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Abstract. The dynamic instability characteristics of laminated composite stiffened shell panels subjected
to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric
degenerated shell element and a compatible three-noded curved beam element are used to model the shell
panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to
overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner.
Moreover the new formulation for the beam element requires five degrees of freedom per node as that of
shell element. The method of Hill’s infinite determinant is applied to analyze the dynamic instability
regions. Numerical results are presented to demonstrate the effects of various parameters like shell
geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions,
on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane
harmonic loads along the boundaries. The results of free vibration and buckling of the laminated
composite stiffened curved panels are also presented.

Keywords: buckling; composite stiffened shell panels; degenerated curved beam element; degenerated
shell element; dynamic instability; finite element method; in-plane load and vibration. 

1. Introduction

A shell structure experiences in-plane forces in many situations. The presence of such loads

significantly affects the free vibration characteristics of the structures. The buckling phenomenon

may be considered as a particular case of free vibration problem with in-plane load, whereas the

load approaches towards its critical value of buckling, the frequency of vibration tends to zero.

When the in-plane load becomes harmonic, it may lead to the condition of parametric resonance. It

is found that certain combinations of the frequency of pulsating in-plane force and the natural
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frequencies of transverse vibration produce dynamic instability where the amplitude of the

transverse vibration increases without bound. This phenomenon is entirely different from the usual

resonance of forced vibration. In forced vibration when the frequency of the transverse forcing

system matches with the natural frequency of the structure, resonance occurs. Thus the resonance

phenomenon in forced vibration problem is relatively simple since the structure loses stability at

constant frequencies of the transverse loads. On the other hand the instability in case of parametric

resonance occurs over a range of frequencies of the in-plane force rather than a single value. Again

parametric resonance of a structure may occur at load level much less than the static buckling load

while the static instability of the structure sets in at the static buckling load values. Thus a structural

component designed to withstand static buckling load may easily fail in an environment having

periodic in-plane loading. So a designer ought to consider the parametric resonance aspect while

dealing a structure subjected to dynamic loading atmosphere.

A good deal of work on dynamic instability of structures has been undertaken by many

researchers in the past. Bolotin (1964) has presented the general theory of dynamic stability of

various elastic systems and discussed the peculiarities of the phenomena of instability. The

parametric instabilities of laminated composite plate subjected to uniform loading are studied by

many researchers (Srinivasan and Chellapandi 1986, Chen and Yang 1990, Kwon 1991, Moorthy

et al. 1990). The dynamic stability analysis of stiffened plates and shells are few in the literature.

Thomas and Abbas (1983) have presented the vibration characteristics and dynamic stability of

stiffened plates. The parametric resonance of stiffened rectangular plates is investigated by Duffield

and Willems (1972). Merrit and Willems (1973) investigated the dynamic instability for skew

stiffened plates. The dynamic stability of radially stiffened annular plates with radial stiffener

subjected to in-plane force is investigated by Mermertas and Belek (1991). Liao and Cheng (1994)

have given some results for dynamic instability of stiffened composite plates and shells with

uniform in-plane forces. They have studied only one example of stiffened shell panel having

cylindrical geometry. Recently Shrivastava et al. (2002) have investigated the dynamic instability of

isotropic stiffened plates with uniform edge loadings. Studies on free vibration of isotropic stiffened

plates and shells are available in the literature (Aksu 1982, Mukherjee and Mukhopadhyay 1987,

Mukhopadhyay 1989, Nayak and Bandyopadhyay 2002, Olson and Hazell 1977, Samanta and

Mukhopadhyay 2004, Zeng and Bert 2001). However, this is relatively less in case of laminated

composite stiffened curved panels. It is worth mentioning that the authors failed to get any result on

buckling of composite stiffened curved panels in the literature. Similarly, no results on dynamic

instability analysis of doubly curved stiffened panels are available. 

The use of composite material is steadily increasing in many activities of aerospace, mechanical,

civil and marine engineering structures due to its high strength/stiffness-to-weight ratio. In addition

to that, the specific strength/stiffness of a panel can be enhanced by the use of a suitable stiffened

structural form. These benefits have been exploited in the study of stiffened composite shell panel

structure considered in the present investigation. In order to model a shell panel without any

significant approximation related to the representation of arbitrary shell geometry, structural

deformation and other associated aspects, the isoparametric 3D degenerated shell element (Ahmad

1970, Zienkiewicz 1977) having eight nodes is used. Though the concept of 3D degenerated shell

element was initially proposed for isotropic shell (Ahmad 1970) but it has been subsequently

extended to the fiber reinforced laminated panels (Panda and Natarajan 1979). The present

formulation differs from Panda and Natarajan (1979) in the treatment of mapping in the thickness

direction. Panda and Natarajan (1979) have mapped the individual layers whereas the entire
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laminate is mapped in the present formulation. For the stiffeners, a compatible three-noded

isoparametric curved beam element is used. The beam element is always placed along the edge of

shell elements and this is intentionally not placed within the shell element in order to avoid the

problem of stress jump within the shell element. 

The basic concept underlying in the formulation of degenerated shell element (Ahmad 1970) has

been extended to derive beam/stiffener elements having any arbitrary curve geometry suitable for

use in two or three-dimensional problems (Ferguson and Clark 1979, Bathe 1996). Again the

formulation for isotropic beam (Ferguson and Clark 1979, Bathe 1996) has been upgraded for

laminated beam by Liao and Reddy (1990) where the stiffener layers are stacked parallel to those of

the shell (parallel stacking scheme). Unfortunately the 3D degenerated beam element based on the

above formulation (Bathe 1996, Ferguson and Clark 1979, Liao and Reddy 1990) has some problem

in torsional mode since it overestimates torsonal rigidity (Ferguson and Clark 1979). The problem

becomes more severe in case of stiffeners having narrow cross-section like blade stiffener, which is

quite common in composite construction. Keeping this aspect in view, the stiffener element is

reformulated where the above mentioned problem has been eliminated by using torsion correction

factor. In order to achieve that the stiffener bending in the plane of the shell surface is neglected.

This should not affect the solution accuracy since deformation of the stiffener in that plane will be

very small due to high in-plane rigidity of the shell skin. Moreover, the new formulation has the

advantage that it requires five degrees of freedom per node while it is six in case of existing

formulation (Bathe 1996, Ferguson and Clark 1979, Liao and Reddy 1990). Actually the stiffener

element will directly share the five nodal unknowns of the shell element. The beam element

considered has a rectangular section where provision has been kept for parallel (Fig. 1a) as well as

perpendicular stacking schemes (Fig. 1b). 

In the present study free vibration, buckling and dynamic instability analyses are carried out for

different types of stiffened shell panels such as flat plate, cylindrical shell panel, spherical shell

panel and hyperbolic hyperboloid shell panel. The dynamic instability behaviours with respect to

various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic

load factors for simply supported boundary conditions of laminated composite stiffened shell panels

with in-plane harmonic edge loads are investigated in this study. 

2. Theory and formulation 

It has been mentioned in the previous section that the laminated stiffened panel structure is

modeled by finite element technique. In order to have a better representation, the shell skin and

Fig. 1(a) Parallel stacking schemes Fig. 1(b) Perpendicular stacking schemes
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stiffeners are modeled as discrete/separate elements. The formulation of these elements is presented

below.

2.1 Shell element

The formulation of the shell element is based on the basic concept of Ahmed et al. (1970), where

the three-dimensional solid element used to model the shell is degenerated with the help of certain

extractions obtained from the consideration that one of the dimension across the shell thickness is

sufficiently small compared to other dimensions (Fig. 2). The detail derivation of this element for

isotropic case is available in the literature (Ahmad 1970, Zienkiewicz 1977, Rao 1999). 

The element geometry can be nicely represented by the natural coordinate system (ξ-η-ζ) where

the curvilinear coordinates (ξ-η) are in the shell mid-surface while ζ is linear coordinate in the

thickness direction. According to the isoparametric formulation, these coordinates (ξ, η and ζ ) will

vary from −1 to +1. With these, the coordinates of any point within the element may be expressed as

(1)

where Ni are the quardratic serendipity shape functions in (ξ, η) plane, hi is the thickness at the

nodal points, {Xi} are cartesian coordinates at mid-surface nodal points and {v3i} is the nodal

vectors along the thickness direction. 

The displacement field may be defined in terms of three displacements components (ui, vi and wi)

and two rotational components (θxi and θyi) at the mid-surface nodes (Fig. 2) as follows

 (2)
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Fig. 2(a) Eight-noded quadrilateral degenerated shell
element in curvilinear coordinates 

Fig. 2(b) Global cartesian coordinate (x, y and z) and
nodal vector system at any node i 
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and z) and the rotational components (θxi and θyi) are taken about two mutually perpendicular lines

tangential to the mid-surface (not necessarily follow ξ-η) having unit vectors as follows

(3)

In the above Eq. (2), {δ } is the nodal displacement vector of an element and it is 

(4)

With the help of Eqs. (1) and (2) and following the steps of Ahmed et al. (1970), the strain-

displacement relation along (x'-y'-z') can be expressed in terms of {δ } as

 
 (5)

where x', y' and z' are taken along the directions of the above mentioned unit vectors v1, v2 and v3

respectively. 

The fiber reinforced laminated composite shell skin consists of a number of orthotropic layers

having different orientations. For such a layer, the stress-strain relationship in the material axis

system may be given by

(6)

where  and βs is the shear correction

factor and it is taken as 5/6.

Though material axes 1-2 lie in x'-y' plane but it is oriented at an angle θ while axis 3 is directed

along z'. With a simple coordinate transformation, the stress-strain relationship may be expressed in

the local axis system (x'-y'-z') as follows.

 (7)
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2.1.1 Elastic stiffness matrix

Once the matrices [B] and [D] are obtained, the elastic stiffness matrix of an element can be

derived easily and it is expressed as 

(9)

where  is the determinant of the Jacobian matrix , which can be obtained with the help of

Eq. (1) taking derivatives of x, y and z with respect to ξ, η, and ζ. 

The integration in Eq. (9) is carried out numerically following Gauss quadrature integration

technique where two-point integration scheme has been adopted. The scheme is applied to all the

layers in an element and their contributions are added together as follows.

 (10)

where nl is the number of layers in an element,  is the rigidity matrix  as expressed in

Eq. (7) of the lth layer, and wi, wj and wk are the weight parameters. This technique is adopted in all

the subsequent cases where integration is required to be carried out.

2.1.2 Mass matrix 

The consistent mass matrix has been adopted in the present study. Following the usual techniques,

it can be derived with the help of Eq. (1) and is expressed as 

 (11)
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Or

(12)

The above equation may be rewritten as

(13)

where

(14)

and

(15)

The sub matrix  within the initial stress matrix  in the above equation is 

(16)

Now the strain vector  in Eq. (14) may be expressed in terms of nodal displacement vector

with the help of Eq. (2) as
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where [kg] is the geometric stiffness matrix and it may be expressed as 

(19)

2.2 Stiffener element

The derivation of the stiffener element (Fig. 3) is based on the basic concept used to derive the

shell element. In this case the stiffener element modeled with three dimensional solid element is

degenerated with the help of certain extractions obtained from the consideration that the dimension

across stiffener depth as well as breadth is small compared to that along the length. The stiffener

element follows an edge of a shell element where the parameters of three nodes lying on that shell

element edge are used to express the geometry and deformation of the stiffener utilizing

compatibility between shell and stiffeners (Fig. 4). It helps to eliminate the involvement of

additional degrees of freedom for the modeling of stiffeners. The stiffener element having any

arbitrary curved geometry is mapped into a regular domain in ξ-η-ζ coordinate system where all

these coordinates vary from –1 to +1. Again ξ is taken along the stiffener axis while η and ζ are

taken along the width and depth directions respectively. It has been found that the vectors 
and  are quite useful for the representation of geometry and deformation of the shell element.

For the stiffener element a similar set of vectors  and  are used and these may be

obtained from those of the shell element (  and ) as 
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Fig. 4(a) Ply arrangement I (parallel) Fig. 4(b) Ply arrangement II (perpendicular)
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from the shell mid surface). The expressions of the quadratic shape functions Nsi along ξ are as

follows. 

Now considering the deformation of the stiffener element, the present formulation differs from the

usual one (Bathe 1996, Ferguson and Clark 1979, Liao and Reddy 1990) where six degrees of

freedom are generally taken to represent the biaxial bending apart from torsion and axial

deformation. In the present study the bending of the stiffener in the tangential plane of the shell is

not considered. This has helped to eliminate the involvement the sixth degrees of freedom θz like

that of shell element. Moreover the usual formulation (Bathe 1996, Ferguson and Clark 1979, Liao

and Reddy 1990) overestimates the torsional rigidity and it cannot be corrected simply with some

correction factor since it got mixed with other terms. The present formulation facilitates to treat it

nicely where a torsion correction factor is introduced for parallel as well as perpendicular stacking

schemes. Actually this is the primary object for the reformulation of the stiffener element. Based on

this the displacement components at any point within the stiffener may be expressed as 

(22)
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other rigidity parameters in the rigidity matrix  are presented below for two different types of

stacking arrangements of the stiffener as shown in Fig. 4. For both the arrangements, the stress-

strain relationship of a lamina in its axis system (x'-r-s) as shown in Fig. 4 may be written as 

(25)

where the rigidity matrix in the above equation is identical to  of the shell element obtained in

Eq. (5).

The rigidity parameters  of Eq. (24) may be obtained from Eq. (25), utilizing the conditions

(σr = 0) and (τrs = 0). For ply arrangement I, the rigidity parameters will be

For ply arrangement II, the rigidity parameters are as follows. 

The torsion correction factor βt for these two cases may be written as 

Ply arrangement I:  

Ply arrangement II:

 

where nls is the number of layers of the stiffener rib and k is the factor to get torsion constant of an

isotropic beam having rectangular section, which is a function of bs /ds ratio of the rectangular

section (Timoshenko and Goodier 1951). 
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Now Eqs. (20)-(24) may be used to derive the elastic stiffness matrix , mass matrix 

and geometric stiffness matrix  of a stiffener element following the procedure used for shell

element and these matrices may be expressed as follows.

 (26)

(27)

(28)

where  and  are analogous to  and  respectively. The initial stress matrix 

looks identical to that of shell (15) but its sub matrix  for stiffener element is

(29)

The elastic stiffness matrix, mass matrix and geometric stiffness matrix are computed for all the

shell elements and stiffener elements of the entire structure and these matrices are accordingly

assembled together to form the corresponding global matrices  and  where the

skyline storage algorithm is used to keep these three big size matrices in single array. 

2.3 Governing equations

With the stiffness matrix , mass matrix  and geometric stiffness matrix  of the

structure obtained in the previous section, the equation of motion of the structure can be written as

 (30)

This is a general equation and it can be reduced as a special case to get the governing equations

for buckling, vibration and dynamic stability problems as follows.

2.3.1 Buckling

 (31)

where Pcr is the critical load of buckling.

2.3.2 Vibration

 (32)

where ω is the vibration frequency of the structure subjected to in-plane load and it becomes the

natural frequency of vibration if P is made zero.
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2.3.3 Dynamic stability

Eq. (30) can also be used to solve the dynamic stability problem. Let the in-plane load P be

periodic and may be expressed as

 (33)

where Ω is the frequency of excitation, Ps is the static component of P and Pt is the amplitude of its

dynamic component, which may be expressed in terms of static buckling load Pcr as follows.

 (34)

where α and β may be defined as static and dynamic load factors respectively. Now Eq. (30) can be

written as

 (35)

The above equation represents a system of second order differential equation with periodic

coefficient, which is basically the Mathieu-Hill equation. The boundaries of dynamic instability

regions can be found by the periodic solutions having period of T and 2T, where T = 2π /Ω. The

range of primary instability region with period of 2T is of practical importance (Bolotin 1964)

where the solution can be achieved by expressing {q} in the form of the trigonometric series as

 (36)

After substitution of the above equation in Eq. (31) and taking the first term of the series, the

quantities associated with sin Ωt/2 and cos Ωt/2 are separated out and processed accordingly to

eliminate the time dependent component and it leads to 

 (37) 

where  is either  or  depending on the use of plus or minus of the dynamic in-

plane load component respectively. It is basically an eigenvalue problem and it can be solved for

known value of α, β and Pcr. The two frequencies corresponding to plus and minus will indicate the

boundaries of the dynamic instability region.

3. Results and discussions

The convergence and validation of the proposed model is presented taking various examples from

the literature. The proposed study is presented with problem definition, free vibration, buckling and

dynamic instability analysis of the stiffened shell panels.

3.1 Convergence and validation 

The convergence and accuracy of the proposed method are first established by comparing the

results of various problems with those of earlier investigators’ available in the literature. 
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3.1.1 Dynamic instability of un-stiffened simply supported square plate

The problem of un-stiffened simply supported square plate (a × a) is used to carry out the

convergence study. The a/h ratio of the plate is 100. The plate is subjected to uniform loading in the

two opposite edges. The whole structure is modeled with a number of mesh sizes to carry out the

analysis. The non-dimensional ( ) lower and upper bounding excitation frequencies

of the dynamic instability zones are shown in Table 1 for two sets of α and β values for all the

mesh sizes. It shows a rapid convergence with mesh refinement. Again a mesh size of 8 × 8 is

found to be sufficient to attain the convergence and this is used for all the subsequent analyses. For

validation, the results are compared with those of Hutt and Salam (1971), Srivastava et al. (2002).

The results obtained in these studies (Hutt and Salam 1971, Srivastava et al. 2002) are found to be

in good agreement compared to present results. 

3.1.2 Free vibration of a spherical shell panel of square base having two stiffeners along

its two centerlines 

The stiffened spherical shell panel as shown in Fig. 5 is also used to carry out the convergence

study taking its four sides as simply supported (SSSS) as well as clamped (CCCC) conditions. The

simply supported boundary condition in the two edges is shown in the Fig. 5. The top and bottom

side have same boundary condition. Similarly the left and right side have same boundary condition.

The details of the shell and stiffeners are given in Fig. 5 where the stiffeners are taken to be

symmetric with respect to the shell mid surface. Similar to the previous problem the structure is

modeled with a number of mesh sizes to carry out the analysis. The first two natural frequencies for

both the boundary conditions are plotted in Fig. 6. It is observed that with mesh refinement the

results are converging rapidly. Here also a mesh size of 8 × 8 is found to be sufficient to attain the

convergence. To validate the results, the first five frequencies (mesh size 8 × 8) for the simply

supported boundary condition are compared with the results of finite element solution of Nayak and

Ω Ωb
2

ρh/D=

Table 1 Non-dimensional bounding frequency  for un-stiffened simply supported square plate

Non-dimensional bounding frequency 

Analysis
α = 0.0 and β = 0.8 α = 0.6 and β = 0.32 

La Ub La Ub

Present (2 × 2)
Present (4 × 4)
Present (6 × 6)
Present (8 × 8)

Present (10 × 10)
Present (12 × 12)
Present (14 × 14)
Present (16 × 16)
Present (18 × 18)

50.82
30.80
30.58
30.57
30.56
30.56
30.56
30.56
30.56

77.27
47.06
46.71
46.69
46.69
46.69
46.69
46.69
46.69

32.22
19.48
19.34
19.33
19.33
19.33
19.33
19.33
19.33

49.11
29.76
29.54
29.53
29.53
29.53
29.53
29.53
29.53

Hutt and Salam (1971)
Srivastava et al. (2002)

30.57
30.57

46.69
46.71

19.53
19.33

29.60
29.54

aLower boundary of the instability zone
bUpper boundary of the instability zone

Ω( )

Ω( )
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Fig. 5 Stiffened spherical shell panel having square base

Bandopadhyay (2002), Samanta and Mukhopadhyay (2004), Prusty (2001) in Table 2. The results

are found to be in good agreement. 

3.1.3 Free vibration of a rectangular composite stiffened plate

The laminated (0/90/0) rectangular plate with three unidirectional laminated (0/90/0) stiffeners as

shown in Fig. 7 is analyzed taking simply supported boundary condition at the four sides. The detail

of geometry and material properties are given in Fig. 7. The frequencies for first five modes

Fig. 6 Convergence for frequency of vibration with mesh size of a stiffened spherical shell panel having
square base



Dynamic instability analysis of laminated composite stiffened shell panels 497

obtained in the present analysis are presented in Table 3 with some other finite element results

reported by Prusty (2001), Chao and Lee (1980), Chattopadhyay et al. (1992). The table shows that

the results agreed well.

Table 2 Natural frequency (rad/sec) of simply supported spherical shell panel with two stiffeners along the
two central lines

Mode
Number

Present
(8×8)

Nayak and Bandopadhyay (2002) Samanta and 
Mukhopadhyay (2004)

(8 × 8)

Prusty (2001)
(16 × 16)El-8a

(8 × 8)
El-9b

(8 × 8)

1
2
3
4
5

40.2300
69.0282
69.1158
91.2984

105.6800

40.26
70.98
70.98
96.06

40.26
70.97
70.97
96.06

41.70
74.11
74.36
99.18

104.94

40.81
72.13
72.13
92.92
105.69

(The mesh size is considered taking the full structure in all cases)
aEight noded element
bNine noded element

Fig. 7 Simply supported laminated plate with three unidirectional laminated stiffeners

Table 3 Natural frequencies (Hz) of a simply supported stiffened composite plate

References Mode 1  Mode 2 Mode 3 Mode 4 Mode 5

Present 
Chao and Lee (1980)

Prusty (2001)
Chattopadhyay et al. (1992)

65.216
65.000
63.510
63.000

98.643
101.00
95.840
95.000

168.36

162.97

231.96
228.00
223.09
225.00

255.64
260.00
245.37
250.00
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3.1.4 Free vibration of a composite stiffened spherical shell panel of square base

The laminated spherical shell panel having two laminated central stiffeners (Fig. 8) placed inside

the shell surface is analyzed taking stacking sequence for the shell and the stiffener as 0/90/0/90 in

one case (I) and 45/-45/45/-45 in other case (II). Fig. 8 shows all the details of the composite

stiffened shell panel. The numbering of layers starts from bottom to top both in stiffener and panel

skin. The analysis is carried out for three different values of curvature ratio (R/a) taking simply

supported boundaries at the four edges. The fundamental frequencies obtained in the present

analysis are presented with finite element solution of Prusty (2001) in Table 4, which shows that the

results are in good agreement.

  

Fig. 8 Laminated spherical shell panel with two central laminated stiffeners attached to the bottom surface

Table 4 Natural frequencies (Hz) of a laminated composite spherical shell panel with two central laminated
stiffeners attached to the bottom surface

Lamination References R/a = 5 R/a = 10 R/a = 100 

Case – I
Present

Prusty (2001)
1.415
1.410

1.239
1.238

1.183
1.183

Case – II
Present

Prusty (2001)
2.426
2.446

1.596
1.682

1.207 
1.358 
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3.1.5 Buckling of a rectangular plate with a central stiffener under uniaxial load

The problem of the rectangular stiffened plate (Fig. 9) having simply supported boundary

conditions at its four edges is investigated for different plate aspect ratio (a/b) and stiffener

parameters (δ = As/bh, γ = EIs/bD where As - cross-sectional area of the stiffener, Is - moment of

inertia of the stiffener). The simply supported boundary condition is as SSSS in section 3.1.2. The

plate thickness ratio (a/h) and isotropic plate and stiffener material (ν ) are taken as 100 and 0.3

respectively. The dimension a is varied keeping b as constant to get different values of aspect ratio

(a/b). The non-dimensional critical buckling stress parameter  obtained in the

present analysis is presented in Table 5 with the analytical solution of Timoshenko and Gere (1961)

and finite element solution of Mukhopadhyay (1989). The table shows that the agreement between

the results is very good. As Timoshenko and Gere (1961) have not considered the effect of stiffener

eccentricity and torsional rigidity, these parameters are taken as zero in the present problem.

3.1.6 Buckling of a laminated cylindrical shell panel under axial compression 

The laminated (0/90/0/90/0) cylindrical shell panel of square base (a × a) simply supported along

all four edges is analyzed taking curvature ratio R/a = 20 and thickness ratio a/h = 10, 20, 30, 50

and 100. The values of non-dimensional buckling load parameter  obtained in

the present analysis are presented with those of Sciuva and Crrera (1990) Table 6, which shows that

the results agreed well. The material properties used are: E11 = 40E22, G12 = G13 = 0.5E22, G23 =

0.6E22 and ν12 = 0.25.

k σcr/ π
2
D/b

2
h( )=

Ncr Ncra
2
/E

22
h
3

=

Fig. 9 Simply supported stiffened rectangular plate under uniaxial compression

Table 5 Buckling load parameter (k) for a simply supported rectangular stiffened plate under uniaxial
compression

a/b

γ = 10, δ = 0.05 γ =5, δ = 0.2

Present
Timoshenko 
and Gere 

(1961)

Mukhopadhyay
(1989)

Present
Timoshenko 

and Gere
(1961)

Mukhopadhyay
(1989)

0.6
0.8
1.0
2.0
3.0
4.0

16.403
16.686
15.908
10.110
11.867
10.135

16.5
16.8
16.0
10.2
12.0
10.2

15.91
10.16
11.94

16.463
12.729
9.612
6.244
6.512
6.264

16.5
13.0
9.72
6.24
6.53
6.24

9.65
6.24
6.48
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3.1.7 Dynamic instability of a laminated composite square plate simply supported at the

four sides

 The simply supported laminated square plate (a × a), (standard case, Moorthy et al. 1990) with

four layer, symmetric cross-ply (0/90/90/0) laminates under in-plane pulsating load along the

direction of 0 degree laminate is analyzed for different values of dynamic load factor β taking static

load factor α to be zero. The plate parameters are, a = 0.254 m, a/h = 25, ρ = 2.7712 × 1010 kg/m3,

E22 = 6.8982 × 1010 N/m2, E11/E22 = 40.0, G12 = G13 = 0.6E22, G23 = 0.5E22 and ν12 = 0.25. The values

of bounding frequencies obtained in the present analysis are plotted with those of Moorthy et al.

(1990) in Fig. 10, which shows that the agreement between the results is very good.

3.2 Proposed study

In the proposed study the free vibration, buckling and dynamic instability analyses are carried out

for a laminated stiffened shell problem where its different parameters are varied in a wide rage to

study the effect of these parameters on the behavior of the structure. The detail is given below. 

Table 6 Non-dimensional buckling load parameter of a simply supported cross-ply cylindrical shell panel
under axial compression

References
a/h

10 20 30 50 100

Present
Sciuva and Crrera (1990)

23.964
24.19

31.792
31.91

33.981
34.04

35.395
35.42

36.845
36.86

Fig. 10 Comparison of upper and lower bounding frequencies for a simply supported laminated composite
square plate
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3.2.1 Problem definition

It is a doubly curved laminated shell panel having laminated stiffeners subjected to uniform

pressure along x-direction. Fig. 11 shows the panel with a central stiffener. The radii of curvatures

are taken in such a manner to get some specific geometry such as flat plate (a/Rx = 0.0, b/Ry = 0.0),

cylindrical shell panel (a/Rx = 0.0, b/Ry = 0.5), spherical shell panel (a/Rx = 0.5, b/Ry = 0.5) and

hyperbolic hyperboloid (a/Rx = −0.5, b/Ry = 0.5). The lamination scheme for the shell and the

stiffener adopted is (0/90/0/90/---) in one case and (45/-45/45/-45/---) in the other case. The number

of layers in the skin of shell panel and stiffener are taken to be same in all the cases. However this

is varied from two to eight layers. For the stiffener, parallel stacking scheme is adopted except the

case in which the effect of stacking scheme is considered. In many cases the depth to width ratio

(ds/bs) of the stiffener is varied where the stiffener width is always taken as the shell thickness (h).

Moreover the thickness ratio (a/h) and aspect ratio (a/b) taken are 100 and 1 respectively in all the

cases. The stiffener is placed at the inner surface of the shell panel except the case in which the

effect of eccentricity is considered. The terminology for stiffeners for bottom and top positions are

as (xst)b-stiffener in x-direction in bottom surface, (xst)t-stiffener in x-direction in top surface, (yst)b-

stiffener in y-direction in bottom surface and (yst)t-stiffener in y-direction in top surface. In all the

cases the four sides of the shell panel are taken to be simply supported and the material properties

used for shell as well as stiffener are E11 = 40E22, G12 = G13 = 0.6E22, G23 = 0.5E22, ν12 = 0.25. 

The results obtained in three types of analyses mentioned above are presented in non-dimensional

form as follows.

Non-dimensional natural frequency: 

Non-dimensional buckling load: 

Non-dimensional bounding excitation frequency: 

3.2.2 Free vibration 

The free vibration analysis is carried out for 2, 4, 6 and 8 layer configurations taking (ds/bs) ratios

of the stiffener as 2, 4, 6 and 8. The results obtained are presented in Table 7 and Table 8 for cross-

ply and angle-ply stacking respectively.

ω ωb
2

ρ/E22h
2

=

Nx Nxb
2
/E22h

3
=

Ω Ωb
2

ρ/E
22

h
2

=

Fig. 11 A doubly curved laminated shell panel with a central laminated stiffener (xst) b
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It is observed that the ply orientation has effect on vibration characteristics of the structure. The

frequency of angle-ply orientation is found to be more compared to that of cross-ply scheme for

cylindrical and spherical panels. But for flat and hyperbolic hyperboloid panels the frequency of

Table 7 Non-dimensional fundamental frequency of cross-ply laminated shell panel with cross-ply laminated
stiffener

Shell panel/
stiffener lamination

ds/bs Flat plate
Cylindrical

panel
Spherical

panel
Hyperbolic

hyperboloid panel

(0/90) 1

2
4
6
8

17.276
28.686
31.461
31.358

35.960
35.928
35.831
35.464

74.401
77.189
82.138
86.019

16.814
28.690
38.773
44.199

(0/90) 2

2
4
6
8

21.434
32.096
42.422
48.882

42.349
47.857
51.492
51.208

75.445
77.837
82.538
87.871

20.955
31.249
41.730
50.341

(0/90) 3

2
4
6
8

22.042
32.253
42.605
50.738

42.656
47.952
53.887
53.590

75.617
77.849
82.397
87.703

21.569
31.394
41.759
50.493

(0/90) 4

2
4
6
8

22.231
32.220
42.537
50.782

42.754
47.929
54.705
54.404

75.671
77.817
82.277
87.551

21.762
31.362
41.648
50.416

Table 8 Non-dimensional fundamental frequency of angle-ply laminated shell panel with angle-ply laminated
stiffener

Shell panel/
stiffener lamination

ds/bs Flat plate
Cylindrical

panel
Spherical

panel
Hyperbolic

hyperboloid panel

(45/-45) 1

2
4
6
8

18.456
19.973
22.973
26.972

41.394
41.351
41.224
40.992

108.622
106.707
104.405
102.137

18.601
19.864
22.359
25.697

(45/-45) 2

2
4
6
8

24.221
25.069
27.303
30.754

57.729
57.639
57.442
57.101

123.078
122.770
122.130
121.022

23.788
24.558
26.544
29.555

(45/-45) 3

2
4
6
8

24.952
25.743
27.892
31.265

60.229
60.132
59.925
59.569

124.354
124.017
124.372
122.274

24.470
25.188
27.108
30.065

(45/-45) 4

2
4
6
8

25.196
25.969
28.091
31.437

61.080
60.981
60.771
60.409

124.795
124.449
124.801
122.706

24.698
25.400
27.298
30.236
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angle-ply orientation is less compared to that of cross-ply scheme for ds/bs equals to 4, 6 and 8.

Again the frequency of cylindrical and spherical panels is always more than that of flat plate and

this is due to the fact that the curvature introduces additional stiffening effect. This situation in

hyperbolic hyperboloid is different since the curvatures in the two principal directions are opposite

in nature. In case of cross-ply lamination scheme, the frequency is found to be always increasing

with the increase of stiffener depth except (0/90)1 in flat and cylindrical panel. In angle-ply

stacking sequence the frequency is increasing with increase in stiffener depth for flat and

hyperbolic hyperboloid panel, but in case of cylindrical and spherical panels the frequency is

increasing with the increase in stiffener depth up to certain depth and after that the frequency is

dropping down. With the increase in the number of layers the frequencies values are increasing in

all the cases. 

3.2.3 Buckling 

Similar to the vibration analysis presented above, the buckling analysis is carried out in this

section and the results obtained in the form of non-dimensional buckling load parameters are

presented in Table 9 and Table 10 for cross-ply and angle-ply stacking respectively. It is observed

that the non-dimensional buckling loads of flat plate and hyperbolic hyperboloid panel for (45/-45)n

and ds/bs = 2 is more compared to that of (0/90)n and ds/bs = 2. For cylindrical shell panel the

buckling loads are more in case of angle-ply lamination compared to cross-ply lamination scheme.

In spherical shell panel the non-dimensional buckling load for (45/-45)n is less compared to that of

(0/90)n and ds/bs = 2, while it is more for other values of ds/bs ratios. With the increase in stiffener

depth the buckling load increases up to certain value and decreases thereafter in case of cross-ply

arrangement while it increases and does not drop down in case of angle-ply arrangement. 

Table 9 Non-dimensional buckling load of cross-ply laminated shell panel with cross-ply laminated stiffener

Lamination
(Shell panel/Stiffener)

(ds/bs)
ratio

Flat plate
Cylindrical

panel
Spherical

panel
Hyperbolic

hyperboloid panel

(0/90)1

2
4
6
8

30.242
51.961
51.999
51.829

87.249
87.354
87.234
86.768

139.001
139.015
138.648
112.516

28.357
50.603
50.641
50.491

(0/90)2

2
4
6
8

46.547
104.371
119.865
113.870

154.154
154.138
153.712
113.886

226.849
226.698
212.964
112.928

44.047
97.899
116.826
116.144

(0/90)3

2
4
6
8

49.226
105.400
132.316
113.948

166.470
166.430
165.951
113.964

242.790
242.610
213.123
112.996

46.669
98.808

129.052
116.250

(0/90)4

2
4
6
8

50.073
105.179
136.680
113.980

170.717
170.751
170.250
113.996

248.360
248.170
213.185
113.023

47.505
98.606

133.357
116.283
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3.2.4 Dynamic instability 

After obtaining the free vibration and static buckling characteristics it is now pertinent to study

the dynamic instability of stiffened shell panels. In all the dynamic stability analysis, the non-

dimensional buckling load of the four layered cross-ply (0/90)2 stiffened flat plate with (0/90)2

stiffener (ds/bs = 4) is taken as the reference load, so as to plot the instability zones. The effect of

parameters like lamination scheme, eccentricity of stiffener and the stacking sequence are presented

taking the case of spherical shell panel with a single stiffener (xst)b attached to the bottom edge.

The stiffener depth to breadth ratio (ds/bs) is kept as 4 and the static load factor (α) is 0.2 in all

cases. The dynamic load factor β varies from 0.0 to 1.5. 

Table 10 Non-dimensional buckling load of angle-ply laminated shell panel with angle-ply laminated stiffener

Lamination
(Shell panel/Stiffener)

(ds/bs)
ratio

Flat plate
Cylindrical

panel
Spherical

panel
Hyperbolic

hyperboloid panel

(45/-45)1

2
4
6
8

33.406
39.887
52.897
72.565

111.530
126.283
126.077
125.328

132.026
175.215
183.267
182.087

34.481
39.385
49.838
65.668

(45/-45)2

2
4
6
8

59.383
63.645
75.501
95.790

196.003
243.136
296.434
324.427

212.475
265.487
327.062
335.345

56.766
60.434
70.494
87.251

(45/-45)3

2
4
6
8

61.072
65.414
77.831
99.466

206.283
254.039
310.666
348.480

222.577
275.656
347.772
360.197

60.062
63.568
73.514
90.273

(45/-45)4

2
4
6
8

63.190
67.453
79.813

101.443

209.863
257.775
315.470
354.823

226.097
279.178
354.877
368.940

61.183
64.637
74.543
91.298

Fig. 12 Effect of lamination scheme on dynamic instability region on spherical shell
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3.2.4.1 Effect of lamination scheme

The effect of lamination scheme on the excitation frequencies of stiffened spherical shell panel is

presented in this section. The lamination schemes are (0/90)2 and (45/-45)2. The plots of the

dynamic instability region (DIR) are shown in the Fig. 12. 

It is observed that for (45/-45)2 lamination scheme the instability region shifts to the higher

frequency zone in comparison to (0/90)2 lay up. The plot shows that the onset of instability appears

early for cross-ply scheme for stiffened spherical shell panel, indicating that the angle-ply lay up is

more dynamically stable than the cross-ply scheme for the given stiffener configuration of the shell

panel.

3.2.4.2 Effect of geometry of the shells

The comparison of the dynamic instability regions for (45/-45)2 stiffened plate, cylindrical shell,

spherical shell and hyperbolic hyperboloid shell are presented in this section. The plots are shown in

the Fig. 13.

It is observed that the DIR for the spherical shell is at the highest frequency zone and the width

of the instability region is smaller in this case as compared to the other cases. The DIR gradually

shifts to the lower frequency zone side for cylindrical shell, hyperbolic hyperboloid shell and plate

respectively. This behaviour indicates that for a given ply lay up and stiffener configuration, the

spherical stiffened shell panel is dynamically more stable in comparison to the other panel

geometries.

3.2.4.3 Effect of eccentricity of the stiffener

The eccentricity of the stiffener has its effect on the dynamic instability region of the stiffened

shell. To illustrate this a (45/-45)2 stiffened spherical shell panel with stiffener with bottom and top

eccentricity is analyzed. From the plot (Fig. 14), it is observed that the width of the instability

region is higher for the eccentric top stiffener. 

Fig. 13 Effect of geometry on dynamic instability regions
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3.2.4.4 Effect of stacking in stiffener

The effect of the stacking of layers in the stiffener on dynamic instability region of the spherical

stiffened shell panel is presented in this section (Fig. 15). The stiffener is eccentric to bottom

surface. 

In the vertical stacking the dynamic instability region shifts a little to the higher frequency zone

side and the width of the instability regions are similar in the case of (45/-45) lamination scheme.

But in the case of (0/90) lamination scheme the dynamic instability region shifts a little to the

higher frequency zone side for horizontal stacking in the stiffener and here also the instability

regions are almost same. This indicates that the stacking scheme of the stiffener has very little effect

Fig. 14 Effect of eccentricity of the stiffener on dynamic instability region of spherical shell

Fig. 15(a) Effect of stacking in stiffener on dynamic
in stability region of the spherical shell
panel for (45/-45)2 lamination scheme in
the stiffener

Fig. 15(b) Same as Fig. 15(a) but for (0/90) 2 lamina-
tion scheme in the stiffener
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on the dynamic instability behaviour for the particular geometry and stiffener scheme of the

spherical shell panel. 

3.2.4.5 Effect of stiffener scheme

To find out the effect of number of stiffeners on dynamic instability region a spherical shell with

(45/-45)2 panel skin and stiffeners are taken. Four sets of stiffener are placed in both the directions.

Set one is of one stiffener in both direction at position of y-stiffener at x = 0 and x-stiffener at y = 0.5b.

Set two (Fig. 16) is of three stiffeners in both direction at position of y-stiffener at x = −0.125a, 0

and 0.125a and x-stiffener at y = 0.375b, 0.5b and 0.625b. Set three is of five stiffeners in both

direction at position of y-stiffener at x = −0.25a, −0.125a, 0, 0.125a and 0.25a and x-stiffener at y =

0.25b, 0.375b, 0.5b, 0.625b and 0.75b. Set four is of seven stiffeners in both direction at position of

y-stiffener at x = −0.375a, −0.25a, −0.125a, 0, 0.125a, 0.25a and 0.375a and x-stiffener at y =

0.125b, 0.25b, 0.375b, 0.5b, 0.625b, 0.75b and 0.875b. The dynamic instability regions are plotted

in the Fig. 17.

Fig. 16 Stiffened spherical shell panel with three (xst) b and three (yst) b stiffeners

Fig. 17 Effect of stiffener scheme on dynamic in stability region of the spherical shell panel
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It is observed from Fig. 17 that the dynamic instability zone for the stiffener arrangement of set

two ((xst)b = 3 and (yst)b = 3) is at the higher frequency zone side. It indicates that this arrangement

is dynamically more stable in comparison to the other stiffener schemes. 

 

4. Conclusions

Based on the observations in the present study the following conclusions can be made.

1. The proposed finite element model consists of an eight-noded isoparametric degenerated shell

element and a compatible three-noded curved beam element for the representation of shell skin

and stiffeners respectively. It has exhibited very good performance in terms of accuracy and

convergence without involving any numerical disturbance. 

2. In most of the cases the non-dimensional buckling loads and frequencies are higher for angle-

ply (45/-45/45/-45/---) stiffened shell panels in comparison to the cross-ply (0/90/0/90/---)

lamination scheme. 

3. The stiffened panel with angle-ply lay up is dynamically more stable than the cross-ply scheme

for the given geometry and stiffener configuration of the shell panel.

4. For a given ply lay up and stiffener configuration, the spherical stiffened shell panel is

dynamically more stable in comparison to the other panel geometries.

5. With regard to dynamic instability, for the given stiffener and lamination scheme it is better to

place the stiffener in the bottom surface of the spherical shell panel.

6. In case of vertical stacking scheme the onset of dynamic instability region shifts a little to the

higher frequency zone side for (45/-45)2 lamination scheme and a little lower frequency zone

side for (0/90)2 lamination scheme for the spherical stiffened shell. 

7. For the stiffened spherical shell panel with three stiffeners in each direction, the dynamic

instability zone is at higher frequency zone in comparison to other stiffener arrangement. 
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Notation

ξ-η-ζ : curvilinear coordinate system
x-y-z : global cartesian coordinate system
x'-y'-z' : local coordinate system
a, b : base dimensions of the stiffened panels
bs, ds : breadth (web thickness) and depth of stiffener
DIR : dynamic instability region
(xst)b : stiffener in x-direction in bottom surface
(xst)t : stiffener in x-direction in top surface
(yst)b : stiffener in y-direction in bottom surface
(yst)t : stiffener in y-direction in top surface
[K] : combined elastic stiffness matrix of panel and stiffeners 
[M] : combined mass matrix of panel and stiffeners
[KG] : combined geometric stiffness matrix of panel and stiffeners
Ni : quadratic serendipity shape functions shell element
Nsi : quadratic shape functions stiffener element 
Ω : excitation frequency of the load
α : static load factor
β : dynamic load factor
βs : shear correction factor
βt : torsion correction factor




