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An analytical model of layered continuous beams 
with partial interaction 
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Abstract. Starting with the geometrically non-linear formulation and the subsequent linearization, this
paper presents a consistent formulation of the exact mechanical analysis of geometrically and materially
linear three-layer continuous planar beams. Each layer of the beam is described by the geometrically
linear beam theory. Constitutive laws of layer materials and relationships between interlayer slips and
shear stresses at the interface are assumed to be linear elastic. The formulation is first applied in the
analysis of a three-layer simply supported beam. The results are compared to those of Goodman and
Popov (1968) and to those obtained from the formulation of the European code for timber structures,
Eurocode 5 (1993). Comparisons show that the present and the Goodman and Popov (1968) results agree
completely, while the Eurocode 5 (1993) results differ to a certain degree. Next, the analytical solution is
used in formulating a general procedure for the analysis of layered continuous beams. The applications
show the qualitative and quantitative effects of the layer and the interlayer slip stiffnesses on internal
forces, stresses and deflections of composite continuous beams. 
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1. Introduction 

Due to their cost-effective construction and a good bearing capacity, layered composite systems

are widely used in buildings and bridges. The behaviour of layered structures largely depends on the

flexibility of a connection between the layers. Rigid connectors develop a full action between

individual components, so that conventional principles of the solid beam analysis can be employed.

Flexible connectors, on the other hand, permit the development of only partial interaction. As a

result, an interlayer slip develops, with a sufficient magnitude to have a major effect on the

deflection and stress distribution of the composite system. 

When the force-slip relation of the connector is non-linear, which is usually the case, the response

of the layered beam is also non-linear, even if component materials behave linearly. Consequently,

the related non-linear mathematical model is described by the system of non-linear equations which
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can generally be solved only numerically. A variety of interesting formulations and numerical

solution algorithms for the analysis of layered structures with continuous or discrete connectors has

been proposed, e.g., Ayoub (2001), Ayoub and Filippou (2000), as et al. (2004a,b), Dall’Asta and

Zona (2002), Fabbrocino et al. (2000), Faella et al. (2003), Fragiacomo et al. (2004), Gatessco

(1999), Linden (1999), Oven et al. (1997), Thompson et al. (1975), Wheat and Calixto (1994),

which consider, along with the non-linear tangential force-slip relation, also the non-linearity of

material behaviour. 

The building codes allow a structural engineer to perform a fully linear analysis for the

determination of stress resultants. In a linear analysis, the governing equations of the mathematical

model are linear and can be solved analytically. Many exact analytical solutions of simply

supported, layered planar beams for combinations of simple loading cases and simple boundary

conditions have been presented in professional literature, e.g., Adekola (1968), Cosenza and Pecce

(2001), Fabbrocino et al. (2002), Girhammar and Gopu (1993), Girhammar and Pan (1993),

Goodman and Popov (1968), Goodman and Popov (1969), Heinisuo (1988), Jasim (1997), Jasim

and Mohamad (1997), Jasim (1999), Kristek and Studnicka (1982), Newmark et al. (1951), Nie et al.

(2004), Ranzi and Bradford (2003), Silfwerbrand (1997), Smith and Teng (2001), Wang (1998).

Some analytical solutions of two-layer continuous beams have also been presented (Jasim 1997,

Plum and Horne 1975). Apart from the above presented numerical and analytical solutions a lot of

experiments have been conducted on simply supported and continuous two-layer composite beams,

e.g., Ansourian (1981), Newmark et al. (1951), Plum and Horne (1975), Wheat and Calixto (1994).

On the other hand, there exist only few reports about experiments on simply supported three-layer

composite beams (Goodman and Popov 1968, McCutheon 1986). To the author’s best knowledge,

there seems to be no exact solution reported on multilayered (three layers or more) simply

supported and continuous beams having different material and geometric characteristics of layers.

The present paper aims to fill the gap. Our formulation of the planar layered beam uses the

following assumptions: (1) material is linear elastic; (2) displacements, strains and rotations are

small; (3) shear deformations are disregarded (the ‘Euler-Bernoulli beam’); (4) strains vary linearly

over each layer (the ‘Bernoulli hypothesis’); (5) the layers are continuously connected and the slip

modulus of the connection is constant; (6) friction between the layers is not considered; (7) the

bending strain is the same for all layers; (8) the number of layers is arbitrary; (9) the shapes of the

cross-sections are symmetrical with respect to the deformation plane and preserve unchanged form

and size during deformation. 

For the purpose of clarity of presentation, our derivation is limited to the three-layer beam. The

generalization to the multilayered beams is straightforward. 

2. Basic non-linear equations of a three-layer beam and their linearization 

Due to the exact geometrical introduction of interlayer slips between the layers, we started the

derivation of our formulation with the non-linear kinematic and equilibrium equations first presented

by Reissner (1972). After the linearization of Reissner’s equations and taking into consideration the

introduced assumptions, the simplified linear formulation of the three-layer beam with an interlayer

slip is derived. Alternatively, the same linearized equilibrium equations can be obtained, if the linear

kinematic equations are introduced in the principal of virtual displacements as constraining

equations. However, in order to understand the actual kinematics, we belive it is important to start
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the derivation from the exact formulation. The present formulation assumes that the effect of shear

strains is negligible. Our further assumption is that an interlayer tangential slip can occur at the

interface between the layers, but no delamination or transverse separation between them is possible. 

The mechanical behaviour of the composite beam is governed by the system of kinematic,

equilibrium, and constitutive equations, combined with natural and essential boundary conditions for

each layer, and with the constraining conditions for the contact between the layers. 

2.1 Kinematic, equilibrium and constitutive equations 

2.1.1 Kinematic equations 

We consider an initially straight, planar, layered beam element of undeformed length L. Without a

loss of generality, we assume that the layered beam element is made up of three layers. Layers are

marked by letters a, b and c (see Fig. 1). The beam element is placed in the (x, z)-plane of a spatial

Cartesian coordinate system with coordinates (x, y, z) and unit base vectors Ex, Ey, Ez. The

undeformed reference axis of the layered beam element is common to all layers and is assumed to

coincide with the geometric centroidal axis of the undeformed layered beam element. The layered

beam element is subjected to conservative distributed loads px, pz and my only along the span of

layer c, and to generalized forces Si
a, Si

b and Si
c (i =1, 2, ..., 6) at the ends of layers a, b and c. 

The deformed configurations of layers a, b and c are defined by vector-valued functions 

Ra(x, z) = (x + ua(x) + zϕa(x))Ex + (z + wa(x))Ez

Rb(x*, z) = (x* + ub(x*) + zϕb(x*))Ex + (z + wb(x*))Ez (1)

R
c(x**, z) = (x** + uc(x**) + zϕc(x**))Ex + (z + wc(x**))Ez

In Eqs. (1) and in all further expressions, the notations (•)a, (•)b and (•)c mark that quanatities (•) are

related to layer a, b or c. Functions ua, wa, ϕa denote the components of the displacement vector and

the rotation angle of layer a at the reference axis with respect to the base vectors Ex, Ez and Ey,

respectively. Variables ub, wb, ϕb, uc, wc, ϕc are related to layers b and c. 

Fig. 1 Undeformed and deformed configuration of the three-layer beam
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If the effect of shear strains is neglected, Reissner’s equations read (Reissner 1972) 

(2)

In Eqs. (2) the prime ( ' ) denotes the derivative with respect to x, whereas the functions ε, ϕ and κ

mark the extensional strain (or the specific elongation), the rotation and the bending strain of the

reference axis, respectively. 

The linearized kinematic equations are obtained by the linearization of Eqs. (2) around the

undeformed configuration for each layer. After the linearization has been completed, we obtain 

  

(3)

Here,  are the variations of the independent variables. As the independent

variables [ua', ε a, ..., κc] are zero in the undeformed configuration, we can without any loss of

clarity of the presentation change the notations and drop the variation sign ‘δ ’. Eqs. (3) will then

assume the form 

  

(4)

ua, ub, uc, wa, wb, wc, ε a, ε b, ε c, κ a, κ b, κ c, ϕa, ϕb, ϕc now play the role of displacements, strains

and rotations of the linearized theory. These variables are assumed to be small. 

The geometric or total extensional strains, Da, Db and Dc, of an arbitrary fibre in layers a, b and c

are functions of extensional strains ε a, ε b and ε c and bending strains κ a, κ b and κ c of the reference

axes of the layers. According to Bernoulli’s hypothesis, they are linear functions of z 

(5)

The substitution of  with ua, ub, uc using Eqs. (4) gives 
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2.1.2 Equilibrium equations 

When in equilibrium, the axial force N, the shear force Q , the bending moment M, and the

distributed loads px, pz and my , must satisfy the equilibrium equations (Reissner 1972) 

N ' + px = 0 

Q'  + pz = 0 (7)

M' − (1 + ε)Q�+ my = 0

Once the equilibrium equations have been written for all three layers and linearized, they read 

(8)

Here  and  represent the tangential and normal interlayer contact tractions. The

distances from the reference axis to the contact planes between the layers are denoted by e1 and e2

(Fig. 1). 

2.1.3 Constitutive equations 

The third set of the basic equations is provided by the constitutive law. The constitutive law

relates the stress resultants, i.e., the generalized forces  to the

equilibrium internal forces, , which are the solutions of Eqs. (8). These

relations assume the form 

(9)

We postulate that layer material is linear elastic. Therefore, Eqs. (9) are assumed to be given by the

linear relations with respect to ε and κ: 

(10)

in which material and geometrical constants are marked by ; e.g., ,

where Ea is elastic modulus of layer a, and Ja is the moment of inertia of layer a with respect to the

geometric centroidal point of the whole cross-section. 
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2.2 Constraining equations 

The constraining equations define the conditions that assemble an individual layer into a layered

composite beam. 

As already stated, the transverse separation or penetration between the layers is not allowed. This

fact is expressed by the requirements 

(11)

where  are undeformed coordinates of two distinct particles of layers a and b which

are in the deformed state in contact, and thus their vector-valued functions R
a(x, z) and R

b(x*, z)

coincide. Similarly,  is a material, undeformed coordinate of particle of layer c, which is in

the deformed state in contact with particle of layer b, and therefore their vector-valued functions

Rb(x*, z) and Rc(x**, z) in the deformed state coincide (see Fig. 1). The contact regions of layers a,

b and c are marked by I
a, I

b, I
c. Eqs. (11) are rewritten in a more convenient component form: 

(12)

The relative tangential displacement (slip) that occurs between the two particles which coincide in

the undeformed configuration is denoted by Δ. By definition, it is the difference of the deformed

arc-lengths of contact curves of layers a and b, and b and c. For a geometrically linear layered

beam theory, the arc-length differences can easily be calculated and are simply given by 

(13)

U a, U b, U c denote displacements of a particular material particle of the related layer at the

interlayer contact. 

In general, the flexibility of the contact highly depends on the characteristics of layer materials

and on the way the contact is enforced. The constitutive law of the bond slip between the layers

generally assumes the form 

(14)
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assume the linear relationships between pt and Δ, see Eqs. (30), as it is generally proposed by

structural engineering standards (e.g., Eurocode 5(1993)). In this case the analytical solution of the

problem can be derived. On the other hand, if the problem is solved numerically, a general non-

linear relationship in Eqs. (14) can be assumed. 
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2.3 System of equations of a three-layer beam with an interlayer slip 

Since deformations, displacements and rotations are assumed to be small quantities, the

generalized equilibrium equations can further be simplified using the following two assumptions

(see, e.g., as et al. 2004b): (i) ; (ii) bending strains of the reference axis of

individual layers are equal . Consequently, 

, , . Thus, (•)b(x*) = (•)b(x),

(•)c(x**) = (•)c(x) holds true for any quantity of layers b and c, e.g., uc(x**) = uc(x). Kinematic,

equilibrium and constraining equations can now be considerably simplified. After considering the

assumptions mentioned above, we can decompose the basic equations of the three-layer beam with

an interlayer slip into two separate systems of differential and algebraic equations (see, e.g., as

et al. 2004b): 
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(30)

and

(31)

(32)

(33)
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c. In Eqs. (30), Kab and Kbc denote

the slip moduli of connections. 

3. Solution algorithm 

If the slips between the layers are known functions of x, the solution of the system of Eqs. (15)-

(37) can easily be obtained with the following sequence of tasks. 

In the first step, we integrate Eqs. (23) and (24) and obtain the expressions for the total

equilibrium shear force and the total equilibrium bending moment of the three-layer beam element: 
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x. Solving the differentiated Eqs. (25)–(28) for εa', εb', ε c'  and κ ' yields 

(40)

 

C is the matrix of constitutive constants (see Eqs. (10)), and C−1 is its inverse: 

(41)

When Eqs. (20)-(24), (30) and (40) are inserted into Eqs. (39), we obtain a system of two second-

order linear differential equations with constant coefficients for the slips between layers a, b and c
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x = 0 and x = L of the beam element. An exact solution of Eqs. (42) was obtained by
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The interlayer tractions in the normal direction of the contact are obtained from equations 

(46)

which are derived if we insert Eqs. (33) into Eqs. (34). 

4. Numerical examples 

Numerical examples will demonstrate the ability of the present exact analytical model for the

stress-strain analysis of the three-layer simply supported and continuous beams with partial

interaction between the layers the geometric and material characteristics of which may vary over the

cross-section. They will describe accurately the behaviour of layered beams at small elastic strains

and will also provide for the referential, or bench-mark solutions suitable for assessing the accuracy

of new finite element formulations. We consider two cases: (i) a simply supported three-layer beam;

and (ii) a continuous three-layer beam over two spans. 

4.1 A simply supported three-layer beam 

The geometrically and materially linear models of two-layer beams are often encountered in

literature (see, e.g., Adekola 1968, Cosenza and Peece 2001, as et al. 2004b, Girhammar and

Gopu 1993, Girhammar and Pan 1993, Goodman and Popov 1968, 1969, Jasim 1997, 1999, Jasim

and Mohamad 1997, Kristek and Studnicka 1982, Newmark et al. 1951, Plum and Horne 1975,

Ranzi and Bradford 2003, Rassam and Goodman 1971, Smith and Teng 2001). 

In contrast, the analytical solution for the three-layer simply supported composite beam appears

only to be derived by Goodman and Popov (1968). Moreover, some experiments have been

conducted on these types of beams. They analysed a simply supported three-layer beam subjected to

force P at the mid-span of the timber beam, with layers of equal thickness and made up of the same

wood material. Here, we analyse this simply supported three-layer beam subjected both to point

load and uniformly distributed load. The descriptive geometric, material and loading data are given

in Fig. 2. 

pn

ab
MC

a ′′– pt

ab′e1–=

pn

bc
MC

b′′– pt

ab′e1– pt

bc′e2– pn

ab
+=

C

ê

Fig. 2 Simply supported three-layer beam 
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The contributions of the connection flexibility to the vertical deflections at the mid-span have

been calculated for various values of the slip moduli of connections and are shown in Tables 1 and

2 for the comparison reasons in the numerical form rather than graphically. The tables also present

the comparisons with the results in Goodman and Popov (1968), and with the results given by

Eurocode 5 formulae (1993). The results are presented for the range of the slip modulus from 0.01

to 100 kN/cm2. Observe that the results of Goodman and Popov (1968) and of the present

formulation are in perfect agreement both for the point and the distributed load. Since, the

validation of Goodman and Popov mathematical model shows excellent agreement with all their

Table 1 Simply supported three-layer beam subjected to the point load. The contribution of the flexible
connection to the vertical deflections in cm as a function of slip modulus, K = Kab = Kbc. Deflection
of a solid beam is 0.246 cm.

P = 1 kN 

K [kN/cm2] Goodman (1968) Present EC 5 (1993) 
EC 5 (1993) 

relative error [%] 

0.01 1.953 1.953 1.953 −0.01

0.1 1.852 1.852 1.852 −0.08

0.5 1.506 1.506 1.499 0.39

1 1.222 1.222 1.212 0.76

2 0.899 0.899 0.877 1.45

3 0.701 0.701 0.686 2.06

4 0.579 0.579 0.564 2.62

5 0.494 0.494 0.479 3.12

10 0.287 0.287 0.273 5.13

100 0.035 0.035 0.031 13.56

Table 2 Simply supported three-layer beam subjected to the uniform load. The contribution of the flexible
connection to the vertical deflections in cm as a function of slip modulus, K = Kab = Kbc. Deflection
of a solid beam is 0.386 cm.

pz = 1 kN/m 

K [kN/cm2] Goodman (1968) Present EC 5 (1993) 
EC 5 (1993) 

relative error [%] 

0.01 3.069 3.069 3.069 0.00

0.1 2.907 2.907 2.908 0.02

0.5 2.355 2.355 2.357 0.10

1 1.902 1.902 1.906 0.20

2 1.373 1.373 1.378 0.37

3 1.073 1.073 1.079 0.52

4 0.881 0.881 0.887 0.66

5 0.747 0.747 0.753 0.78

10 0.423 0.423 0.429 1.24

100 0.048 0.048 0.049 2.52
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experimental results, we can conclude that the present formulation is in good correlation with the

experiments performed on three-layer beams subjected to serviceability loads. 

When the beam is subjected to the point load, the analytical values for the contributions to the

vertical deflections at small values of interlayer slip modulus (K < 1 kN/m2) are almost equal to

those in Eurocode 5 (1993), although Eurocode 5 limits its application to the distributed load. For

higher values of slip moduli, they are somewhat smaller. Thus, we see that Eurocode 5 (1993) gives

rather accurate deflections (although somewhat smaller) even in the case of a point load. 

When the beam is subjected to the uniformly distributed load, the Eurocode 5 (1993) results

practically agree with the analytical results for any K. 

The values in Table 2 indicate that the contributions to the deflections due to the nonstiff

interaction between the layers may be as big as about 8-times the deflections in rigidly connected

layered beam, which is equal to 0.386 cm. 

One of the basic assumptions of the Goodman and Popov (1968) model is that the thicknesses of

layers are equal, which leads to the assumption that the bending moments and the axial forces are

equal in each layer. This assumption holds, provided that the layers have identical material and

geometric characteristics. However, it may cause large errors in results, if this criterion is not

fulfilled, as can be seen in the example below. 

The distributions and the values of the normal stresses in the layers are very much affected by the

degree of the contact rigidity. The effect is depicted in Fig. 3 for stiffnesses K = 0, 1, 5 and ∞. The

stress distributions over the mid-point section of the beam subjected to the point load are shown.

We can see that the peak values of the stress in each layer increase with the decreasing stiffness of

the contact, the values with regard to the absolutely stiff contact being substantially larger. Note that

for the flexible contact, the stresses in each layer vary from tension on the bottom side of the layer

to compression on its top (the ‘zig zag’ variation). 

4.2 A continuous three-layer timber beam over two spans 

We study a continuous three-layer beam the layers of which are made up of timber of strength

classes defined in Eurocode 5 (1993). In addition, slip moduli between the layers are different: Kab =

3 kN/cm2 and Kbc = 0.01 kN/cm2. The continuous beam is subjected to the uniformly distributed

load pz = 0.01 kN/cm. The geometric, material and loading data are given in Fig. 4. 

Fig. 3 Simply supported three-layer beam subjected to point load. The distribution of the normal stresses over
the cross-section.
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The values of the nodal displacements and rotations are presented in Table 3. The displacements

are given in centimeters and the rotations in radians. 

The axial and shear forces and the bending moment in layers a, b, c at nodal points are shown in

Table 4. Only the non-zero values are shown. 

Fig. 5 shows the variations of Δab, Δbc, N, Q, M 
along the axis of each layer. It can be seen that

the interlayer slips reach their maxima at the end supports. Graphs of slips Δab and Δbc nearly agree.

The lower (a) and the upper layer (c) are subjected to a considerable axial force in contrast to the

intermediate layer (b), the axial force of which is negligible. The resultant axial force of the

composite beam is, obviously, equal to zero (N = N
a + N

b + N
c = 0). Note that when N

a is

tensile, N
c is compressive, and vice versa. In contrast to axial forces in layers, the signs of the shear

forces and bending moments are equal an all ayers. Their values are only roughly proportional to

the bending rigidity of the layer. The largest portion of the shear force and the bending moment is

taken over by the lower layer a, while the contribution of layer b to the shear and bending capacity

of the beam is rather small. 

The influence of the different interlayer slip moduli on the values of various static and kinematic

quantities is also examined. Fig. 6 shows the graphs of Δab, w,  and  as a function of the

interlayer slip moduli K = Kab = Kbc . From Fig. 6 it is obvious that the interlayer slip modulus has

an important influence on static and kinematic quantities. The slip Δab between the layers a and b

pn

bc
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c

Fig. 4 Continuous three-layer beam over two spans 

Table 3 Continuous beam over two spans (Fig. 4). Displacements and rotations at nodal points

−0.064 −0.151 −0.011 −0.065 −0.065 0 −0.131 −0.067 0.021 0.012

ub
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ua
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Table 4 Continuous beam over two spans (Fig. 4). Internal forces at nodes A and B

Node A Node B 

9.53 kN −5.38 kN 5.39 kN −0.01 kN 15.47 kN −743.04 kNcm 

Qe1 0( ) Ne2

a
0( ) Ne2

b 0( ) Ne2

c
0( ) Qe2 0( ) Me2 0( )
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and the vertical deflection w are much smaller for higher slip moduli K. Static quantities, such as

interlayer stresses  between layers b and c, and bending moment M
c in layer c are, in contrast,

higher for higher slip moduli. 

pn

bc

Fig. 5 Distribution of Δab, Δbc and N, Q, M in layers along the span. Continuous three-layer beam over two
spans (Fig. 4).

Fig. 6 Distribution of Δab, w, , and M
c along the span as a function of different values of the interlayer

slip moduli, K = Kab = Kbc

pn

bc
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5. Conclusions 

We proposed a mathematical model and found its analytical solution for the analysis of

geometrically and materially linear layered, simply supported and continuous beams with an

arbitrary number of layers and with variable material and geometric characteristics of the layers.

The model is compared to the analytical model of Goodman and Popov (1968) for a simply

supported three-layer beam, who assumed that the layers are identical. The model was applied to a

two-span continuous composite timber beam. The advantage of the present exact analytical model is

that, unlike in Goodman and Popov (1968), the thickness as well as material of the individual layers

are arbitrary. The method is also suitable for obtaining referential or bench-mark solutions

applicable in assessing the accuracy and convergence of newly developed finite element

formulations. 
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