig. 2. The spectral

density function for the Filtered White Noise ground motion models is also given in this figure. The

amplitude of the white-noise bedrock acceleration S0 is obtained for the medium soil type by

equating the variance of the ground acceleration (Eq. (17)) to the variance of the components of the

Erzincan earthquake acceleration in 1992 record. The calculated intensity parameter value for

medium soil type is, S0(medium) = 0.00593 m2/s3. Filter parameter values  proposed

by Der Kiureghian and Nevenhofer (1991) are utilized as ωg = 10.0, ξg = 0.4, ωf = 1.0 and ξf = 0.6. 

5. Dam models

To investigate the stochastic analysis of nonlinear response of earth and rock-fill dams, two-

dimensional mathematical model is used for calculations. It has been shown that a two-dimensional

analysis of the fill dams provides natural frequencies and mode shapes which are in close agreement

with those obtained by the three-dimensional analysis (Griffiths and Prevost 1988). Therefore, a

two-dimensional analysis is carried out in the horizontal direction plane of the dams in order to

achieve the stochastic response to spatially varying earthquake forces (Ramadan and Novak 1992).

On the other hand, the ground motion may vary considerably along over the dam base for large

dams. Thus, a three-dimensional analysis of the large dams may be called for but the computational

requirements and costs of an analysis of such a system may be very high. The fact that this two-

dimensional model has a relatively small number of degrees of freedom makes it more attractive by

saving on computer time. Obviously, if actual design values for the responses are desired three-

dimensional model should be taken into account.

5.1 Earth-fill dam model

In this study, Gordes Dam, which is a zoned earth-fill dam located in Manisa in Turkey, is

selected as the first problem. The dam is 120 m high above its lowest foundation and 90 m above

the original streambed. The crest has a width of 10 meters and a maximum length of 617.00 meters.

The upstream and downstream slopes are 3:1 and 2.5:1, respectively. The dam is equipped with a

ωg ξg ω f ξf, , ,( )

Fig. 2 Power spectral density function at medium soil
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clay core consisting of saturated clays that rise from bedrock with slopes of 0.2:1. Fig. 3(a) shows

the cross section at the midlength of embankment dam. The finite element model subjected to

different ground motions with 473 three and four-node isoparametric finite elements are shown in

Fig. 3(b). 

Two translational degrees of freedom are assigned to each node and a plane-strain assumption is

used in the calculations. Gordes Dam is made of a clay core, sandy zone and sandy gravel zone,

and the foundation material is made of alluvium (gravel and sand). Saturated unit weights of

20.3 kN/m3, 21.0 kN/m3, 21.5 kN/m3 and 20.0 kN/m3 are assumed for the clay core, foundation,

sand and gravel-sand, respectively. In the analysis, Poisson ratios are selected as 0.45, 0.40, 0.35

and 0.43 for clay core, foundation, sand and gravel-sand, respectively. The cohesion constant is

15 kN/m2 and the angle of friction is equal to 200 for the saturated clay core. (K2)max factor is given

as 61, 122 and 140 at small-strains for the dynamic modulus coefficient of the sandy, gravel and

alluvium (sand and gravel) materials, respectively. Maximum shear modulus for the central core is

calculated depending on the G/su ratio. To evaluate the small-strain shear modulus of the core

material, the average ratio Gmax/su is taken as 2000. The initial damping value is selected as 5% for

the stochastic analysis of nonlinear response of the earth-fill dam.

Fig. 3 (a) Dam cross section, (b) finite element model of earth-fill dam
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5.2 Rock-fill dam model

Adatepe Dam is selected as the second problem, which has a clay core dam located in

Kahramanmaras in Turkey. A typical dam cross section has a height of 89.0 meters above the base.

The crest has a width of 12.0 meters and a maximum length of the dam itself of 398.0 meters.

Upstream and downstream slopes are at 3:1. The cross section materials are grouped in two main

categories: compacted rock-fill and impervious core which consists of saturated clays that arises

from its lowest high with slopes of 0.4:1. The dam itself and foundation block are included together

in the analyses. The height and length of the foundation block is 44.5 and 576.0 meters, respectively.

The foundation block is made of alluvium material (sand and gravel). Fig. 4(a) shows the cross

section at midlength of rock-fill dam. The weight of 21.0 kN/m3, 21.0 kN/m3 and 21.1 kN/m3 are

assumed for the rock-fill, foundation and clay core material, respectively. The Poisson’s ratio is

assumed to be equal to 0.35 at rock-fill material, equal to 0.45 for the clay core and equal to 0.40

for the alluvium material. In addition, the cohesion constant is 15 kN/m2 and angle of friction is

equal to 200 for the saturated clay core. (K2)max factor given in Eq. (1) is selected as 170 and 220 at

small-strains for the dynamic modulus coefficient of the rock-fill and alluvium (sand and gravel)

materials, respectively. Maximum shear modulus for the central core is calculated depending on the

G/su ratio. To evaluate the small-strain shear modulus of the core material, the average ratio Gmax/su

Fig. 4 (a) Dam cross section, (b) finite element model of rock-fill dam
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is taken as 2000. The initial damping value is selected as 5% for the stochastic analysis of nonlinear

response of the rock-fill dam. 

The finite element model consists of 286 three and four-node isoparametric finite elements for the

dam-foundation system as shown in Fig. 4(b).

6. Random vibration analyses

To investigate the importance of transient stochastic effects on the nonlinear behavior of the dams

subjected to spatially varying ground motion the shear strains, displacements and stresses along the

selected sections are computed at various times as well as the stationary excitation is applied to the

dams initially. The mean of maximum values of the transient responses are calculated at times of 1,

5 s and compared with the stationary responses for the special cases of the ground motion model.

These special cases can be categorized as: the wave-passage effect, the incoherence effect and the

general excitation case including all the effects together.

For the incoherence effect, Harichandran and Vanmarcke’s (1986) model is used. Soil condition is

considered as medium soil throughout the study. The different ground motion models are applied to

the dams in the horizontal direction as shown in Figs. 3-4(b). The apparent wave velocity is taken

as vapp = 700 m/s for the medium soil case. The duration of the earthquake ground motions applied

to the dams is taken as 20.94 seconds. 

7. Lateral responses of the dams 

For multi-DOF system, the rate at which the total transient response grows depends on the value

of ξiωi for each mode, and on how much the lower modes contribute to the overall response. If the

lower modes with small ξiωi do not contribute significantly. Since earth and rock-fill dams tend to

be stiff and have high fundamental frequencies, it may be important to consider the transient

response due to the structure initially being at rest when the duration of strong earthquake shaking

is short.

Table 1 First 10 modal frequencies of the earth and rock-fill dams

Mode
Earth-fill dam

frequencies (Hz)
Rock-fill dam

frequencies (Hz)

1 4.71 5.36

2 6.24 9.06

3 7.27 9.80

4 7.32 11.15

5 7.55 12.28

6 7.77 13.58

7 8.15 13.89

8 8.52 14.31

9 8.71 14.89

10 9.36 15.01
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The modal frequencies of the first ten lateral modes of the earth and rock-fill dams are given in

Table 1. As can be seen in Table 1, the low modes of the dams have very high frequencies.

Therefore, the total response for earth and rock-fill dams may reach stationarity rather quickly.

These results seem more clearly in below analyses.

7.1 Earth-fill dam responses

In order to determine whether the earth-fill dam will reach its stationary response during typical

durations of strong shaking; the total transient responses are calculated at times of 1, 5 seconds and

compared with the stationary responses for the spatially varying ground motion (general excitation

case including the wave passage and incoherence effects). 

The mean of maximum stationary and transient shear strain and displacement values along the

Section I-I are compared in Figs. 5-6, respectively. As the shear strain and displacement values near

the base of the dam for the stationary and transient responses are close to each other, the stationary

shear strain and displacement values near the dam crest are larger than the transient shear strain and

displacement values for the 1st second. At the point where the maximum shear strain values take

place 66, 100% of the stationary response is achieved at times of 1, 5 s of the transient response,

respectively. Similarly, at the point where the maximum displacement values take place 96, 99% of

the stationary response is achieved at times of 1, 5 s of the transient response, respectively. The

mean of maximum total normal stresses in the horizontal and vertical direction and shear stress

along the Section II-II are shown in Figs. 7-9. As the normal stresses and shear stress values

obtained from the stationary analysis are larger than those of the transient analysis for the 1st

second, the stress values for the stationary and transient analysis are close to each other at times of

5th second. At the point where the maximum values, the normal stress in the horizontal direction

take place 93, 100%; in the vertical direction take place 91, 99% and shear stress take place 85,

100% of the stationary response is achieved at times of 1, 5 s of the transient response, respectively. 

The variance of the total response comprises of three components: the variance of the pseudo-

static response, the dynamic response, and the covariance between the pseudo-static and dynamic

responses. Along the Section I-I of the dam, the normalized variance distributions of the pseudo-

Fig. 5 Shear strain values along the Section I-I of
earth-fill dam

Fig. 6 Mean of maximum transient total horizontal
displacements along the Section I-I of earth-
fill dam
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static, dynamic, covariance and total normal stresses in the horizontal direction, which are obtained

for the transient response at 1st second, of the selected earth-fill dam subjected to spatially varying

ground motion model (general excitation case) are shown in Fig. 10. As can be seen in Fig. 10,

while the normal stresses in the horizontal direction are dominated by the pseudo-static component,

the contribution of the dynamic and covariance components to the total response are smaller than

those of the pseudo-static component. The covariance component has also smallest contribution to

the total response for the general excitation case. Examining the components of the total normal

stress response in the horizontal direction at point where the maximum values take place reveals

that, the pseudo-static component contributes 99.81%, the dynamic component contributes 0.29%

and the covariance component contributes −0.10% to the total response.

Mean of maximum total responses obtained for the transient analysis at 1st second along the

Section I-I of the dam are depicted in Fig. 11 for the cases of the general excitation, wave-passage

effect, incoherence effect and uniform ground motion. From Fig. 11, as the total normal stress

responses in the horizontal direction due to the general excitation case and incoherence effect are

generally the largest, the total response due to the uniform ground motion is generally the lowest. In

Fig. 7 Mean of maximum transient total normal
stress in the horizontal direction along the
Section II-II of earth-fill dam

Fig. 8 Mean of maximum transient total normal
stress in the vertical direction along the
Section II-II of earth-fill dam

Fig. 9 Mean of maximum transient total shear stress along the Section II-II of earth-fill dam
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addition, in general, the normal stress values due to the wave-passage effect are larger than those of

the uniform ground motion case. The total stress response at the dam height of 26.5 meters for the

general excitation case is larger than as much as 11.54%, 25.38% and 598.32% when compared to

the response due to the incoherence, wave-passage effects and uniform ground motion cases,

respectively. 

7.2 Rock-fill dam responses

The comparison of the stationary and transient responses of the rock-fill dam is also investigated

Fig. 10 Normalised variances of normal stress in the
horizontal direction along the Section I-I of
earth-fill dam

Fig. 11 Mean of maximum total normal stress in the
horizontal direction along the Section I-I of
earth-fill dam

Fig. 12 Shear strain values along the Section I-I of
rock-fill dam

Fig. 13 Mean of maximum transient total horizontal
displacements along the Section I-I of rock-
fill dam
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for the general excitation case. Fig. 12 shows the shear strain computed along the Section I-I. At the

point where the maximum values take place, 65, 100% of the stationary response is achieved at

times of 1, 5 s of the transient response, respectively. Fig. 13 illustrates the horizontal displacements

along the Section I-I. At node where the maximum values take place, 96, 100% of the stationary

response is achieved at times of 1, 5 s of the transient response, respectively. Finally, Figs. 14-16

illustrate the normal stress in the horizontal and vertical direction and shear stress along the Section

II-II. The stresses obtained from stationary analysis are generally close to the transient analysis. At

the dam horizontal distance of 208.85 meters where corresponds to clay core, for the normal stress

in the horizontal direction 98, 100%, for the normal stress in the vertical direction 88, 100% and for

the shear stress 95, 100% of the stationary response is achieved at times of 1, 5 s of the transient

response, respectively. 

Fig. 17 presents the distributions of the pseudo-static, dynamic, covariance and total normal stress

in the horizontal direction along the Section I-I of the dam. These variations due to the general

excitation case are obtained for the transient analysis at 1st second. As the total normal stresses in

the horizontal direction are dominated by the pseudo-static component, the dynamic and covariance

components have small contributions for the general excitation case. Through these results, it is

Fig. 14 Mean of maximum transient total normal
stress in the horizontal direction along the
Section II-II of rock-fill dam

Fig. 15 Mean of maximum transient total normal
stress in the vertical direction along the
Section II-II of rock-fill dam

Fig. 16 Mean of maximum transient total shear stress along the Section II-II of rock-fill dam
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clearly seen that the contribution of the pseudo-static component to the total response increases

significantly with increasing depth of the dam. At the point where the maximum values take place,

the pseudo-static component contributes 88.21%, the dynamic component contributes 5.43% and the

covariance component contributes 6.36% to the total response. 

Fig. 18 illustrates the mean of maximum normal stress in the horizontal direction for the transient

analysis at 1st second, due to the general excitation case, wave-passage effect, incoherence effect

and uniform ground motion. As at the point near the crest of the dam stress variations are close to

each other for the ground motion models at the point near the base of the dam stress variations are

showed more clearly. So, at the point near the base of the dam, while the stress values due to the

general excitation case are the largest, the values due to the uniform ground motion are the smallest.

In addition, the stress values for the incoherence effect are larger than those for the wave-passage

effect. The total stress response at the point where the maximum values take place for the general

excitation case is larger than as much as 39.37%, 20.76% and 809.09% when compared to the

response due to the incoherence, wave-passage effects and uniform ground motion cases,

respectively. 

Like earth-fill dam, the rock-fill dam stationary response levels are reached within about 5 s.

From the figures, while at t = 1 s the transient responses are smaller than the corresponding

stationary ones, at t = 5 s, the transient responses are very close to the stationary ones. Thus,

transient effects may be neglected for earth and rock-fill dams under most earthquakes. 

8. Conclusions

The transient stochastic analysis of nonlinear response of earth and rock-fill dams subjected to

spatially varying ground motion is presented in this paper and compared with the stationary analysis. 

Fig. 18 Mean of maximum total normal stress in the
horizontal direction along the Section I-I of
rock-fill dam

Fig. 17 Normalised variances of normal stress in the
horizontal direction along the Section I-I of
rock-fill dam
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When comparing the transient responses obtained at the various durations of the earthquake

ground motion with those of the stationary values, it is observed that the stationary assumption is

reasonable for earth and rock-fill dams. 

As the total transient stress responses at 1st second are dominated by the pseudo-static

component, the dynamic and covariance components have insignificant contributions for the

spatially varying ground motion (general excitation case). It can be also observed from the figures

that, whereas the stress responses are generally the smallest for the uniform ground motion, the

responses obtained from the spatially varying ground motion (general excitation case) are generally

largest. The incoherence effect has generally more significant influence on the response of earth and

rock-fill dams, comparing with the wave-passage effect. 

Transient responses, which typically have very small contributions from the low modes, do not

overshoot the stationary responses. So, it can be said that transient effects may be neglected for

typical earth and rock-fill dams subjected to spatially varying ground motion. 
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