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Abstract. Solutions to the problems of structural parameter estimation from modal response using least-
squares minimization of force or displacement residuals are generally sensitive to noise in the response
measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the
structure and certain features of the noisy measurements. It has been shown that the regularization method
can be used to reduce effects of the measurement noise on the estimation error through adding a
regularization function to the parameter estimation objective function. In this paper, we adopt the
regularization function as the Euclidean norm of the difference between the values of the currently
estimated parameters and the a priori parameter estimates. The effect of the regularization function on the
outcome of parameter estimation is determined by a regularization factor. Based on a singular value
decomposition of the sensitivity matrix of the structural response, it is shown that the optimal
regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This
selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter
estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison
with certain algorithms selected from the literature by using a numerical example.

Keywords: parameter estimation; measurement noise; estimation errors; regularization; singular value
decomposition.

1. Introduction

Construction of a suitable mathematical model of the structural system is necessary for the

prediction of the structural responses under different specified loadings. Building a mathematical

model of a structure usually requires the laws of physics and structural mechanics, for example, the

Newton’s laws of motion, the geometry of deformation, and the material constitutive laws.

Generally, the largest portion of assumptions used in composing a structural model concerns the

material constitutive properties for each structural member since this information can be obtained

only through structural testing.

Various algorithms for identification of structural constitutive properties have been proposed in the

literature over the past few decades (Astrom and Eykhoff 1971, Hajela and Soeiro 1990,

Mottershead and Friswell 1993). These methods generally determine, for a given structural model, a
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set of constitutive parameters yielding the best-fit response with respect to the measured response

obtained from testing the actual structure. Both static and dynamic responses of the structure have

been adopted as the measurement data.

Parameter estimation algorithms based on the constrained minimization of the least-squares errors

between the measured and the computed response of the structure suffers the problems of non-

uniqueness and sensitivity of solutions. These problems become severe when the measured data are

polluted with noise or when the constructed structural model fails to characterize the essential

components of the actual structural system (Bui 1994, Hjelmstad 1996, Hansen 1998). 

It is well known that the regularization technique can be used to overcome the problems of non-

uniqueness and discontinuity of solutions (Golub et al. 1978, Hansen 1992, 1998). This method

applies a regularization function, which acts as a penalty term, to the initial error function. The

consistency of the regularization effect on the parameter estimation results is controlled by a

regularization factor which is included in the regularization function. By selecting an optimal

regularization factor, the regularization effect is well-balanced and a numerically stable solution to

the parameter estimation problem is obtained. Some intuitive schemes have been proposed for the

selection of optimal regularization factors based on some a priori information of the system

parameters (Lee et al. 1999, 2000, Yeo et al. 2000, Park et al. 2001). However, the accuracy of the

outcome of a parameter estimation problem cannot by any means be guaranteed by using the

presumed a priori parameter estimates since in many cases these estimates are not reliable.

This paper adopts the framework of the regularization method to improve the performance of a

parameter estimation algorithm from the measured modal response of a structure in the presence of

the measurement noise. A new technique is proposed, based on the singular value decomposition of

the sensitivity matrix of the structural response, to select an optimal regularization factor for a least-

squares optimization problem associated with the structural parameter estimation method. In the

present method, the a priori estimates of structural parameters are not required in advance of the

estimation process. Hence, the problem of unreliability of the a priori estimates is eliminated.

A numerical simulation study is carried out using a nine-story shear building as the model

problem. The results from the simulation study are presented to demonstrate the effectiveness of the

present algorithm in comparison with some proposed algorithms in the literature.

2. Structural parameter estimation scheme

Consider a parameterized finite-element model of a structure with Nd degrees of freedom. The

undamped free vibration of the structure is governed by the generalized eigenvalue problem

 (1)

where K(x) is the linear stiffness matrix, M is the structural mass matrix, λi and ψi are, respectively,

the eigenvalue (the square of the natural frequency) and the eigenvector (mode shape) for the ith

mode. Each element in the structural model is designated to one of the parameter groups Ω1, Ω2,

…,  where Np is the total number of parameter groups in the finite-element model. For the

present study it is assumed that an element m belonging to group Ωk is characterized by a single

constitutive parameter xk. This constitutive parameter can be, for example, the axial stiffness of a

truss member or the bending stiffness of a Bernoulli beam element. A more generalized version of

K x( )ψi λiMψi=

ΩNp



An optimal regularization for structural parameter estimation from modal response 403

the present parameterization scheme may be adopted for structural members having multiple

stiffness parameters (Hjelmstad and Shin 1996). With the present parameterization scheme, the

linear stiffness matrix K(x) is parameterized by Np parameters . The stiffness

matrix of the structural model can be expressed as

(2)

where Gm is the kernel matrix containing the geometrical information of element m.

Banan and Hjelmstad (1993) proposed the output error estimator (OEE) that is cast as a

constrained minimization of the least-squares error function

Minimize

Subject to (3)

where  denotes the Euclidean norm of a vector, δi is the significance factor of the ith mode, Nm

is the number of modes with measurement data and c(x) is the vector for the constraints on

parameter values. The output error ei(x) in Eq. (3) is defined as

(4)

where Q is the boolean matrix that extracts the components of the response vector associated with

measured degrees of freedom from the eigenvector by the relationship = Qψi, and Bi(x) ≡ K(x)

−  is defined using a partitioning of the mass matrix  into a part 

associated with the measured degrees of freedom and a part  associated with unmeasured degrees

of freedom, whereas O is a zero matrix. Detailed derivation of these matrices can be found in the

work by Pothisiri and Hjelmstad (2002).

For simplicity of the following mathematical derivation, we shall rewrite the objective function in

Eq. (3)  in a single vector form

(5)

in which  and .

3. Regularization

3.1 Analysis of regularization scheme

The least-squares minimization of the output error defined in Eq. (3) suffers the problems of non-

uniqueness and sensitivity of solutions arising from using incomplete and noisy measurement data.

The present study adopted the Tikhonov regularization technique (Groetsch 1984) to resolve the
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problem of sensitivity of solutions to the parameter estimation problem. The regularization function

proposed herein is expressed as

(6)

where α denotes the regularization factor, L denotes the scaled finite difference approximation to

the ith derivative of , often chosen as the identity matrix I (i = 0), and x0 denotes the a

priori estimates of the system parameters. For parameter estimation problems in general, accurate

information of the a priori parameter estimates are usually not known in advance. 

Note that the scaling matrix L can generally be selected such that the size of the solution vector is

properly controlled. Various choices of this matrix may be adopted using different-order finite

difference operators to improve the performance of regularization (see for example, Fierro et al.

1997). Nonetheless, we select L = I in the current study and we set the values of the a priori

parameter estimates as zero, that is x0 = 0, to convert the problem to the standard form (Hansen

1992) since our main concern is on the selection of the regularization factor α. The above selection

of a priori estimates represents the situation in which these values are not known. By assuming no

a priori knowledge is available, instabilities of the parameter estimation algorithm suffered from a

poor selection of x0 can be avoided. We define the regularized output error estimator (ROEE) as

Minimize (7)

Subject to

The solutions to the ROEE can be obtained by using the recursive quadratic programming

technique with Fletcher active sets (Luenberger 1989). The implementation of the technique is

described in detail by Banan and Hjelmstad (1993). In this method, the non-linear regularized

objective function J(x) and the constraints c(x) in Eq. (7) are approximated by the quadratic

function and the linearized constraints, respectively, as

(8)

and (9)

where the subscript k denotes the iteration count,  is the gradient operator with respect to the

system parameters x, dk is the direction vector of system parameters at iteration k. Note that the

matrix Lk is set as the identity matrix I for the current study, but is shown in its general form herein

to accommodate the possible variation. In Eq. (8), Sk and Hk are the sensitivity matrix and the

Gauss-Newton Hessian matrix of the error function e(x), respectively, which are given by the

following expressions 
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and (11)

Notice that the Gauss-Newton approximation which neglects the second derivatives of the error

function is used in the computation of the Hessian matrix of Eq. (11).

Based on the work by Park et al. (2001), the sensitivity matrix Sk can be decomposed using the

singular value decomposition (SVD) method

(12)

In the above equation, ,  and  are orthogonal

matrices whose dimensions are constrained by the inequality of identifiability  in which

 and Nm, respectively, are the number of degrees of freedom and the number of modes with

measurement information, and Np is the number of unknown system parameters. The singular value

matrix  is defined as  ≡ diag  in which .

Note that the singular values can be zero if the sensitivity matrix Sk is rank-deficient. The rank-

deficiency of the sensitivity matrix can be avoided by ensuring that the inequality of identifiability

is always satisfied (i.e., ). By using the present singular value decomposition scheme, the

solution of the ROEE takes the final form

(13)

where ωj is the filter factor (Hansen 1992) which is defined as  and 

are the solutions at the (k+1)th iteration that minimize the regularized and the original objective

function, J(x) and JE(x), respectively. The solution , which corresponds to the original

objective function, is usually referred to as the so-called a posteriori solution.

3.2 Optimal regularization factor

Some of the well-known algorithms for finding an optimal regularization factor in linear inverse

problems assume a fixed regularization factor throughout the optimization process (Golub et al.

1978, Hansen 1992). For many applications in non-linear inverse problems, this assumption is not

tenable since the error function may be overwhelmed by the effect of the regularization function for

some computation steps during the course of the iterative solution-finding algorithm.

Lee et al. (1999) proposed the variable regularization factor scheme (VRFS) that adjusts the

regularization factor by a pre-determined reduction factor such that the error function is always

larger than the regularization function during the optimization process. Park et al. (2001) proposed

the geometric mean scheme (GMS) in which the optimal regularization factor is selected from the

smallest and largest singular values of the sensitivity matrix to balance the maximum and minimum

effect of the a priori estimates and the a posteriori solution simultaneously. The GMS method

performs well only when the a priori estimates of the structural parameters are close to the actual

parameters.

For most parameter estimation problems the accurate values of the a priori estimates of the model

parameters are usually not known prior to the estimation. Hence, these values cannot be assumed

known in advance of actually finding the solution to the parameter estimation problems. Let us

consider the solution to the ROEE algorithm as shown in Eq. (13) with respect to the definition of
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the filter factor ωj for a fixed value of the regularization factor α. It can be seen that by substituting

the maximum value of the sensitivity matrix σmax into the definition expression of the filter factor

ωj, the value of ωj tends to decrease to a certain value  such that  approaches closer

to a unit value, giving the lowest and the highest weight, respectively, to the first and the second

term on the right hand side of Eq. (13). This condition corresponds with the situation in which the

effect of the a priori estimates on the solution for the ROEE algorithm is minimal. Consequently,

the a priori estimates of system parameters are not required to initiate the solution algorithm. The

optimal regularization factor αopt is obtained, using a similar procedure to that proposed by Park et al.

(2001), by forcing the minimum effect of the a priori estimates and the maximum effect of the a

posteriori solution to occur simultaneously, that is

 (14)

Both sides of the above equation are the weight factors on the right hand side of Eq. (13) that

correspond to the maximum singular value of the sensitivity matrix σmax. This equation yields the

optimal regularization factor as

(15)

By using the present method, we implicitly maximize the effect of the a posteriori solution to the

parameter estimation problem. However, there is still chance where the selected regularization factor

overweighs the effect of the a priori estimates on the regularization function. To resolve this

problem, a limit on the value of the regularization function is set for each of the iterations during

the optimization process by the following expression

(16)

In case where the value of the regularization function is larger than the right-hand side Eq. (16), the

regularization factor is reduced by

(17)

where the subscript l denotes the iteration count for the optimization process and β is a predefined

reduction factor ranging from 0 to 1. Since the optimal regularization factor in Eq. (15) can vary

during the optimization process in accord with Eq. (17), the present method will be called the

variable maximum singular value (VMSV) scheme.

4. Numerical simulation study

The performance of the ROEE algorithm is examined in comparison with the OEE in the current

simulation study by using the VRFS, GMS and VMSV methods for the selection of the optimal

regularization factor αopt to be used during the minimization of Eq. (7). The example structure is the

nine-story shear building with fixed base shown in Fig. 1. The structural model consists of nine

degrees of freedom which characterizes the horizontal translations at the story levels. The structural
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model is parameterized with nine parameters . The bending stiffness of the

columns located on the ith story is given by . The nominal properties of the structure are

chosen such that . We assume that the actual parameters associated with the baseline

structural model are given as  = {2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}T. 

The noisy measurements are simulated by adding the uniform random variates with known

statistical properties to the noise-free data that are obtained from a free-vibration analysis of the

specified baseline structural model. The jth noisy measurements  are simulated from the noise-

free response vector  as

(18)

where  is a diagonal matrix of the uniform random variates in the range

 in which ε is the amplitude of noise in the measurements.

The influence of certain features of the noisy measurements on the performance of the parameter

estimation algorithms under consideration is examined through numerical simulations. Each of the

simulated experiments in the present study are listed in Table 1. The numerical simulations in Case

I are carried out to study the distribution of solutions to the parameter estimation problem obtained

by using the VMSV and the VRFS methods through variation of the reduction factor β defined in

Eq. (17) and the number of modes with measurement information Nm. Notice that the level of noise

amplitude is fixed at 20% for all simulated measurements of Case I and that Nm lowest modes

(modes with the lowest frequencies) are used for all simulation cases in the current study. In Case II

the effect of variation in the number of measured modes Nm on the performance of the parameter

estimation algorithms is examined by using different levels of noise amplitude ranging between
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Fig. 1 The nine-parameter shear building with specified patterns of measurement locations: (a) Case (A); (b)
Case (B); and (c) Case (C) 
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ε = 0 and 20% at 2.5% intervals. In Case III we investigate the effect of using different a priori

estimates on the outcome of the selected algorithms for 20% noisy measurements.

Algorithms that estimate structural parameters from modal response using least-squares

minimization of the displacement residuals generally do not have unique solutions when the data are

spatially sparse (Hjelmstad 1996). It has been observed that the number and character of the

multiple solutions depend upon the locations of the response measurements. The multiplicity of

solutions typically arises if incomplete measurement data in which modal displacements are not

measured at all degrees of freedom of the structural model are used. In the current study we use

three different patterns of the measurement locations as shown in Fig. 1 as input to the parameter

estimation problem to illustrate possible variation in the number of solutions and the sensitivity of

the parameter estimates to measurement noise.

For the incomplete measurement cases in Table 1 the random starting point scheme proposed by

Pothisiri and Hjelmstad (2002) is used to identify the multiple solutions to the parameter estimation

problem. A set of 100 random starting points is selected from a collection of points within a Np-

dimensional hyper-ellipsoid centered at the point associated with the actual parameter values .

Each of the random starting points will drive each of the algorithms to a collection of solutions

which is a subset of the complete solution set to the minimization problems (3) and (7),

respectively, for the OEE and ROEE algorithms. Among the candidate solutions within the

collection, the best solution for each noisy measurement case is identified as the set of parameters

x* associated with the global minimum J(x*).

For each measurement case that we investigate in Table 1, 100 different noisy data sets are

generated from the noise-free data in accord with Eq. (18) using the specified values of noise

amplitude ε. As in the earlier work of Pothisiri and Hjelmstad (Luenberger 1989), the simulated

data sets are used as a common database to which each of the parameter estimation algorithms is

applied to create population of the parameter estimates. The performance of each algorithm is

assessed by using certain statistical indices for the parameter estimation results.

Several indices of identification error are used to compare the performance of the investigated

algorithms. First, the average root quadratic bias (RQB) is computed as a measure of distance

between the average of the parameter estimates  for the simulated population and the actual

parameters . The average root quadratic bias is defined as

x̂

x *

x̂

Table 1 Summary of the numerical experiments

Case 
Measurement 

pattern
Number of 

measured modes
Measurement 

noise (%)
Reduction 
factor (β )

A priori 
estimates (x0)

I

(A) 1-9 20 0.1-0.9 0

(B) 1-9 20 0.1-0.9 0

(C) 1-9 20 0.1-0.9 0

II

(A) 1-9 0-20 0.9 0

(B) 1-9 0-20 0.9 0

(C) 1-9 0-20 0.9 0

III

(A) 9 20 0.9 

(B) 9 20 0.9

(C) 9 20 0.9

0 2x̂–

0 2x̂–

0 2x̂–



An optimal regularization for structural parameter estimation from modal response 409

(19)

where Np is the number of estimated parameters in the model. The average  is an approximation

of the expected value of the estimated parameters (or centroid of the distribution of the parameter

estimates in Np-dimensional space), which is given by

(20)

in which  denotes the parameter estimates associated with the global minimum for the tth noisy

measurements of the Nt simulated data sets under consideration. The quadratic bias is a quantitative

measure of the accuracy of the parameter estimation results. The precision of the parameter

estimation outcome is indicated by the average standard deviation (SD), which is defined as

(21)

The computed average standard deviation is a measure of the scatter of the parameter estimates with

respect to the expected value. The overall performance of the investigated algorithms is determined

by the average root mean square error (RMS), which is obtained by combining Eqs. (19) and (21) as 

(22)

Notice that variation of the mean square error depends upon both the quadratic bias and the

standard deviation. For example, a decrease in the scatter of the parameter estimates around the

actual parameters (RMS) can be obtained by either decreasing the distance between the expected

value of the parameter estimates and the actual parameters (RQB) or by reducing the scatter of the

parameter estimates with respect to the expected value (SD).

The identification errors of the parameter estimation results as defined by Eqs. (19), (21) and (22)

for the specified measurement patterns of Case I are shown in Figs. 2-4. In these figures, the values

of RQB, SD and RMS are plotted with respect to the reduction factor β of Eq. (17) for different

numbers of modes Nm which are used to drive the VRFS and the VMSV algorithms. The

identification errors are computed for the population of parameter estimates obtained from Eq. (17)

for 100 noisy data sets with a fixed level of noise, ε = 20%. It should be noted that only the VRFS

and the VMSV algorithms are examined in Case I since the key objective of this simulation case is

to determine the best reduction factor βopt for these algorithms. It should be noted that the value of

β essentially represents the rate of reduction in the value of the α during the search for the optimal

regularization factor αopt. Generally, the number of iterations required for this search decreases with

the value of β. A decrease in the value of β would increase the computational efficiency of the

algorithm. However, a too-low value of β may cause the search to jump over the value of αopt. The

situation is more severe when the level of noise in the measurements is high. Therefore, the 20%

noisy measurement case is used in the current study as the worst-case scenario.

For the parameter estimation problem associated with the noisy measurements of Case I we use

the upper bounds of the estimated parameters of 50  and we select the values of the a priori
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Fig. 2 Variations of RQB, SD and RMS with respect to different values of reduction factor β and number of
modes N

m
 for (a) VMSV and (b) VRFS methods using measurement case (A) 

Fig. 3 Variations of RQB, SD and RMS with respect to different values of reduction factor β and number of
modes N

m
 for (a) VMSV and (b) VRFS methods using measurement case (B) 
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parameter estimates as zero for all stiffness parameters (x0 = {0, 0, 0, 0, 0, 0, 0, 0, 0}T) since their

values are not known in advance.

One can observe that the variation of the identification errors, with different values of β and

number of modes, is different for each measurement case. The identification errors for the VRFS

and the VMSV algorithms increase as the value of β decreases for all numbers of modes

considered. The algorithms perform best when the value of β is equal to 0.9 as indicated by the

lowest values of RQB, SD and RMS for all measurement cases. With this “best” value of the

reduction factor (β = 0.9), the VMSV algorithm slightly out-performs the VRFS algorithm as

evident from the lower identification errors for all measurement cases. It is also observed that when

the value of β is 0.9, the performance of the VMSV algorithm is less affected by variation of the

number of modes compared to the VRFS algorithm. Furthermore, the VRFS algorithm is observed

to lack “consistency” for this same value of β as indicated by variation in the accuracy and

precision of the parameter estimates with respect to different amount of information (i.e., the values

of RQB and SD, respectively, vary with the number of modes with response measurements).

Nevertheless, the “best” reduction factor, β = 0.9, will be used for the VRFS and the VMSV

algorithms for all simulation experiments from this point forward.

The results of the simulation study for different patterns of measurement locations in Case II are

illustrated in Figs. 5-7. In these illustrations, the identification errors of the parameter estimation

results obtained by using the OEE, VRFS, GMS and VMSV algorithms are shown with respect to

different levels of measurement noise and numbers of modes. It should be noted that all the a priori

parameter estimates in the regularization function proposed in Eq. (7) are (again) set as zero, or

assumed unknown, and that the upper bounds of the parameter estimates are set to 50 . x̂

Fig. 4 Variations of RQB, SD and RMS with respect to different values of reduction factor β and number of
modes Nm

 for (a) VMSV and (b) VRFS methods using measurement case (C) 
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Fig. 5 Variations of RQB, SD and RMS with respect to different levels of noise ε and number of modes N
m

for (a) OEE; (b) VMSV; (c) GMS; and (d) VRFS methods using measurement case (A) 



An optimal regularization for structural parameter estimation from modal response 413

Fig. 6 Variations of RQB, SD and RMS with respect to different levels of noise ε and number of modes Nm

for (a) OEE; (b) VMSV; (c) GMS; and (d) VRFS methods using measurement case (B) 



414 Thanyawat Pothisiri

Fig. 7 Variations of RQB, SD and RMS with respect to different levels of noise ε and number of modes Nm

for (a) OEE; (b) VMSV; (c) GMS; and (d) VRFS methods using measurement case (C) 
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The case of complete measurements (A) is illustrated in Fig. 5. It is observed that the VMSV

algorithm performs best for the investigated measurement cases with the maximum values of RQB,

SD and RMS equal to 4.3%, 2.97% and 5.22%, respectively, which are the lowest among the

investigated algorithms. The worst overall performance belongs to the OEE algorithm in which the

highest values of RQB, SD and RMS are obtained, respectively, as 197.83%, 197.71% and 267.24%

for high levels of noise. The GMS algorithm shows bias in the parameter estimates, as indicated by

non-zero values of RQB, even when the noise-free data are used. This phenomenon is likely an

artifact of the assumption that the values of the a priori estimates x0 are not known rather than a

characteristic of the algorithm. As such, the accuracy of the GMS algorithm can be jeopardized if

Fig. 8 Variations of RQB, SD and RMS with respect to different values of a priori estimates x0 for the VMSV,
GMS and VRFS methods using different measurement cases: (a) Case (A); (b) Case (B); and (c) Case
(C) 
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the a priori estimates are unknowns (as in the present case). For noise-free measurements one can

observe that there is a scatter of the parameter estimates for the VMSV algorithm as evident from

the non-zero SD values. This phenomenon is due mainly to the effect of the regularization function

which is added to the initial objective function in Eq. (7). Nonetheless, the VMSV algorithm shows

the least variation of identification errors for the parameter estimates with respect to different levels

of measurement noise and numbers of modes used in the estimation.

The same trends are observed in Figs. 6 and 7 for the incomplete measurement cases (B) and (C),

respectively. In these measurement cases, the scatter of the parameter estimates for the OEE

algorithm is somewhat reduced as indicated by the lower SD values at high levels of noise. For

lower levels of noise in the measurements all of the investigated algorithms show lower bias for the

parameter estimation results on the whole except for the noise-free measurements in which non-zero

values of RQB are observed for the OEE, VRFS and VMSV algorithms. As for the complete

measurement case, the VMSV algorithm shows the best performance with the lowest values of the

maximum identification errors among all of the algorithms under consideration. Moreover, the

VMSV algorithm shows the highest level of the overall regularization effect with the least variation

of the identification errors.

Variation of the performance of the VRFS, GMS and VMSV algorithms with respect to different

a priori parameter estimates x0 is illustrated in Fig. 8 for all of the measurement cases shown in

Fig. 1. In this figure one can observe similar trends for each of the algorithms considered. One can

observe that the best performance for the VMSV algorithm is achieved when the values of x0 are

set to zero (that is, with the absence of x0), and that performance of the GMS and VRFS algorithms

strictly depends upon the choice of x0. 

For the complete measurement case (A) the VRFS algorithm performs comparatively better when

the values of x0 are used exactly as the actual parameters. The same trend is seen for the GMS

algorithm for the incomplete measurement cases (B) and (C). This phenomenon is somehow

foreseen since, unlike the VMSV algorithm, the solutions to the parameter estimation problem as

defined in Eq. (13) obtained by using the GMS and VRFS algorithms are clearly affected by the

values of x0. On the other hand, the better performance of the VMSV algorithm in the absence of x0

(i.e., x0 = 0) exhibits the minimal effect of x0 on the outcome of parameter estimation. It is

interesting to see that for the incomplete measurement case (C) the value of RQB is slightly lower

when x0 = 0 compared to when x0 = . This counter-intuitive observation somewhat illustrates an

intrinsic bias of solutions to the parameter estimation problem when the measurements are

incomplete. In any cases, this observation calls upon question the reliability of using the a priori

parameter estimates in the estimation of the system parameters.

5. Conclusions

The key culprit for algorithms in which structural parameters are estimated based upon certain

response measurements is the existence of the measurement error. The effect of measurement errors

is generally manifested as the discontinuity of solutions to the governed mathematical parameter-

estimation problems, and is often observed through errors of the parameter estimates. A

regularization scheme has been presented to reduce the sensitivity of the parameter estimates to the

measurement error. The method introduces a regularization function as a Euclidean norm of the

difference between the values of the current and a priori parameter estimates to the parameter

x̂
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estimation objective function. The purpose of this function is to penalize any divergence of the

parameter estimates from some a priori parameter values. The overall regularization effect is

adjusted by using a specific weight factor typically known as a regularization factor. 

The selection of an optimal regularization factor is essential for obtaining the maximal

improvements on the parameter estimation outcome. During the course of the iterative optimization

process, the regularization factor must be optimally adjusted to maintain a well-balanced

regularization effect on the parameter estimation results. Several algorithms are used in the current

study to perform this task. The variable regularization factor scheme (VRFS) proposed by Lee et al.

(1999) adjusts the regularization factor by using a specified reduction factor. The geometric mean

scheme (GMS) proposed by Park et al. (2001) selects the optimal regularization factor to

simultaneously balance the effects of the a priori parameter estimates and the a posteriori solution.

The variable maximum singular value (VMSV) algorithm proposed in the present paper specifies an

optimal regularization factor that corresponds with a typical situation in which the a priori

parameter values are taken as unknowns. The concept behind the algorithm seems attractive since,

for most parameter estimation problems, the a priori estimates of the model parameters are usually

not known in advance of the estimation.

It has been illustrated through a simple numerical example that the VMSV algorithm can be used

to select an optimal regularization factor with success in improving the outcome of parameter

estimation in the absence of the a priori parameter estimates. The algorithm performs well in

comparison with the other algorithms under consideration, even with the lack of completeness of

the measured data and noise in the measurements. Although the example model chosen for the

current study is quite simple, a thorough procedure for the investigation on the performance of the

proposed algorithm has been established and presented. In further investigations the more complex

structural models could be used.
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