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Abstract. The theory with hierarchical warping functions had been used to analyze composite thin-
walled structure, laminated beam and had good results. In the present paper, a series of hierarchical
warping functions are developed to analyze the cylindrical bending problems of composite lamina. These
warping functions which refine through-the-thickness variation of displacements were composed of basic
and corrective functions by taking into account of anisotropic, material discontinues, and transverse shear
and normal strain. Then the hierarchical finite element method was used to form a numerical algorithm.
The distribution of the displacements, in-plane stresses, transverse shear stresses and transverse normal
stress for composite laminate were analyzed with the present model. The results show that the present
model has precise mechanical response compared with the first deformation transverse theory and the
corrective order affects the accuracy of result. 
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1. Introduction 

Layered composite structural elements have attracted considerable attention in primary structural

component since they have excellent strength to weight and stiffness to weight ratio (Rolfe et al.

2003). But they suffer from relatively poor strength and stiffness for transverse shear. Engineers and

researchers have paid much attention to the study on the structural mechanical behaviors at all times

(Noor and Burton 1989). Many theories for laminated Composite Structures can be found in the

composite mechanics literature. They are usually classified into four groups: 

1) three-dimensional analytical solution (e.g., Pagano 1970), which is very difficult to get the

solution for complex geometry of the structure, complex boundary condition and complex loads. 3D

analytical solution is improper for the mechanics analysis of general laminate, but it is very

important to offer a check for the other theories
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2) classical theories based on the Kirchhoff kinematic hypothesis, (e.g., Reissner and Stavsky

1961, Wang and Chou 1972, Reddy 1997), which are inaccurate for a moderately thick laminated

plate and for highly anisotropic composites

3) first-order shear deformation theories in which shear strains are assumed to be constant in the

thickness direction, and shear correction factors have to be incorporated to adjust the transverse

shear stiffness for studying the mechanical response of plates (Whitney and Pagano 1970, Whitney

1972, Noor and Burton 1989, Reddy 1997).

4) high-order theories with refined through-the-thickness variation of displacements (e.g.,

Toledano and Murakami 1987, Valisetty and Rehfiedl 1987). Two different approaches have been

basically explored for the higher-order theories: one based on an equivalent single-layer model (e.g.,

Sciuva 1987, Matsunaga 2002) and the other on a layerwise model (e.g., Mau 1973, Liu 2003,

Kapuria and Archary 2004). 

The high-order warping theory is capable of obtaining the accurate distribution of the

displacements, by continuous correction of the warping displacements due to the stress of the

structure (Zhu 1957). The theory has been used to analyze composite thin-walled structure,

laminated beam and had good results (Deng and Zhu 1999, Zhu et al. 2001, Huang 2002). In this

paper, a series of hierarchical warping functions were developed to analyze the cylindrical bending

problems of composite lamina, and the effects on the displacements, in-plane stresses, and

transverse stresses by the warping functions were studied. With the same accuracy, the present

model is simple while the degree of freedom lower than the other high-order theories. 

2. Displacement expressions and warping functions

Consider a composite plate (Fig. 1) of thickness h, length L, made of N perfectly bonded

orthotropic layers with longitudinal axis x, subjected to load q(x) with no variation along the width.

The mid-plane of the plate is chosen as xy-plane. The planes z = z0 = −h/2 and z = zN = h/2 are the

bottom and the top surfaces of the plate. Z-Coordinate of the bottom surface of the kth layer is

denoted as . For cylindrical bending problems, the displacements u, v and w of the plate are

independent of y. 

zk 1–

Fig. 1 Coordinate system
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2.1 Assumed displacement

The displacement vector of laminate is expressed as:

(1)

where ,  and  in (1) are the hierarchical warping functions of the displacement u, v

and w in terms of the thickness coordinate z, respectively. M1, M and N refer the number of the

warping functions.

Then, the equations of equilibrium without volume force are written as:

(2a)

(2b)

(2c)

The vector of the strain-displacement relations is given as:

(3)

and the stress-strain relation of the kth layer is: 

(4)

2.2 The hierarchical warping functions

From the above equations, two series of warping functions of displacement u can be derived. One

corresponds to the pair of stresses , and the other relates to the other pair of stresses

 (Huang 2002).
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2.2.1 The first series of hierarchal warping functions of displacement U

The first series of hierarchal warping functions relates to the stresses . We can set the

basic distribution along the thickness direction of displacement U as  (where a1 is

pending coefficients). Then, from Eqs. (3) and (4), the distribution of σx1 for the kth ply is given by

 as:

(5)

where: “ ” stands for direct proportion,  is the normal stress of the kth ply caused by the basic

warping function of f11(z). 

Eq. (5) refers that σx1 may be discontinuous among laminates and its distribution is disconnected.

The composition of σx1 in the thickness direction is balanced:

(6)

where zk is the middle plane coordinate and tk is the k-th ply thickness, respectively.

Consequently, the coefficient a1 in f11(z) can be obtained by Eq. (6), and the moment integration of

the σx1 in each ply through the thickness equals the extra moment: 

(7)

By using Eq. (2a), the τxz1 for the kth ply can be written as:

(8)

where  are the integral source function of , and  are pending constants, which

can be obtained by the force boundary conditions and the inter-laminar continuity of the transverse

stress.

Warping deformation will arise in the laminates under the transverse shear stress . Based on

the concepts of the separating variable, the effects on the warping deformation in the x direction by

the displacement V and W in y and z direction respectively are not considered. Then, from Eq. (4),

the transverse shear strain yielded by transverse stress  can be expressed as:

(9)

Thus, the i-th warping function caused by  is given as:

(10)

where ,  are the integral source function of , and  are pending

constants, respectively. 

We can set = 0, the others are obtained by the continue conditions among laminated. The ai and
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(11a)

(11b)

Here, Eq. (11) means that the corrected stresses  due to  can form a self-equilibrating

system of force. The corrected normal in-plane stresses can be written as:

(12)

By assuming the basic warping function of the first series, we obtain the normal in-plane stress

σx1 by using displacement-strain and stress-strain relations. Then the successive warping shape

functions can be derived by the above recurrence formulations step by step. These are the first

series of warping functions of displacement U.

2.2.2 The second series of warping functions of displacement U

The second series of warping functions are correlative with the pair of stresses . The

basic warping function, , also be set, where a2 is a pending constant. 

Then: 

(13)

Set the shear stresses  are self-equilibrium under the basic function f21(z), namely, 

= 0, and the pending constant a2 can be obtained.

By using Eq. (2), the transverse shear stresses  distribution in thickness direction are:

(14)

where  are the integral source functions of , and  are pending constants, which

can be obtained by inter-laminar continuity of the τyz1 and the boundary conditions.

The warping deformation in the section can be originated under the transverse shear stress τyz.

Assuming the  is the warping displacement due to , then we can get through the stress-

strain and displacement-strain relations:

(15)

So, the i-th transverse warping function of the second series of the section is:

(16)
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Assume the distribution   due to the i-th corrective warping function are in direct proportion

to , they are defined as: . Set the section force and moment arose by the

corrective shear stress  are a self-equilibrating system, namely:

(17a)

(17b)

The constants a2i and b2i can be determined by Eq. (17). The physical meaning of  is the

attached part of the displacement u by the transverse stress . According to the obtained warping

functions and the distribution of the  in the z direction, the i-th corrective through-the-thickness

transverse shear stress  can be derived using the balance equations, then the (i+1)-th warping

function and corrective  can be obtained. Step by step, the second series of warping shape

functions in z direction can be derived. 

For symmetric laminates with multiple specially orthotropic layer, because the , the

second series warping functions do not exist.

The hierarchal warping functions gi(z) for displacement V can be derived following the same

above steps.

 

2.2.3 The series of warping functions of displacement W

According to balance equations, the displacement w has a series of warping functions which relate

to the pair of stresses . Same as the above derived, the warping functions can be obtained

by using the following recurrence formulations step by step.
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3. The hierarchical finite element formulations 

C0 hierarchical finite element method is recommended in the present paper. All of the argument

functions  are expanded into the same series but each has its own generalized

nodal parameters, for example:

(20)

where: J is the maximum order of the hierarchical shape function, A1i is the vector of the nodal

parameters, HT is the matrix of hierarchical shape functions. The expressions of the C0 shape

function are

For more details about the shape functions, namely HT, see the references (Zhu 1998, Zhu and

Deng 2001).

Substituted Eqs. (11) and (20) into Eq. (3), the strain vector of the laminate can be written as:
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(22c)

(22d)

(22e)

(22f)

and the extend-displacement vector δ of the element is defined as:

(23)

where: 

 

By using the above symbols, the functional of potential energy of the bending laminate can be

written as:

(24)
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4. Calculation of transverse stresses

The present formulation can be extended to include an accurate through-the-thickness description

of both transverse shear and normal stresses (Brank 2003) but it should take a lot of calculation

time. In this paper, for degrading the order of the calculated model, the transverse stresses are

obtained by the post-process method using balance equations:

(26)

and the transverse normal stress can be expressed as:

(27)

5. Discussions of numerical results

The calculation model is shown in the Fig. 1, the material properties are:

the other parameters: length of the laminate L = 4, the ratio of length to thickness ,

Laminate have simple supports on the two bottom. 

The distributed loads q(x) = cos(πx/L) are applied on the upper surface. Three style kind of
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presented model with hierarchical warping functions are certainly an improvement over CPT and

are in good agreement with analytical solutions. It means that the though-the-thickness distribution

of the displacement, in-plane stresses, transverse shear stress of the present model are close to the

accurate solution. The maximum difference between present model and accurate solution is shown

in Table 1.

Fig. 2 The  and  distribution of the single-layeredσx
*

τxz
*

Fig. 3 The in-plane displacement distribution of the three-layered at x = L/2

Table 1 The maximum stress, displacement results of two models

Results u v

N = 1
Present model 0.848 0.426

Accurate Solution (Pagano 1970) 0.889 0.435

Difference 4.6% 2.1%

N = 3
(30o/−30o/30o)

Present model 0.84 0.402 0.503 0.253 0.138

Accurate Solution (Pagano 1970) 0.857 0.394 0.524 0.25 0.14

Difference 2.00% 2.00% 4.00% 1.20% 1.40%

σx τxy τxz

θ 15
o

=( )
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Fig. 4 The in-plane stresses distribution of the three-layered at x = 0

Fig. 5 Transverse stresses distribution of the three-layered at x = L/2 

Fig. 6 The stresses distribution of the four-layered at x = 0
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The Fig. 6 and Fig. 7 are the calculation results of the four-layered laminate. The results illustrate

that the present model (with two warping functions of each series) has more better accuracy than

the first shear deformation model (with one warping function of each series), moreover, the one

bending correction has better distribution than the first shear deformation model.

Fig. 5(b) and Fig. 7 show that the present model and the one order bending model have a small

difference in calculating transverse stresses, it means that the second series warping function have

some effects on the calculate results. However, the results illustrate that there is a greater difference

between the present model, which have select primary two order for every series corrected

hieriarcial functions, and the first shear deformation model results, especially for the transverse

normal stress results. It means that the correct order has great effect on the transverse stresses

calculation. 

6. Conclusions

The present study has dealed with the cylindrical bending problem of a composite laminate. A

series of warping functions are derived for correcting the displacement distribution along the

thickness direction. The warping functions can be obtained by two steps. First, a basic through-the-

thickness displacement field was assumed in such a way that the corresponding composition force

and moment of stress as well are equal to exterior load. Second, by using constitutive relation, the

relation among equilibrium equation, displacement kinematics, and distribution displacement

function is corrected successively while the corresponding stress is self-equilibrium. Base on the

numerical studies conducted:

1. The present model is of good convergence and accuracy. One order correction with two

functions in each series is well consistent with analytical solutions. 

2. The present model exhibits the precise mechanical response compared with the first

deformation transverse theory which has one function in two series, especially in the normal

transverse stress. Compared with the present model, the results calculated using the one order

bending model have some differences.

Fig. 7 Transverse stresses distribution of four-layered at x = L/2
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