
Structural Engineering and Mechanics, Vol. 22, No. 2 (2006) 169-184 169

Crack effect on the elastic buckling behavior of axially 
and eccentrically loaded columns

L. Zhou1,2†  and Y. Huang1‡

1Department of Civil Engineering, Xi’an University of Architecture Technology, Xi’an 710055, P. R. China
2Department of Civil Engineering, Wuyi University, Jiangmen 529020, P. R. China

(Received December 14, 2004, Accepted August 17, 2005)

Abstract. A close form solution of the maximum deflection for cracked columns with rectangular
cross-sections was developed and thus the elastic buckling behavior and ultimate bearing capacity were
studied analytically. First, taking into account the effect of the crack in the potential energy of elastic
systems, a trigonometric series solution for the elastic deflection equation of an arbitrary crack position
was derived by use of the Rayleigh-Ritz energy method and an analytical expression of the maximum
deflection was obtained. By comparison with the rotational spring model (Okamura et al. 1969) and the
equivalent stiffness method (Sinha et al. 2002), the advantages of the present solution are that there are
few assumed conditions and the effect of axial compression on crack closure was considered. Second,
based on the above solutions, the equilibrium paths of the elastic buckling were analytically described for
cracked columns subjected to both axial and eccentric compressive load. Finally, as examples, the
influence of crack depth, load eccentricity and column slenderness on the elastic buckling behavior was
investigated in the case of a rectangular column with a single-edge crack. The relationship of the load
capacity of the column with respect to crack depth and eccentricity or slenderness was also illustrated.
The analytical and numerical results from the examples show that there are three kinds of collapse
mechanisms for the various states of cracking, eccentricity and slenderness. These are the bifurcation for
axial compression, the limit point instability for the condition of the deeper crack and lighter eccentricity
and the fracture for higher eccentricity. As a result, the conception of critical transition eccentricity (e/h)c,
from limit-point buckling to fracture failure, was proposed and the critical values of (e/h)

c
 were

numerically determined for various eccentricities, crack depths and slenderness.
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1. Introduction

The cracks in structural components are unavoidable defects due to material processing,

component manufacturing and a structural poor working environment. The presence of a crack

certainly weakens the static and dynamic response and the ultimate bearing capacity of the structure.

Therefore, the effects of cracks on the buckling and vibration behavior of the cracked components

have received considerable attention. There exist a wealth of analytical, numerical and experimental

investigations (Dimarogonas 1996). In order to apply fracture mechanics through the compliance
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concept to the analysis of a structure containing cracked members, a rotational spring model for

describing the local flexibility of a crack was established first by Okamura et al. (1969). This model

has been widely used in the past 20 years for vibration (Ismail et al. 1990, Krawczuk et al. 1997,

Takahashi 1999) or buckling analysis (Takahashi 1999, Anifantis and Dimarogonas 1983, Nikpour

1990, Wang and Chase 2003) of cracked members, because of its simplicity and convenience.

Recently, the vibration and buckling behavior of members with an arbitrary number of cracks has

been analyzed for both uniform sections (Shifrin and Ruotolo 1999) and non-uniform sections (Li

2003a,b). Some finite elements of prismatic beams were also presented for structural analysis

(Gounaris and Dimaragonas 1998, Viola et al. 2002). However, the above studies are all based on

the use of rotational springs to simulate local flexibility induced by cracks and lead to a system of

eigenvalue equations. It is obviously unreasonable in the rotational spring model for compressive

column that the effect of axial compression on the crack closure is not considered and sometimes

there appears a unreal rotation jump on the deflection curve. Another approximate method for

describing the increased flexibility due to a crack is obtained by assuming a variation of the

stiffness EI(x) containing some model constants (Sinha et al. 2002, Christides and Barr 1984). In

this model, the principles of fracture mechanics were not involved and the model constants were

empirically or experimentally determined. Taking into account the effect of cracks in the potential

energy of elastic system, the Rayleigh-Ritz energy method was recently employed and a

trigonometric series solution of the elastic deflection equations was obtained by Zhou (2000, 2002).

Especially when the crack is located in the middle section, the solution for the maximum deflection

of cracked columns with both ends pinned was analytically given for a rectangular column with a

single-edge crack. Furthermore, the two-criteria approach to determinate the stability factor ϕ has

been suggested and its analytical formulae were derived by Zhou and Huang (2005). It should be

noted that all studies mentioned above have been confined to eccentric columns and opening cracks.

However, the crack closure often appears in the process of buckling and vibration and it changes the

response of the structural components. Chondros et al. (2001), in their beam vibration analysis,

assumed a bilinear-type breathing crack that is in two states, i.e., either fully open or fully closed.

However, there is a lack of consideration of crack closure in the buckling analysis for columns. The

neglect of crack closure in buckling could lead to foundational deviation.

The objective of the present study is: to develop an analytical solution for maximum deflection of a

cracked column under more general conditions; to find a set of analytical equations for the

equilibrium path for both the axially and eccentrically loaded column by taking into account the

crack closure and fracture condition; and to analytically investigate the effects of both load

imperfection (eccentricity) and physical defects (cracks) on the elastic buckling behavior of columns.

These objectives are all in order to prepare a theoretical foundation for the further buckling analysis

of complex structures containing both geometrical and physical imperfection. As an example, the

equilibrium paths and the ultimate bearing capacity of the column were illustrated for a rectangular

column with a single-edge crack for various crack depths, load eccentricities and slenderness ratio.

2. Series solution of deflection for eccentric cracked column

2.1 Analytical model

The cracked uniform column with a rectangular cross-section subjected to eccentric compression
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shown in Fig. 1 will be studied in this paper. The column has a thickness h, a length l and a loading

eccentricity e. A model-I crack with the depth a is located at the convex side of the xa section from

the left end of the column. The elastic modulus and Poisson’s ratio of the material of the column

are E and ν respectively. 

According to linear elastic fracture mechanics, the general expression of the stress intensity factor

(SIF) at the crack tip of the column, shown in Fig. 1(b), can be written as 

(1)

In Eq. (1), α = P/(A0σE) is the dimensionless compressive load, in which αE is the Euler critical

stress and A0 is the uncracked section area; ξ = a/h is the ratio of the crack depth to the height of

column; ω = A0h/W is the sectional geometric parameter, where W is the section modulus of the

cross section; ya/h denotes the ratio of the cracked section deflection to the column height; fM(ξ )

and fN(ξ ) are the configuration correction factors of the SIF under bending and tension respectively.

These SIF factors may be obtained directly from the SIF handbooks or computationally determined.

In the buckling analysis for cracked columns, three possible crack states must be considered.

When the stress intensity factor is KI ≤ 0, the crack tip is closed and the crack has no effects; when

the SIF factor is KI > 0, the crack is fully opened and has some influence on the response of the

column; when the SIF factor KI equals the fracture toughness of the material, KIC, the column

fracture will occur.

2.2 Strain energy and external force work

According to the boundary conditions of the column shown in Fig. 1(a), the objective function of

the deflection can be assumed to be the trigonometric series form

(2)

where Cm may be called the deflection coefficients. 

In the final deformation state due to both load and crack, the elastic strain energy of the

uncracked column can be obtained from the bending theory of beams, that is 

KI ασE πh ξ ω
ya e+

h
-------------- fM ξ( )⋅ ⋅ fN ξ( )–⋅=

y x( ) h Cmsin
mπx

l
-----------

m 1=
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Fig. 1 The eccentric column and the crack model
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(3)

Assuming the crack is fully opened, it can be obtained from the theories of linear fracture

mechanics that the change in elastic strain energy caused by introducing the crack in the column is 

(4)

By substituting Eq. (1) into (3) and using Eq. (2), the expression of Ua is derived as

(5)

where λ is the slenderness of the column.

The work performed by external forces is expressed as

(6)

2.3 Series solution of deflection 

By means of the deflection function given by Eq. (2), the total potential energy of the elastic

system may be written as

(7)

From the principle of minimum potential energy, that is δΠ = 0, the energy equilibrium equations

can be expressed as

(8)

The deflection coefficients Cm in the Eq. (2) are determined by Eq. (8) and the deflection curve can

be thus obtained. This is the so called the Rayleigh-Ritz energy variational calculation.

Substituting Eqs. (3), (5) and (6) into Eq. (8), the equation of the deflection coefficients is given

by 

(9)

where η = π (1 − ν 2)/λ, and the functions g1(ξ ) and g2(ξ ) are respectively defined as

(10)

Finally, substituting Eq. (9) into Eq. (2) leads to the deflection equation of the cracked column
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 (11)

where the first and second terms correspond to the deflection equation of the uncracked column and

the change of deflection owed to the crack, respectively.

2.4 Deflection of cracked section

It should be noticed that the deflection ya is still undetermined. Letting x = xa in Eq. (11), the

deflection of the cracked section can be shown as

(12)

where β1(α, xa/l) and β1(α, xa/l) are defined as

(13)

3. Equations describing the equilibrium paths of the elastic buckling

3.1 The maximum deflection 

It is easy to understand that when the crack is located at the middle section of the pinned-pinned

column shown in Fig. 1 the crack effect is the most harmful. Letting xa/l = 1/2 in Eqs. (12) and (13)

yields that the maximum deflection of the column cracked in the middle is

(14)

and it is easily proved that

(15)
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Substituting Eq. (15) into Eq. (14), the closed form solution of the maximum deflection for the

eccentrically cracked column with the rectangular cross-section can be obtained by

(16)

This general δ /h formula is appropriate for rectangular cross-sectional columns with various shapes

of model-I cracks. Eq. (16) confirms that, for a certain state of the crack, the crack effect increases

with the increase of the parameter η or e/h. In other words, the lower the slenderness λ or the larger

the eccentricity e/h, the more significant the crack effect is.

It is most important to emphasize that the formula (16) is only suitable for the column with an

opening crack, i.e., 0 < KI < KIC. For uncracked columns or closing cracked columns, i.e., g1(ξ) =

g2(ξ) = 0, it can be derived from Eq. (16) that

(17)

This is the well-known secant formula of the eccentric column.

3.2 Crack opening and fracture condition

For the rectangular cross-section column with a single-edge through or surface crack, the

combined different states of load and crack position causes different performances of cracks in the

deformation and the buckling process. If the crack is located at the concave side of the section, the

crack is “sleeping” all along and has no effects on the response of the column whether under axial

or eccentric compression. However, if the crack is located at the convex side of the column, for the

axial compressive column the crack will gradually effect on the post-buckling behavior after a

period of time. For the eccentric column the crack is always “awake” and active and has obvious

effects on the whole buckling process and the final fracture. Therefore, the establishment of both

crack opening and fracture conditions is essential to analyze the equilibrium path of the cracked

column.

As stated above, the stress intensity factor KI ≤ 0 indicates that the crack tip is closed and the

crack has no effects; whereas the crack is fully opened, indicated by KI > 0. Hence, the crack

opening condition expressed with the maximum deflection can be obtained by use of Eq. (1), that is

(18)

The inequality (18) shows that the crack opening depends on the three ratios of the cracked

section deflection, eccentricity and crack depth to column height, i.e., δ/h, e/h and ξ = a/h. For

example, a curve family of the critical crack opening with eccentricity, i.e., (δ /h)0~e/h curves, is

shown in Fig. 2, for various crack depths ξ , where a single-edge through crack is located in the

middle of the rectangular cross-section column. The points (δ /h, e/h) above the curve correspond to

the states of the crack opening, whereas the points below the curve surface correspond to the states
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of the crack closing. It can be seen from Fig. 2 that the shallower the crack or the higher the

eccentricity, the easier the crack opening is. If the eccentricity e/h exceeds 0.4, the crack will be

constantly opened from beginning to end.

Assuming that the crack is located in the middle section, it is also readily understood from Eq. (1)

that the stress intensity factor KI increases with the increase of the deflection δ /h. When KI = KIC

occurs, the column will break. Thus the fracture condition expressed with the maximum deflection

can be described as

(19)

where θ = λ2KIC /(π 2.5Eh0.5). The fracture point must be determined by solving simultaneous Eqs. (16)

and (19), since the dimensionless load α in Eq. (19) is function of the deflection ratio δ /h.

3.3 Equations of the equilibrium path of the buckling

The equilibrium path, defined as the load-displacement curve in the deformation and buckling

process, is most important for analyzing the buckling behavior of the structure. Each point on the

path represents an equilibrium configuration of the structure. For engineering structures, which are

always imperfect, the determination of the ultimate bearing capacity must be based on the

equilibrium path, including the practical axial compressive column with its cracks due to the initial

eccentricity or curvature. Otherwise, the results will be unrealistic and sometimes may lead to

foundational deviation. So, the equilibrium path has received a considerable amount of attention in

the present study. For the uncracked linear elastic column, the equilibrium path is simple and well

known. In this paper, therefore, the analysis of the equilibrium path will focus on cracked columns

subjected to both axial and eccentric compression.

Based on above analysis and results, the equilibrium path of cracked column under axial or

eccentric compression can be computationally determined. On the equilibrium path there are usually
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Fig. 2 The curve surface for critical crack opening
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two or more points corresponding to a specific load, while there is only one point corresponding to

a definite deflection. Therefore, the deflection-control method should be employed in order to

improve the efficiency of calculations. The schematic diagram of the computational program for

determining the equilibrium path is shown in Fig. 3.

4. Examples and analysis

The mechanical properties of the steel 16Mn, used for the calculation in this section, are as

follows: fracture toughness KIC = 4282 Nmm1.5; elastic modulus E = 206 × 103 N/mm2, Poisson’s

ratio ν = 0.3. The sectional parameter ω = A0h/W equals 6 for rectangular columns. A single-edge

through crack located at the convex side of the middle section of the column was also considered. 

The configuration correction factors of the SIF under bending and tension can be known from

Hellan (1984); they are

(20)

with the accuracy of 0.5% as ξ ≤ 0.7. The functions g1(ξ ) and g2(ξ ) defined by Eq. (10) are thus

determined through integration. They are as follows

(21)

4.1 Comparison between present and Okamura’s solution

The existing solution of the maximum deflection δ/h for an eccentric compressive rectangular

column with single-edge crack was given by Okamura et al. (1969) using the rotational spring model,

(22)
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Fig. 3 The schematic diagram of the computational program for determining the equilibrium path
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The relative error curves of δ /h vs load level α for different crack depths ξ and eccentricities e/h

are shown in Figs. 4(a,b) respectively, where Error(%)=100%[δ /h(Eq. (22)) − δ /h(Eq. (16))]/δ /h

(Eq. (16)). It can be found from Fig. 4 that the heavier the load or the deeper the crack or the lower

the eccentricity, the larger the relative error. Fig. 4 also shows that the Okamura’s results for δ /h

are constantly higher than the closed form resolution obtained in this paper. By comparison with

Eq. (16), the function g2(ξ ) does not appear in Eq. (22), that reflects the beneficial effect of axial

force N on the crack closure. This is the main reason why the rotational spring model leads to

obvious deviation of the deflection under the conditions of a deep crack and low eccentricity.

4.2 Equilibrium paths of cracked columns under axial compression

According to the formulations and programs established in section 3, the equilibrium paths for a

cracked column subjected to axial compression were analyzed computationally. A series of

equilibrium paths, i.e., dimensionless load-deflection plots, for various crack depths and slenderness

of columns are illustrated in Fig. 5. The results show that in the initial stages of the buckling

process there is still a bifurcation phenomenon and the critical load remains the same as in the

uncracked column. This is because of crack closure. However, in the post-buckling stages, the load

begins to decrease with the increase of the deflection after a period of deflection. These facts clarify

that for axial compressive columns the crack has effect only on the post-buckling behavior. The

conclusion presented in the recent work (Wang and Chase 2003) that the ultimate axial compression

capacity of cracked columns decreases due to the crack is obviously inappropriate, because the

work (Wang and Chase 2003) has not taken into account the effects of the crack closure. It can also

be observed from Fig. 5 that in post-buckling stages the crack has a clear effect on both the speed

of the load decrease and the ultimate deflection, which may be defined as the ductility of the

column. The deeper the crack, the sharper the load decreases, and the poorer the ductility of the

column is. Moreover, for a column with a lower slenderness λ, the effect of the crack on post

buckling behavior is more significant.

Fig. 4 The relative error of Okamura solution
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Fig. 5 A series of equilibrium path diagrams for axial compressive columns

Fig. 6 The equilibrium paths with varied eccentricities
Fig. 7 A curve family of (e/h)

c
~ξ for varied

slenderness λ
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4.3 Equilibrium paths of cracked columns under eccentric compression

The equilibrium paths for cracked columns that are subjected to an eccentric compression are

depicted systematically and the compound effects of crack, eccentricity and slenderness are

analyzed. Fig. 6 shows five equilibrium paths of the cracked columns with the eccentricity e/h from

0.002 to 0.08, where ξ = 0.5 and λ = 100.

From Fig. 6 it can be seen that the bifurcation phenomenon disappears in the buckling process of

the eccentric column and the shapes of equilibrium paths are varied with respect to the increase of

eccentricity. For slightly eccentric columns, there is a limit point on each path, while for highly

eccentric columns the path is monotonically increasing until the fracture suddenly occurs. As the

eccentricity increases, there is a critical transition point (e/h)c from limit-point buckling to fracture

failure for a certain state of the crack-slenderness (ξ − λ). The critical eccentricity (e/h)c is definitely

the function of crack depth ξ and column slenderness λ.

A curve family of (e/h)c~ξ is numerically determined as shown in Fig. 7 for varied slenderness λ.

If the e/h point is below the curve the column failure will be the limit point buckling, while if the e/h

point is above the curve the column failure will be fracture-dominant. From Fig. 7 it can be

Fig. 8 The variations of equilibrium paths with slenderness and eccentricities (ξ = 0.5)
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observed that the slighter the slenderness or the deeper the crack is, the higher the value (e/h)c, i.e.,

the range of the eccentricity e/h is more extensive for the happening of the limit-point buckling.

A group of the equilibrium path curves with limit points are illustrated in Fig. 8. It shows that as

the eccentricity increases, the flexibility of pre-buckling deformation is increasing and the limit load

is decreasing. Another important discovery is that the post-buckling behavior and the fracture point

are related to the slenderness, while the pre-buckling behavior is insensitive to the slenderness.

The effects of cracks on the equilibrium paths of eccentric columns are depicted in Fig. 9. It

shows that the crack performance influencing the buckling behavior of the eccentric column is

similar to the uncracked columns. Both the post-buckling process and the fracture point are

influenced by the appearance of the crack. The deeper the crack, the sharper the load decreases and

the poorer the ductility of the column. However, the pre-buckling behavior and limit load are

insensitive to the crack. Moreover, as eccentricity e/h increases, the limit load decreases and the

flexibility of the pre-buckling stages is increases gradually.

Fig. 9 The variations of the equilibrium path with crack depth and eccentricity (λ = 100)
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4.4 Effects of a crack on ultimate bearing capacity

For the cracked eccentric columns, the ultimate bearing capacity is a function of slenderness λ,

eccentricity e/h and crack depth ξ. Moreover, there are three kinds of possible failure mechanisms:

bifurcation buckling, limit point instability and fracture. Hence the determination of the load

capacity should be based on the equilibrium paths. For a small range of eccentricities, the two curve

families of the critical load parameter αc with respect to the eccentricity e/h and the relative crack

depth ξ are shown in Figs. 10(a) and (b) respectively, where λ = 100. The two curve families of the

Fig. 10 Two curve families of load capacity for a small range of eccentricity, ξ = 0.5

Fig. 11 The curve families of load capacity for a large range of eccentricity, λ = 100
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critical load parameter αc are shown in Figs. 11(a) and (b) for a large range of eccentricities, where

ξ = 0.5. 

From Fig. 10, it can be observed that for the cases of small eccentricity e/h < 0.1, the capacity

parameter αc monotonically and bilinearly decreases with the increase of the eccentricity e/h but

non-monotonically varies with the relative crack depth ξ. It is a universal phenomenon that on each

curve there is a critical transition point from the limit point buckling to the fracture-dominate

failure. For the minute eccentricities of e/h < 0.02, which approximately fall in the range of the

limit point buckling, the parameter αc linearly decreases with the increase of the eccentricity e/h but

is insensitive to the variations of the slenderness λ.

Fig. 11 indicates that for large eccentricities e/h > 0.1, that fall in the range of the fracture type of

failure, the bearing capacity parameter αc monotonically decreases with the increase of both

eccentricity e/h and crack depth ξ, while it monotonically increases with the increase of the

slenderness λ.

In summary, under the failure conditions of the fracture-dominate type, the higher the eccentricity

e/h or the deeper the crack ξ, or lower the slenderness λ is, the lower the ultimate bearing capacity

αc. Under the failure conditions of limit point buckling, the capacity αc is insensitive to the

variation of the slenderness λ. It is also most important to emphasize that the variation laws of the

capacity parameter αc with the slenderness λ discussed above are different from the variation laws

of the ultimate load Pc or the ultimate stress σc with the slenderness λ , because Pc = A0σc = A0πE/λ2.

5. Conclusions 

In the present work, the elastic buckling behavior and ultimate bearing capacity were

systematically studied for cracked uniform columns with rectangular cross-sections subjected to

both axial and eccentric compression. The crack closure and the fracture conditions were addressed

in the equilibrium path analysis. The main contributions are the establishment of the close-form

solution for maximum deflection by use of the energy method to describe analytically the

equilibrium paths of the elastic buckling. And the combined influences of crack depth, load

eccentricity and slenderness on the elastic buckling behaviors and the ultimate bearing capacity

were also investigated. This study provides the theoretical foundation for further analyzing the

combined influence of geometrical imperfections and physical defects on the buckling behavior of

complex structures. The numerical results from the examples show that there are three kinds of

collapse mechanisms for various states of cracks, eccentricity and slenderness, which are the

bifurcation for axial compression; the limit point instability for deeper cracks and light eccentricity

conditions; and the fracture for higher eccentricity. Moreover, the parameter (e/h)c of the critical

transition eccentricity from limit-point buckling to fracture failure was proposed and determined

numerically for various eccentricities, crack depths and slenderness.

Based on the analytical and numerical results from the cracked columns, the following brief

conclusions can be drawn:

(1) Okamura’s solution of the maximum deflection from rotational springs for eccentric columns

is only suitable for the conditions of a lower load, shallower crack and lighter eccentricity. The

main reason for this is that the beneficial effect of the axial force N on a crack closure has not

been reflected;

(2) With the decrease of the slenderness λ or the increase of the eccentricity e/h, the crack effect
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on the elastic response is more significant;

(3) The shallower the crack or the higher the eccentricity, the easier the crack opens. If the

eccentricity e/h exceeds 0.4, the crack will be constantly open;

(4) For axial compressive columns, the crack only has effect on the post-buckling behavior owed

to the crack opening. The conclusion drawn in the recent work (Wang and Chase 2003) that

the ultimate bearing capacity of the cracked column decreases because of the crack is

incorrect;

(5) For eccentric columns, as the eccentricity increases, the critical eccentricity (e/h)c is certainly a

function of crack depth ξ and column slenderness λ. The slighter the slenderness or the deeper

the crack, the higher is the value (e/h)c;

(6) With the increase of the eccentricity, the flexibility of the pre-buckling deformation is

increasing and the limit load is decreasing. Additionally, the post-buckling behavior and the

fracture point are related to the changes in slenderness, but pre-buckling behavior is insensitive

to it; 

(7) Under the failure conditions of the fracture-dominate type, the higher the eccentricity e/h or

the deeper the crack ξ or lower the slenderness λ is, the lower the load capacity parameter αc

becomes.

It should be emphasized that although the analysis and conclusions in this paper are all on

columns with both ends pinned, the method is easily utilized for columns with other types of

constraint conditions. In addition, the present work is based on the conditions of elastic deformation

and small rotation. However, some of the ideas, techniques and conclusions proposed may be

helpful for analyzing the nonlinear and elastic-plastic buckling problems found in complex

structures with geometrical imperfections and physical defects.
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