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Abstract. Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted
to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of
SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete
spalling and reinforcement buckling models developed originally for normal reinforced concrete are
modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and
reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic
models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic
material models are then incorporated in a finite-element based fiber analysis program. The applicability
of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns
under constant axial compression. The analysis using the proposed SFRC models yield results that are
much closer to the experimental results than the analytical results obtained using the normal reinforced
concrete models are.

Key words: steel fiber reinforced concrete (SFRC); elasto-plastic and fracture (EPF) model; tension
softening/stiffening model; cover spalling, reinforcement buckling; fiber analysis.

1. Introduction

Steel fiber reinforced concrete (SFRC) offers additional advantages over the normal reinforced

concrete (RC). Some of these advantages can be enumerated as resistance against crack propagation,

higher energy absorption, increased ductility, higher impact resistance, and better corrosion

resistance. SFRC is also known for its enhanced shear capacity, which helps reduce the amount of

shear reinforcement to render the construction easier. Because of the aforementioned advantages,

SFRC columns under seismic loading are more likely to avoid shear failure and exhibit more ductile

behavior than the normal RC columns. Even if designed to fail in flexure, normal RC columns

exhibit spalling of cover concrete and buckling of reinforcing bars, which cause significant strength

degradation in the post-peak large-displacement region. However in SFRC columns, these inelastic

mechanisms are less likely to occur as the steel fibers maintain the integrity and provide additional

confinement. Consequently, the post-peak flexural response of SFRC columns is expected to be

more stable than that of normal RC columns. 
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There are several studies addressing the effect of steel fibers on the behavior of reinforced

concrete (Fanella and Naaman 1982, Hsu and Hsu 1994, Someh and Saeki 1996) but none have led

to cyclic material models for SFRC, without which the analytical research on the behavior of SFRC

structures has not progressed much. The main objective of this study is to establish a tool to enable

analytical study of members/structures made of SFRC. Hence, more emphasis is given to verify the

ability rather than the accuracy of the established analytical tool. Standard compression tests of

SFRC cylinders and pullout tension tests of SFRC specimens are conducted in order to obtain data

to derive average stress-strain relationships of SFRC in compression and tension, respectively.

Existing reinforcement buckling model (Dhakal and Maekawa 2002a,b) and cover concrete spalling

model (Dhakal and Maekawa 2002c) are amended for SFRC and the spalling and buckling criteria

are plugged in the constitutive equations of SFRC and reinforcing bars. In order to conduct cyclic

analyses, the monotonic constitutive equations of SFRC and reinforcing bars are combined with

corresponding unloading and reloading loops that are commonly used in cyclic models of normal

RC (Okamura and Maekawa 1991). These nonlinear cyclic material models are then installed in a

finite element analysis program which is used to perform fiber analyses of SFRC columns. 

2. Compression model for SFRC 

2.1 Compression tests

The range of volumetric fiber content used in SFRC is normally between 0 and 2.0%, and in most

cases SFRC contains steel fibers close to 1% by volume. In this study, steel fiber content is hence

adjusted to 1.0% by volume, which is believed to be the best representative value. Bridgestone steel

fibers with hooked ends are used in the tests discussed here. These fibers are 40 mm in length,

0.5 mm in diameter, and have an aspect ratio of 80. Other constituent materials include cement

(Ordinary Portland Cement with specific gravity 3.15), fine aggregate (sand with specific gravity

2.59, water absorption ratio 2.14 and uniformity coefficient 2.79) and coarse aggregate (gravel with

specific gravity 2.66 and maximum size 20 mm). Altogether, 10 cylinders with 100 mm diameter

and 200 mm height are prepared using the pre-specified materials so that the water to cement ratio

(W/C) is equal to 0.5 and 0.6 for two sets of 5 specimens. The average slump of the mix is 50 mm

for W/C = 0.5 and 54 mm for W/C = 0.6. All of these specimens are cured for 21 days; four

specimens in air (dry curing) and six specimens in water (wet curing). These specimens are

subjected to axial compression using a standard compression testing machine with a capacity of

1000 kN. To avoid friction, two layers of Teflon sheets sandwiched with silicon oil are used

between the loading plate and the specimen. The compression loading rate is adjusted to 0.4~0.5

MPa/sec. Three parallel strain gauges are attached to each specimen and the average of these three

gauge readings is used as the representative strain. The specimens are monotonically loaded in

compression until the peak strain is reached, after which few unloading/reloading cycles are

followed. 

The compressive stress-strain curves obtained from the cylinder compression tests are shown in

Fig. 1 and the compressive strength and the peak strain (i.e.; strain corresponding to the peak stress)

are listed in Table 1. As in normal concrete, the compressive strength of SFRC cylinders with

higher W/C ratio is less than that of the cylinders with lower W/C ratio. Moreover, the compressive

strength of dry-cured specimens is slightly lower than that of wet-cured specimens. In both dry-
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cured specimens, the peak strain of specimens with higher W/C ratio is higher than that of

specimens with lower W/C ratio. Similar trend is found in wet-cured specimens, although one wet-

cured specimen with W/C = 0.6 has a peak strain of 2827 με which is just below the highest peak

strain (i.e., 2840 με) observed in the three wet-cured specimens with W/C = 0.5.

2.2 EPF model for normal concrete 

For normal concrete, elasto-plastic and fracture (EPF) model (Maekawa and Okamura 1983) can

Table 1 Results of compression tests of SFRC cylinders

W/C = 0.5 W/C = 0.6

Comp. Strength 
(MPa)

Peak strain  
(με)

Comp. Strength 
(MPa)

Peak strain   
(με)

Dry curing
41.1 2743 30.1 2984

39.6 2961 29.1 3183

Wet curing

44.7 2840 33.9 3008

41.7 2628 34.0 2846

43.2 2729 34.0 2827

Fig. 1 Compressive stress-strain curves of SFRC cylinders
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accurately trace the stress-strain relationship during monotonic compression loading as well as

unloading from and reloading to compression. The basic concept of this model is illustrated in Fig. 2.

Concrete is modeled as a combination of some constituent elements parallel to each other. Each

element consists of an elastic spring and a plastic slider in a series. The plastic components

represent the plasticity related to the degree of accumulated damage and the number of broken

elastic springs represents the compressive fracture leading to a reduction of the unloading/reloading

stiffness. The overall nonlinearity of concrete in compression is represented by two parameters,

namely equivalent plastic strain Ep and the fracture/damage parameter K. Plastic strain is defined as

the strain remaining when the stress is unloaded to zero and the fracture parameter is defined as the

ratio of unloading/reloading stiffness to the initial stiffness. Both of these parameters depend on the

maximum compressive strain experienced by the concrete. 

In Fig. 2, the relationship between equivalent compressive stress and equivalent compressive

strain is also shown. For uniaxial loading, equivalent stress and equivalent strain are the absolute

stress and absolute strain normalized with respect to the compressive strength and the peak strain,

respectively. According to the EPF model, the relationship between the equivalent compressive

stress S and the equivalent compressive strain E is given by Eq. (1).

(1)

In Eq. (1), E0 is the equivalent initial elastic stiffness of concrete and its value is equal to 2. The

fracture parameter K and the equivalent plastic strain Ep for normal concrete are expressed as given

in Eq. (2) and Eq. (3) respectively. In Eq. (3), C is a constant that depends on the loading rate. For

normal loading rate, its value is experimentally determined to be equal to 20/7.

(2)

(3)

It is known that the addition of steel fibers affects the peak strain and, to a lesser extent, the

compressive strength (Kosaka et al. 1984, Someh and Saeki 1996). It is therefore meaningless to

compare the absolute values of stresses and strains in normal concrete and SFRC. Alternately, the

S E0K E Ep–( )=

K exp 0.73E 1 exp 1.25E–( )–( )–[ ]=

Ep E C 1 exp 0.35E–( )–[ ]–=

Fig. 2 Elasto-plastic and fracture (EPF) model (Maekawa and Okamura 1983)
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stresses and strains should be normalized with respect to the peak stress and peak strain respectively

and the normalized stress-strain plots should be compared to reach more rational conclusions as

such curves are independent of the peak stress and the peak strain. It may also be possible to

represent such normalized stress-strain plots by Eq. (1) of the EPF model. In Fig. 3, the stress-strain

curves obtained from the compression tests of SFRC cylinders are normalized with respect to the

compressive strength and the peak strain. In addition, similar curves produced for normal concrete

using Eqs. (1)-(3) are also plotted in Fig. 3. 

It can be observed from the plots that the EPF model for normal concrete can closely trace the

equivalent stress-strain behavior of SFRC in the pre-peak region. However, compressive stress in

the post-peak high strain range predicted by the EPF model for normal concrete is less than that

obtained from the SFRC cylinder tests. In addition, the unloading behavior predicted by the EPF

model for normal concrete is also different from that obtained from the compression tests of SFRC

cylinders, which exhibits significantly higher unloading/reloading stiffness.

2.3 Modified EPF model for SFRC

From the test data, the equivalent plastic strain Ep and the fracture parameter K for different level

of equivalent compressive strain are extracted. As the cylinders were subjected to a few cyclic strain

reversals in the post-peak range, the plotted equivalent stress-strain curves also include unloading

Fig. 3 Equivalent stress-strain curves for SFRC and comparison with the EPF model for normal concrete
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and reloading paths. Otherwise, it would not be possible to obtain Ep (equivalent strain remaining at

zero stress after unloading) and K (normalized average unloading/reloading stiffness). In Figs. 4(a)

and (b), the values of Ep and K obtained from the test results are compared with the corresponding

parameters calculated using Eqs. (2) and (3) of the original EPF model. The comparison reveals that

the equivalent plastic strain and the fracture parameter of SFRC are different from those of normal

concrete, especially in the high strain range. The equivalent plastic strain obtained from the SFRC

cylinder tests is slightly higher than that predicted by the original EPF model whereas the fracture

parameter of SFRC is significantly higher than that predicted by the EPF model for normal

concrete. The increase in the values of these parameters is attributable to the presence of steel

fibers, which help maintain the toughness even after the mechanical fractures such as cracking and

crushing occur. 

As Eq. (1) suggests, if the fracture parameter K is constant, an increase in the plastic strain

reduces the post-peak compressive stress. In contrast, an increase in the fracture parameter keeping

the plastic strain constant results in a higher post-peak compressive stress. Hence, the combination

of a small increase in plastic strain and a larger increase in fracture parameter obviously causes an

increase in the post-peak compressive stress. To correlate better with the test results, modified

equations for the equivalent plastic strain Ep and the fracture parameter K are proposed for SFRC:

(4)Ep E 1 exp E–( )–[ ]–=

Fig. 4 Modified EPF model and comparison with experimental curves
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(5)

Using these two modified equations for Ep and K, equivalent stress can now be calculated using

Eq. (1). Note that Eq. (1) does not need to be changed and can be readily applied for SFRC, but

with the modified values of Ep and K. Moreover, the initial equivalent stiffness E0 is found to be

equal to 2.18 from the test results. The comparative curves produced by Eqs. (1), (4) and (5) are

plotted with the test results in Fig. 4(c) and Fig. 4(d). The comparison between these modified

equations and the test results shows that the proposed model could accurately predict the

compressive stress even in the post-peak high-strain range and the unloading and reloading paths

could also be fairly captured. The increased post-peak compressive stress is also predicted by the

proposed model. Note that the aforementioned equations are derived from the test results of SFRC

cylinders with 1% fiber content and may not accurately represent the behavior of SFRC with

different fiber content. When the fiber content decreases, the peak strain and the post-peak

compression softening of SFRC become closer to those of normal concrete (Someh and Saeki

1996), and the fracture parameter and plastic strain should be changed accordingly to reflect this. 

3. Spatially averaged tension model for SFRC 

3.1 Tension softening/stiffening model for normal concrete

Axial tension causes discrete tensile cracks in reinforced concrete, and at the cracked section

concrete does not carry any normal stress. However, in between these cracks, concrete still carries

some tensile stress due to bond between the reinforcing bars and concrete. Hence, the average post-

cracking tensile stress carried by concrete between the cracks is not zero. According to the tension

softening/stiffening model illustrated in Fig. 5, the average tensile stress-strain relationship of

cracked concrete is expressed as shown in Eq. (6) (Okamura and Maekawa 1991).

(6)

Here, ft is the tensile strength of normal concrete and εcr is the cracking strain, assumed as two

times the elastic strain at tensile strength. Similarly, c is the tension stress release parameter that

K exp 0.45E 1 exp 1.25E–( )–( )–[ ] for E 4≤=

K 0.5E
0.8–

                             = for E 4>

σ ft
εcr

ε
------⎝ ⎠

⎛ ⎞
c

=

Fig. 5 Tensile stress-strain relationship of cracked concrete
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solely defines the post-cracking response. This parameter accounts for the bond between the

concrete and surrounding reinforcing bars, and hence depends on the amount of reinforcement. For

normal concrete with substantial reinforcement, c takes a smaller value resulting in a higher post-

cracking stress in concrete, and vice versa. For assigning representative values of c, RC zoning

method (An et al. 1997) is used; i.e., concrete is divided into two zones according to its distance

from the nearest reinforcing bar (see Fig. 5). Concrete far from reinforcement is defined as the PL

(plain concrete) zone and the RC (reinforced concrete) zone consists of the concrete within the

bond-effective region. In case of normal concrete without steel fibers, the value of tension stress

release parameter c takes a value of 0.4 for the RC zone and approximately 2 for the PL zone.

Using these values of c, Eq. (6) automatically switches to tension-stiffening model for reinforced

concrete and tension-softening model for plain concrete. 

3.2 Pullout tests and results

In order to establish the tensile stress-strain relationship of SFRC, axial pullout tests of SFRC

specimens are performed. Two test beams, one each with water cement ratio 0.5 and 0.6 are

prepared. As shown in Fig. 6, the specimen is of 100 mm square cross-section and its length is

1800 mm. A reinforcing bar of 13 mm diameter is included in the middle of the cross-section.

Using a standard tension test device, axial tension is applied to the reinforcing bar and the average

strain in the beam is measured. The relationships between the applied load and the average strain

for the two specimens are shown in Figs. 7(a) and (b), respectively. 

The tensile load versus strain relationship of the reinforcing bar is established through a separate

axial tension test of the D13 steel bar. The elastic modulus and yield strength of the reinforcing bar

are found to be 189 GPa and 329 MPa, respectively. The bare bar stress-strain curve is then

modified to account for the effect of bond between concrete and reinforcing steel. As the bond

behavior between SFRC and reinforcing bars is not quantified, the average stress-strain relationship

of reinforcing bars is derived by using a similar method commonly used for normal RC (Okamura

and Maekawa 1991). The modified average load versus strain curve for the reinforcing bar is also

shown in Figs. 7(a) and (b). The average load carried by the reinforcing bar is then deducted from

the total load carried by the SFRC beam to obtain the contribution of the cracked SFRC. As

expected, the test results show that SFRC carries significant tension in the post-cracking high-strain

range. 

Fig. 6 Specimen and setup for pullout test
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3.3 Modified tension model for SFRC

In order to determine the value of tension stress release parameter c for SFRC, Eq. (6) is

calibrated against the tensile stress-strain curve of SFRC. First, the load carried by the cracked

SFRC is divided by the cross section area to obtain the tensile stress, which is then normalized with

respect to its maximum value (i.e.; tensile strength of SFRC). The normalized average tensile stress

versus absolute strain curves are plotted in Figs. 7(c) and (d). These plots also include similar

curves predicted by using two different values of tensile stress release parameter in Eq. (6); (i) c = 0.4

as in normal RC, and (ii) c = 1.5 proposed for SFRC. The tensile stress-strain curves plotted from

the test data in both cases are close to the curves predicted using c = 0.15. As the SFRC in the

cross-section is in the bond-effective RC zone, c = 0.15 is hence assigned for the RC zone inside

SFRC members. Note that this value of c is derived from the test results with 1% fiber content and

it may change depending on the amount of fibers. If the fiber content is 0%; i.e., normal concrete, c

must equal 0.4. Furthermore, if the fiber content increases, the post-cracking tensile stress also

increases and the value of c must decrease to reflect this. The value of c for the unbonded PL zone

in SFRC with 0% steel fibers (i.e., normal concrete) is obviously equal to 2, and for a high fiber

content, the bond between concrete and steel fibers render SFRC equivalent to the bond-effective

zone of normal concrete and the value of c must be close to 0.4. As the relationship between the

Fig. 7 Pullout test results and modeling of tensile behavior of SFRC
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fiber content Vf and tension stress release factor c has not yet been established, it is assumed that c

for unreinforced SFRC with 1% fibers is 0.4; i.e., the same as that for the RC zone of normal

concrete. Hence, c equal to 0.15 (RC zone) and 0.4 (PL zone) is used in the forthcoming fiber

analysis of SFRC columns. 

4. Reinforcement buckling and cover spalling in SFRC

4.1 Cyclic stress-strain relationships of reinforcing bars including buckling

Cyclic stress-strain relationships of reinforcing bars have been established, verified and

incorporated into a finite-element based fiber analysis tool (Dhakal and Maekawa 2002b). These

constitutive equations are fully path-dependent and take into account the effect of buckling of

reinforcing bars in compression. The compressive stress carried by a bar decreases due to buckling.

The average compressive stress versus average compressive strain relationship of a bare bar is

schematically illustrated in Fig. 8 (Dhakal and Maekawa 2002a). As can be seen in the figure, the

average compressive stress for a given strain is less than the local/tensile stress corresponding to the

same strain. The average compressive stress-strain curve is linear until yielding, after which the

ratio of the average compressive stress to the tensile/local stress decreases linearly until a pre-

determined intermediate point. After this point the average compression envelope follows a linear

softening path with a softening modulus of 0.02Es (2% of the Young’s modulus) until a strain where

the average stress equals 0.2fy (20% of the yield strength), beyond which the average compressive

stress is kept constant at 0.2fy. Note that the compression envelope is completely described by the

coordinates (εi, σi) of the intermediate point, which depend solely on the buckling parameter λb.

The buckling parameter is defined as the product of slenderness ratio and the square root of the

yield strength; i.e., λb=L/db × , where L is the buckling length and db is the diameter of the

compressed bar. Cyclic stress-strain relationship of a bare-bar is obtained by combining this

monotonic compression envelope with the standard tension envelope and unloading/reloading loops

described by the Giuffre-Menegotto-Pinto model (CEB 1996). 

fy

Fig. 8 Bare-bar buckling model (Dhakal and Maekawa 2002a)
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4.2 Buckling length of reinforcing bars in SFRC

As the diameter db and the yield strength fy of a bar are its inherent properties and cannot be

changed, the only constituent of the buckling parameter λb that affects the average compressive

stress-strain relationship of a given bar is L; i.e., the buckling length. Hence, an accurate and

reliable method to predict the buckling length of main bars is needed to complement the

aforementioned constitutive model. The buckling of main bars inside normal RC members may be

restricted within two consecutive ties or may span several tie-spacing depending on the geometrical

and mechanical properties of the main bars and the lateral ties (Dhakal and Maekawa 2002c). In

reinforced SFRC members, the quantity of steel fibers also contribute in reducing the potential

buckling length of the main bars. An existing method to determine the buckling length of main bars

inside normal RC members (Dhakal and Maekawa 2002c) will be modified in this study to extend

its application to SFRC. 

In this method, the effective anti-buckling stiffness of a system of lateral ties is calculated as

shown in Eq. (7), where nl is the number of tie-legs along the buckling direction and nb is the

number of main bars lying in the extreme layer that are likely to buckle simultaneously. In Eq. (7),

Et, At and lt are respectively the elastic modulus, cross-sectional area and the effective length of the

ties’ side-legs that are pulled in tension when the compressed main bars buckle. 

(7)

Similarly, the lateral stiffness at the position of the ties required to hold the compressed main bars

in various buckling modes (ratio of the buckling length L to the tie-spacing s) is derived based on

energy principle taking into account the interaction between the lateral ties and main bars. The

normalized dimensionless values of the required lateral stiffness Keq for the first eight buckling

modes are shown in Table 2 (Dhakal and Maekawa 2002c). The absolute value of the required

lateral stiffness corresponding to a buckling mode is to be calculated as shown in Eq. (8), where EI

is the compressed main bar’s average flexural rigidity estimated as suggested in Eq. (8), Es is the

Young’s modulus, and I is the moment of inertia of the main bar.

(8)

Comparing the effective anti-buckling tie stiffness Kt with the required lateral stiffness Kn, the

stable buckling mode can be determined, which is the lowest mode for which Kn is less than Kt.

Buckling length is then calculated by multiplying the buckling mode with the tie-spacing. The same

method can be used to determine the buckling length of main bars in SFRC members with lateral

ties, but the additional anti-buckling stiffness provided by the still fibers should be added to the tie

stiffness Kt before comparing with the required stiffness Kn. In order to quantify the anti-buckling

stiffness of the steel fibers, the continuum of steel fibers is replaced by discrete elastic springs at the

two extremes of the buckling length (see Fig. 9). As shown in Fig. 9, one discrete spring acting

Kt

Et At

lt
-----------

nl

nb

-----×=

Kn Keq
π

4
EI

s
3

-----------×= EI
EsI

2
-------

fy

400
---------=

Table 2 Required lateral stiffness for different buckling modes (Dhakal and Maekawa 2002c)

Mode, n 1 2 3 4 5 6 7 8

κeq 0.7500 0.1649 0.0976 0.0448 0.0084 0.0063 0.0037 0.0031
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against the buckling of one main bar represents the steel fibers inside an area (L × b/nb), where L is

the buckling length, b is the section width, and nb is the number of main bars in the extreme layer.

As this buckling configuration corresponds to the first buckling mode, the value of the required

equivalent stiffness can be borrowed from Table 2 (i.e., Keq = 0.75). Hence, if the contribution of

the ties is not taken (or if the ties are not provided), the steel fibers must provide a lateral stiffness

Kfreq to be calculated as in Eq. (9). 

(9)

The amount of steel fibers in SFRC is quantified by its volumetric ratio Vf. The fibers are

randomly aligned along all possible directions in a three-dimensional space, but the anti-buckling

stiffness is contributed only by the axial stiffness of fibers aligned along the buckling direction or

the component of other fibers’ stiffness along the buckling direction. Assuming homogeneous

distribution and orientation of fibers, equivalent volumetric fraction of fibers aligned in one specific

direction is equal to Vf /3 and the corresponding area ratio perpendicular to any plane becomes

(Vf /3)2/3. The equivalent area of steel fibers represented by a spring is hence equal to (Lb/

nb) × (Vf /3)2/3. If the length and elastic modulus of the fibers are denoted respectively by lf and Ef,

the axial stiffness of one representative spring can be calculated as in Eq. (10).

(10)

Comparing Eq. (9) and Eq. (10), the buckling length L can be calculated as

(11)

The buckling length calculated by Eq. (11) can be applied without any modification to SFRC

members without lateral ties. If lateral ties are provided, the calculated buckling length L should be

compared with the tie-spacing s. In some cases L might turn out to be less than s, which means that

the ties are not activated and the buckling length is controlled by the steel fibers only. On the other

hand, if the tie-spacing s is less than the buckling length L calculated by Eq. (11), the lateral ties

will be pulled when the main bars buckle and the tie stiffness must be included before deciding the

buckling length. The anti-buckling stiffness of such SFRC members KSFRC is contributed by the

lateral ties and the steel fibers and can be calculated as 

Kfreq
3π

4
EI

4L
3

---------------=

Kf

Ef

lf
----L

b

nb

-----
Vf

3
----⎝ ⎠

⎛ ⎞
2/3

=

L 3.51
EI lf× nb×

Ef b× V f

2/3×
-----------------------------⎝ ⎠

⎛ ⎞ 1/4

×=

Fig. 9 Determination of buckling length in SFRC
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(12)

In order to determine the stable buckling mode and the corresponding buckling length of main

bars in SFRC members, the total anti-buckling stiffness KSFRC calculated from Eq. (12) should be

compared with the required lateral stiffness Kn calculated from Eq. (8) and Table 2. Note that L in

the right hand side of Eq. (12) is to be substituted by the product of the tie-spacing s and the

buckling mode being checked against. Thus determined value of the buckling length can be used to

generate the average compressive stress-strain relationship of main bars to be used in the fiber

analysis of SFRC structures. As expected, if the fiber content is zero Eq. (12) proposed for SFRC

coincides with Eq. (7) aimed for normal RC, indicating that this method may be applicable for any

combination fiber content and lateral ties. 

4.3 Spalling of cover concrete in SFRC

When RC members are subjected to flexure, the cover concrete in the compression side of plastic

hinges disintegrates and looses further load-carrying capacity; a phenomenon known as spalling. In

SFRC members, although splitting cracks may be formed, cover spalling is delayed due to the

presence of fibers which bridge these cracks and maintain the integrity. For analytical modeling, it

is important to know when the cover concrete spalls so that the compressive stress otherwise

assigned to the cover concrete fibers by the EPF model could be adjusted to zero. The compressive

strain of main bars required to cause spalling of adjacent cover concrete in normal RC members has

been quantified (Dhakal and Maekawa 2002c). In this study, the same method is extended to predict

the spalling strain in SFRC members. 

For complete cover spalling, wide splitting cracks unable to carry normal stress must be formed

between the cover concrete and core concrete; i.e., next to the compression bars. The splitting

cracks initiate due to the axial compressive strain in the cover concrete and these cracks are further

widened by the lateral deformation of the compressed main bars. After subtracting the equivalent

crack width due to the axial compression from the crack width corresponding to zero tensile stress,

the lateral deformation of the compressed bars and the corresponding average compressive strain

required to completely spall the surrounding cover concrete is calculated. According to the spalling

model (Dhakal and Maekawa 2002c), the plastic compressive strain εp
sp in the main bars required to

cause complete spalling of surrounding cover concrete can be estimated as

(13)

In Eq. (13), K, ft and GF are the fracture parameter, tensile strength and the fracture energy of the

concrete, respectively. The total compressive strain in the main bars corresponding to the complete

spalling of surrounding cover concrete is obtained as the sum of the elastic component; i.e., the

yield strain, and the plastic strain εp
sp calculated from Eq. (13). Once the compressive strain in

nearby main bars equals this value, the compressive stress carried by cover concrete is reduced to

zero. In this study, Eq. (13) is applied without any modification to establish the spalling criteria in

SFRC members. However, the values of the parameters in the right hand side of this equation must

correspond to those of SFRC. 

The fracture parameter K for SFRC should be calculated using Eq. (5), and the buckling length L

KSFRC Kt Kf

Et At

lt
-----------

nl

nb

-----×
Ef

lf
----L

b

nb

-----
Vf

3
----⎝ ⎠

⎛ ⎞
2/3

+=+=

εp
sp π

2

4L
2

--------
4 K+( ) GF×

ft
-------------------------------⎝ ⎠

⎛ ⎞
2

×=
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should be determined as explained in the previous chapter. Obviously, the value of K is slightly

higher and that of L is either equal to or smaller in SFRC than in normal concrete. The tensile

strength ft of normal concrete can be used for SFRC as the presence of fibers improves the post-

cracking tensile performance but is believed to have little influence on the tensile strength itself

(Matsuoka et al. 1997). The other parameter in Eq. (13) is the fracture energy GF, which differs the

most between normal concrete and SFRC and hence influences the final outcome more than the

others do. Fracture energy GF is defined as the energy required to form a crack of unit area that

cannot transfer tensile stress anymore, and its value is believed to be larger for SFRC than for

normal concrete owing to the bridging action of the steel fibers. It is experimentally found that the

fracture energy of SFRC ranges between 0.6-5 N/mm depending on the fiber content (Matsuoka

et al. 1997), which is much higher than that of normal concrete (around 0.1 N/mm). This drastic

increase in the value of GF combined with a larger K and smaller L will lead to a substantially high

value of the plastic spalling strain εp
sp in SFRC members than in RC members, rightly predicting

that the cover spalling is significantly delayed in SFRC.

4.4 Effect of fiber content on spalling and buckling in SFRC

For qualitative verification of the proposed spalling and buckling models, the effect of fiber

content on the buckling length and the resulting spalling strain and average compressive stress-strain

relationship of reinforcing bars is investigated. As shown in Fig. 10, a 200 mm square column

Fig. 10 Effect of fiber content on spalling and buckling in SFRC members
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reinforced with three 16 mm diameter bars in each side and 6 mm diameter two-legged ties spaced

at 150 mm is adopted. The volumetric ratio of steel fibers is varied from 0% to 2%, and the length

lf and modulus Ef of the fibers are assumed to be 40 mm and 200 GPa, respectively. Note that the

objective is to see if the interrelationship between the fiber content and the spalling/buckling

mechanisms in the proposed models is sensible, and the member on which the parametric study is

performed need not satisfy any design guidelines. Hence, the geometrical and mechanical properties

of the cross-section are chosen arbitrarily. 

The variation of buckling length with respect to the fiber content and the corresponding average

compressive stress-strain curves are also plotted in Fig. 10. If no fibers are used, the main bars

buckle in the first mode; i.e., L = s = 150 mm. When the steel fibers are added, the buckling length

L calculated using Eq. (11) turns out to be smaller than the tie-spacing. The buckling length is

found to decrease exponentially with an increase in fiber content. Consequently, as the fiber content

increases the effect of reinforcement buckling in the compression response gradually diminishes and

the average compressive stress-strain envelope moves closer to the tension envelope. These findings

qualitatively agree with the experimental fact that the reinforcement buckling in SFRC flexural

columns is significantly retarded compared to that in normal RC columns (Masuda et al. 1997).

In order to calculate the spalling strain, the following values are assumed: K = 0.25; ft = 2 MPa.

The values of fracture energy GF of concrete without steel fibers and with 1% steel fiber are fairly

assumed to be equal to 0.1 N/mm and 2.0 N/mm, respectively (Matsuoka et al. 1997). With no steel

fiber, the buckling length is equal to the tie-spacing, i.e., 150 mm. The corresponding plastic spalling

strain εp
sp calculated by Eq. (13) is 5 με, indicating that cover spalling takes place just after the main

bars are subjected to yielding strain in compression. However, for SFRC with 1% fiber content, the

buckling length calculated using Eq. (11) is approximately equal to 75 mm. This reduced value of L

combined with a significantly large fracture energy GF leads to a very high value of the plastic

spalling strain εp
sp (7923 με). Thus, the delay of cover spalling in SFRC can be captured by Eq. (13).

5. Application of proposed models

5.1 Finite-element based fiber analysis

Next, fiber analyses using a finite-element analysis tool COM3 (Concrete Model in 3D)

(Maekawa 2000) are performed to predict cyclic behavior of SFRC columns. In COM3, beams and

columns are represented by frame elements, which are analyzed by fiber technique (Menegotto and

Pinto 1973). In fiber technique, each element is represented using a single line and the member

cross-section is divided into many cells or sub-elements. The strain of each cell is calculated based

on the Euler-Kirchoff’s hypothesis, i.e., plane section remains plane after bending. For each fiber

strain along the axis of finite element, stress is calculated using the material constitutive models

(i.e., stress-strain relationships) representing the average behavior in the finite-element domain. The

proposed monotonic envelopes for SFRC and reinforcing bars are summarized in Fig. 11. The

tension and compression envelopes of reinforcing bars are combined with unloading/reloading rules

(Dhakal and Maekawa 2002b) to form a path-dependent cyclic model. As reliable cyclic models for

SFRC are not yet available the path-dependent unloading and reloading loops used for normal

concrete (Okamura and Maekawa 1991) are combined with the SFRC monotonic envelopes to form

a cyclic model.
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In fiber technique, the stress field is reduced to one dimension along the axis of finite element or

members. The shear force is computed so that it is in equilibrium with the flexural moment field.

The in-plane shear deformation is considered based on Timoshenko’s beam theory, i.e., linear in-

plane shear behavior is assumed. As inelastic shear deformation is ignored, shear failure will not be

captured. Conclusively, this fiber analysis tool is suitable for structures whose shear strength is high

enough to ensure that flexural failure occurs before the shear response enters the inelastic range.

5.2 Cyclic behavior of SFRC columns

The experimental results of Masuda et al. (1997) are adopted for assessing the applicability of the

proposed models and the established tool. These experiments were conducted to study the failure

modes of SFRC columns. It was found that the presence of steel fibers enhances the shear

performance. Most of the tested SFRC columns failed in flexure although the calculated shear

capacity for similar normal RC columns was considerably smaller than their flexural capacity, and

similar columns without steel fibers failed in shear. Two columns, the responses of which were least

affected by shear deformation, are chosen for comparison with analytical results. The details of the

test specimens are shown in Fig. 12. As shown in the figure, both SFRC columns have 1% steel

Fig. 12 Specimen details and experimental setup (Masuda et al. 1997)

Fig. 11 Constitutive models for fiber analysis of SFRC members
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fibers by volume, and these columns are subjected to reversed cyclic lateral displacement under a

constant axial compressive stress of 1 MPa.

The experimental results and observed crack pattern of these two columns are illustrated in Fig. 13.

As can be seen in the figures, significant deterioration at the base occurred in column A. Although

splitting cracks formed, the steel fibers bridged these cracks and maintained the integrity. Hence, the

cover concrete did not detach completely and reinforcement buckling was not noticed. In column A,

diagonal shear cracks appeared and these cracks widened during the later part of the loading,

indicating that the column must have gone through significant inelastic shear deformation in the

later phase. It might be the cause of the reduction in lateral load in the post-peak region and also

the pinching mechanism observed in the load-displacement curve. In column B, the diagonal cracks

did not widen, signifying that the associated shear deformation was elastic. Consequently, the

pinching in the hysteresis loop is also not severe and the post-peak envelope does not show any

load degradation. In column B, splitting cracks did not form, and cover concrete spalling as well as

reinforcement buckling did not occur.

Both of these columns are modeled with frame elements and fiber analyses are performed twice;

once using the normal RC material models and again using the proposed SFRC material models.

The analytical load-displacement results are presented in Fig. 14. As the tested columns had 1%

fiber content, the use of the SFRC models derived from the tests of specimens with 1% fibers is

justified. In both sets of analyses, columns A and B yield at about 4 mm and 8 mm, respectively.

Looking at the experimental hysteresis curves, it can be said that these values are close to the

Fig. 13 Load-displacement curves and crack patterns observed in experiments (Masuda et al. 1997)
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yielding displacements observed in the tests. The analyses with normal RC models predict that the

columns A and B would collapse after the 30 mm and 50 mm displacement cycles respectively (i.e.,

ductility of 6~7), whereas in the tests these columns survived 50 mm  and 100 mm displacement

cycles respectively (i.e., ductility~12). In the analyses with normal RC models, spalling and

buckling occur early in the post-peak range resulting in a premature failure. Obviously, the

analytical load-displacement plots obtained by using the normal RC models are far from the

corresponding experimental curves. 

On the other hand, the analytical results obtained by using the proposed SFRC models show

better agreement with the experimental results. The ability of both specimens to withstand the

applied cyclic displacements is clearly reflected in the analytical results. More importantly, agreeing

with the experimental observations, neither cover concrete did spall nor did the reinforcement

buckling occur in the analysis. The maximum load, ability of the specimens to sustain higher

ductility (more than 12) without collapse as well as the delay of spalling and buckling mechanisms

could also be fairly predicted by the proposed SFRC models. Nevertheless, the analytical curves

show less pinching than the experimental loops, mainly because the pinching is a prominent feature

of inelastic cyclic shear response which is overlooked in the analyses. The restoring force starts

reducing after 40 mm amplitude displacement cycles in column A test results, and this load

degradation does not appear in the analytical result. The load degradation is attributed to the

widening diagonal shear crack which is clearly visible (see Fig. 13), and the analysis was obviously

not capable of capturing this. For more accurate prediction of the response of such shear-prone

columns, cyclic shear behavior should be modeled and included in the constitutive relationship. 

Fig. 14 Load-displacement relationships (analyses with normal RC & proposed SFRC models)
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6. Conclusions

The EPF model and the tension softening/stiffening model, initially developed to represent

compression and tension behaviors of normal concrete, are modified based on the results of

standard SFRC cylinder compression tests and axial pullout tests of SFRC specimens. Thus

obtained compression and tension envelopes of SFRC are combined with unloading and reloading

loops typical of normal concrete to form a cyclic path-dependent uniaxial fiber model for SFRC. A

model to predict the buckling length of main bars in SFRC members is also proposed. Thus

determined buckling length and fracture energy of SFRC are used in an existing cover concrete

spalling model to calculate the compressive strain corresponding to cover spalling in SFRC. To

simulate cover concrete spalling, the compressive stress carried by the cover SFRC fibers is released

once the spalling strain is reached. The proposed buckling length determination method also enables

the effect of bar buckling in SFRC members to be included in an existing cyclic stress-strain

relationship of main bars. Thus derived cyclic path-dependent material models of SFRC and

reinforcing bars are encoded in a finite-element based fiber analysis tool which is used to perform

cyclic analyses of SFRC columns. 

The correlation between experimental and analytical results is found to improve drastically by

using the proposed SFRC models instead of the normal RC models. In general, flexural response of

SFRC columns could be predicted fairly by the proposed models. Agreeing with the actual

behavior, the cover spalling and reinforcement buckling did not occur even in high deformation

stage. The increase in ductility of SFRC columns compared to similar normal RC columns could

also be predicted. Thus, a platform to enable analytical investigation of performance of SFRC

structures is established through this research, but there are rooms for improvement. Modeling of

cyclic shear behavior of SFRC and incorporating the generalized shear model in the frame analysis

program needs to be done. The compression and tension envelopes of SFRC model are empirically

derived based on the test results of SFRC with 1% fiber and the fiber content Vf is not explicitly

used in the corresponding equations. The behavior of SFRC with different amount of fibers is

expected to be different and these models need to be generalized for wider applicability.
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