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Modal and structural identification of a R.C. arch bridge
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Abstract. The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge,
dating back to the 50’s. The outlined approach is based on ambient vibration testing, output-only modal
identification and updating of the uncertain structural parameters of a finite element model. The Peak
Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal
parameters from ambient vibration data and a very good agreement in both identified frequencies and
mode shapes has been found between the two techniques. In the theoretical study, vibration modes were
determined using a 3D Finite Element model of the bridge and the information obtained from the field
tests combined with a classic system identification technique provided a linear elastic updated model,
accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-
only modal identification techniques and updating procedures provided a model that could be used to
evaluate the overall safety of the tested bridge under the service loads.

Key words: ambient vibration testing; arch bridge; enhanced frequency domain identification
technique; finite element model updating; output-only modal identification; peak picking technique.

1. Introduction

In the last decade ambient vibration testing has became the main experimental method available

for assessing the dynamic behaviour of full-scale bridges. Ambient vibration procedures have

demonstrated to be especially suitable for flexible systems, such as suspension (Abdel-Ghaffar and

Housner 1978, Abdel-Ghaffar and Scanlan 1985, Brownjohn et al. 1992) and cable-stayed bridges

(Wilson and Liu 1991, Gentile and Martinez y Cabrera 1997, Brownjohn and Xiu 2001, Gentile and

Martinez y Cabrera 2004), since a large number of normal modes can be identified from ambient

vibration survey. As a consequence, a relative abundance of experimental and analytic studies for

such bridges can be found in the literature. On the contrary, only a slight number of full-scale tests

have been carried out on modern steel (Felber and Ventura 1995, Ren et al. 2004, Calcada et al.

2000) and reinforced concrete (R.C.) bridges (Cantieni et al. 1994, Gentile and Caiazzo 2004),

although these bridges are widespread and quite flexible as well.

Ambient vibration-based structural assessment of R.C. arch bridges seems to be particularly

interesting since the golden age of R.C. arch bridges dates back to the first half of the 20th century

and hence many of these bridges were designed based on what today are considered outdated code

regulations. In addition, current bridge inspection techniques, based on visual inspection conducted
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by experienced engineers, may be sometimes not suitable or easy to apply to arch bridges,

especially when the bridge spans over a deep valley or a river.

The paper presents the results of a recent experimental and theoretical research on the dynamic

behaviour of a R.C. arch bridge. The dynamic-based structural assessment includes ambient

vibration testing, operational modal analysis and identification of the uncertain structural parameters

of a Finite Element (F.E.) model. The selected case study is a non-symmetric R.C. arch bridge,

dating back to the 50’s and belonging to the Cairate viaduct (Varese, Italy). The viaduct consists of

seven arch bridges, with all the spans of the viaduct being the subject of a structural assessment

following the methodology outlined in the paper.

Ambient vibration tests were conducted on the bridge using a data acquisition system with

twenty-six piezoelectric accelerometers placed at selected locations of the bridge deck. A large

number of (vertical or lateral) normal modes were identified in the frequency range 0-11 Hz using

the classical Peak Picking (Bendat and Piersol 1993) and the Enhanced Frequency Domain

Decomposition (Brincker et al. 2001) techniques.

The investigation was complemented by the development of a 3D F.E. model, based on as-built

drawings of the bridge and on-site geometric survey. The main assumptions adopted in the model

were first assessed through rough comparison of measured and predicted modal parameters.

Successively, the uncertain structural parameters of the model were identified in order to enhance

the correlation between experimental and numerical modal behaviour using the technique described

in Douglas and Reid (1982). For the structural identification part of the study, the Young’s moduli

of the concrete were selected as updating parameters.

2. Description of the bridge

The valley of the Olona river is crossed, in the neighbourhood of the Varese town (northern Italy),

by the Cairate viaduct placed on the freeway between Cairate and Cassano-Magnago. The main

characteristics and the general arrangement of the viaduct are shown in Fig. 1.

The Cairate viaduct, erected in the 50’s, is 447 m long and includes 7 R.C. arch structures, with

each open spandrel arch bridge spanning 54.10 m. The first and the last span of the viaduct,

respectively referenced as Span 01 and Span 07 in Fig. 1, are characterised by a non-symmetric or

“cripple” arch. The subject of the paper is the last arch bridge (Span 07) of the viaduct, shown on

the right of Fig. 1 and in the photo of Fig. 2. Plan, elevation and structural details of the tested

bridge are also shown in Fig. 3.

The deck of each bridge (Fig. 3) is 10.0 m wide, for two traffic lanes and two pedestrian

walkways, and consists of a cast in place R.C. slab (28 cm high) supported by 4 longitudinal girders

Fig. 1 General arrangement of the Cairate viaduct (Varese, Italy)
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(of 50 × 35 cm cross-section) and 8 transverse floor beams. In order to allow longitudinal and

transverse movements between the successive deck superstructures, expansion joints are placed at

both ends of the each deck. In such instances, structural independence can be assumed between the

Fig. 2 View of the tested bridge (Span 07)

Fig. 3 Plan, elevation and cross-sections of the tested bridge (Span 07, dimensions in cm)
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different spans of the viaduct.

The parabolic arch structure consists of 4 independent solid arch ribs, transversally connected

together with cross struts, having rise of about 30.0 m. The clear span of each arch ranges between

40.0 m (Span 01 and 07) and 46.0 m (intermediate spans).

The main longitudinal girders of the deck are connected to the arches and to the foundation

system by 6 series of vertical columns (Figs. 1-3). All the columns in each series are connected

together with cross struts; the outer and higher columns are also transversally braced by X-shaped

struts and stiffening diaphragms (Fig. 2).

3. Ambient vibration testing and modal identification

Ambient vibration tests were conducted on the bridge using a 32-channel data acquisition system

with 26 uniaxial piezoelectric accelerometers (PCB model 393C), each with a battery power unit.

The sensors, which are capable of measuring accelerations of up to ±0.50 g with a broadband

resolution of 0.001 m/s2, converted the physical vibration into electrical signals. Two-conductor

cables connected the accelerometers to a computer workstation with the data acquisition board.

Fig. 4 shows a schematic of the sensor layout. For each channel, the ambient acceleration-time

histories were recorded for 3000 s at intervals of 0.005 s, so that the well-known rule of thumb (see

e.g., Cantieni 2005) about the length of the time windows acquired (that should be 1000 to 2000

times the period of the structure’s fundamental mode) is largely satisfied.

Similar experimental procedures were adopted to test all the spans of the viaduct.

The extraction of modal parameters from ambient vibration data was carried out by using two

different output-only procedures: the Peak Picking method (PP, Bendat and Piersol 1993) and the

Enhanced Frequency Domain Decomposition (EFDD, Brincker et al. 2001). The EFDD technique

Fig. 4 Sensor locations and directions for the bridge tests (dimensions in cm)
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is a refinement of the Frequency Domain Decomposition (FDD, Brincker et al. 2000) technique.

Both the PP and the FDD/EFDD methods are based on the evaluation of the spectral matrix (i.e.,

the matrix of cross-spectral densities) in the frequency domain:

(1)

where the vector A( f ) collects the acceleration responses in the frequency domain, the superscript H

denotes complex conjugate matrix transpose and E denotes expected value. The diagonal terms of

the matrix G( f ) are the (real valued) auto-spectral densities (ASD) while the other terms are the

(complex) cross-spectral densities (CSD):

(2a)

(2b)

where the superscript * denotes complex conjugate.

Both ASDs and CSDs were estimated from recorded data samples by using the modified

periodogram method (Welch 1967); according to this approach an average is made over each

recorded signal, divided into M frames of 2n samples, where windowing and overlapping is applied.

In the present application, after decimating the data 4 times (which results in 125000 data points

and an excellent frequency range from 0 through 25 Hz), smoothing is performed by 2048-points

Hanning-windowed periodograms that are transformed and averaged with 66.7% overlapping, so

that a total number of 217 spectral averages was obtained. Since the re-sampled time interval is 0.02 s,

the resulting frequency resolution is 1/(2048 × 0.02) ≈ 0.0244 Hz.

3.1 The PP technique

The more traditional approach to estimate the modal parameters of a structure (Bendat and Piersol

1993) is often called Peak Picking method. The method leads to reliable results provided that the

basic assumptions of low damping and well-separated modes are satisfied. In fact, when a lightly

damped structure is subjected to a random excitation, the output ASD at any response point (and the

CSD amplitude between any two measurement points) will reach a maximum at frequencies where

either the excitation spectrum peaks or the frequency response function of the structure peaks. Since

narrow-band peaks in the frequency response function of lightly damped mechanical systems occur

at the frequencies corresponding to system normal modes (resonance frequencies), peaks in the

ASDs and CSDs can be generally assumed to represent either peaks in the excitation spectrum or

normal modes of the structure. In order to identify the output spectral peaks which are due to

vibration modes, it has to be recalled that all points on a structure responding in a lightly damped

normal mode of vibration will be either in phase or 180o out of phase with one another; hence, for

well-separated modes, the spectral matrix can be approximated in the neighbourhood of a resonant

frequency fr as a rank-one matrix:

(3)

where α r is a scale factor depending on the damping ratio, the natural frequency, the modal

G f( ) E A f( )A
H

f( )[ ]=

Gpp f( ) E Ap f( )Ap
* f( )[ ]=

Gpq f( ) E Ap f( )Aq
* f( )[ ]=

G fr( ) αrφrφr
H

≅
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participation factor and the excitation spectra. Eq. (3) highlights that:

1. each row or column of the spectral matrix at a resonant frequency fr can be considered as an

estimate of the mode shape φr at that frequency;

2. the square-root of the diagonal terms of the spectral matrix at a resonant frequency fr can be

considered as an estimate of the mode shape φr at that frequency.

In the present application of the PP method, natural frequencies were identified from resonant peaks

in the ASDs and in the amplitude of CSDs, for which the cross-spectral phases are 0 or π. The

mode shapes were obtained from the amplitude of square-root ASD curves while CSD phases were

used to determine directions of relative motion. For example, Fig. 5(a) shows the ASDs of the

vertical response at several points of the deck.

Drawbacks of the PP method (Abdel-Ghaffar and Housner 1978) are related to the difficulties in

identifying closely spaced modes and damping ratios. The former drawback is often overcame in

bridges (when two closely spaced modes involve bending and torsion, respectively) by computing

the ASDs from the addition and subtraction of the vertical acceleration signals captured upstream

and downstream at each measurement cross-section (see e.g., Wilson and Liu 1991, Gentile and

Martinez y Cabrera 1997, Cunha et al. 2001).

3.2 The FDD and EFDD techniques

The FDD technique involved the following main steps: (a) the estimate of the spectral matrix; (b)

the Singular Value Decomposition (SVD, see e.g., Golub and Van Loan 1996) of the spectral matrix

Fig. 5 (a) Autospectra of the vertical response from different points of the bridge deck, (b) First singular value
of the vertical responses spectral matrix
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at each frequency; (c) the inspection of the curves representing the singular values to identify the

resonant frequencies and estimate the corresponding mode shape using the information contained in

the singular vectors of the SVD.

The SVD of the spectral matrix at each frequency is given by:

(4)

where the diagonal matrix Σ collects the real positive singular values in descending order and U is a

complex matrix containing the singular vectors as columns. The SVD is used for estimating the rank

of G at each frequency, with the number of non-zero singular values being equal to the rank. If only

one mode is important at a given frequency fr (as it has to be expected for well-separated modes)

the spectral matrix can be approximated by a rank-one matrix:

(5)

The comparison of Eqs. (5) and (3) clearly highlights that the first singular vector u1( fr) is an

estimate of the mode shape. Since the first singular value σ1( f ) at each frequency represents the

strength of the dominating vibration mode at that frequency, plotting the first singular value yields

the resonant frequencies as local maxima, as it is shown in Fig. 5(b) for the tested bridge.

The FDD is a rather simple procedure which represents a significant improvement of the PP

since:

1. the SVD is at least an effective method to smooth the spectral matrix and the evaluation of the

mode shapes is automatic and significantly easier than in the PP;

2. the FDD technique is able to detect closely spaced modes. In such instances, more than a

singular value will reach a maximum in the neighbourhood of a given frequency and every

singular vectors corresponding to a non-zero singular value is a mode shape estimate;

3. the damping ratios can be identified through the refinement of the FDD technique, called

EFDD. The EFDD technique is based on the fact that the first singular value in the

neighbourhood of a resonant peak is the ASD of a modal coordinate. Hence, taking back the

partially identified ASD of the modal coordinate in time domain by inverse FFT yields a free

decay time domain function, which represents the autocorrelation function of the modal

coordinate. The natural frequency and the related damping ratio are thus simply found by

estimating crossing times and logarithmic decrement.

3.3 Mode shapes correlation

Once the modal identification phase was completed, the two sets of mode shapes resulting from

the application of PP and EFDD were compared using the Modal Assurance Criterion (MAC,

Allemang and Brown 1982) and the Normalised Modal Difference (NMD, Waters 1995).

The MAC is probably the most commonly used procedure to correlate two sets of mode shape

vectors and is defined as:

(6)

G f( ) U f( )Σ f( )U
H

f( )=

G f( ) σ1 f( )u1 f( )u1

H
f( )≅

MAC φA k,

φB j,

,( )
φA k,

T
φB j,

( )
2

φA k,

T
φA k,

( ) φB j,

T
φB j,

( )
----------------------------------------------=
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where φA,k is the k-th mode of data set A and φB,j the j-th mode of the data set B. The MAC is a

coefficient analogous to the correlation coefficient in statistics and ranges from 0 to 1; a value of 1

implies perfect correlation of the two mode shape vectors while a value close to 0 indicates

uncorrelated (orthogonal) vectors. In general, a MAC value greater than 0.80 is considered a good

match while a MAC value less than 0.40 is considered a poor match.

The NMD is related to the MAC by the following (Maia and Silva 1997):

(7)

In practice, the NMD is a close estimate of the average difference between the components of the

two vectors φA, k, φB, j; for example, a MAC of 0.950 implies a NMD of 0.2294, meaning that the

components of vectors φA, k and φB, j differ on average of 22.94%. The NMD is much more sensitive

to mode shape differences than the MAC and hence is introduced to highlight the differences

between highly correlated mode shapes.

The MAC and the NMD were also used to correlate the results of finite element analysis and

experimental modal analysis.

4. Modal identification results

As it has to be expected, several vibration modes were identified in the frequency range of 0-11 Hz.

The observed modes can be basically arranged as:

1. vertical bending modes of the deck, V +. These modes may involve significant (and often

dominating) longitudinal motion of the deck;

2. vertical torsion modes of the deck, V −;

3. lateral modes of the deck, L.

The natural frequencies of the vertical modes can be easily identified in the spectral plots of

Figs. 5(a) and 5(b), showing the ASDs of vertical acceleration from different locations of the deck

and the first singular value of the (vertical sensors) spectral matrix, respectively. Figs. 5(a) and 5(b)

exhibit clear resonant peaks at 1.97, 2.24, 4.88, 6.00, 6.34, 7.97 and 9.56 Hz; furthermore, three

lateral modes were detected at 1.42, 2.43 and 3.41 Hz.

The inspection of Figs. 5(a) and 5(b) clearly highlights the correspondence of the natural

frequencies between the PP and the EFDD techniques, with the resonant peaks of Fig. 5(a) being

placed practically at the same frequencies of those in Fig. 5(b). In addition, Fig. 5(a) shows well-

separated spectral peaks in the investigated frequency range and a remarkable consistency in their

occurrence. This information and the coherence values (see e.g., Bendat and Piersol 1993), which

are always very close to 1 in the frequency range where spectral peaks occur, provide further

evidence of the vibration modes and suggest both a good quality of data and the linearity of the

dynamic response.

Fig. 6 shows the measurement-based mode shapes identified using the EFDD algorithm for a

selected number of the bridge modes.

Table 1 summarizes, the modal parameters identified from the PP and the EFDD techniques and

the mode classification. Specifically, Table 1 compares the corresponding mode shapes and scaled

modal vectors obtained from the two different output-only identification techniques through the

NMD φA k,

φB j,

,( )
1 MAC φA k,

φB j,

,( )–

MAC φA k,

φB j,

,( )
------------------------------------------------=
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frequency discrepancy DF = |( fEFDD − fPP)/fEFDD|, the MAC and the NMD. Since the lateral mode

shapes are measured in only 5 points (Fig. 4), the correlation of such modes is limited to the

Fig. 6 Vibration modes identified from ambient vibration measurements (EFDD)

Table 1 Comparison between the modal parameters identified from EFDD and PP techniques

Mode
identifier

fEFDD ζEFDD fPP DF MAC NMD

(Hz) (%) (Hz) (%) (%)

L1 1.419 3.36 1.436 1.20 - -

V1+ 1.973 3.64 1.978 0.25 0.9989 3.38

V2+ 2.243 1.82 2.245 0.09 0.9998 1.35

L2 2.430 3.18 2.461 1.28 - -

L3 3.408 1.79 3.394 0.41 - -

V3+ 4.877 1.14 4.884 0.14 0.9999 1.10

V4+ 6.009 0.94 6.006 0.05 0.9966 5.86

V5+ 6.341 0.83 6.337 0.06 0.9941 7.69

V1− 7.965 0.64 7.966 0.01 0.9954 6.82

V6+ 9.562 0.75 9.576 0.15 0.9971 5.35
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difference DF in Table 1. Inspection of the correlation values listed in Table 1 confirms the excellent

agreement between the two methods in terms of both natural frequencies (with the maximum

differences not exceeding 0.50% for the vertical modes and 1.25% for the lateral ones) and modal

deflections (with a minimum MAC value of 0.9926, corresponding to a NMD of 8.61%). The

correspondence between the two techniques is likely to occur in the present case, since the normal

modes are well-separated in the investigated frequency range.

The measurement-based estimates of the damping ratios identified by the EFDD technique, shown

in Table 1, range between 0.64% and 3.64% which are reasonable values for concrete structures.

Table 1 shows that the modes L1, L2, L3, V1+ and V2+, involving significant transverse or

longitudinal displacements (Fig. 6), exhibit higher damping ratios than the ones generally estimated

at the low level of ambient vibrations. This is conceivably explained by assuming that the expansion

joints provide a significant contribution to the energy dissipation.

5. F.E. modelling and structural identification

The experimental investigation was preceded by the development of a 3D finite element model

(Fig. 7), based on as-built drawings of the bridge and on-site geometric survey. The model was

formulated using the following assumptions:

a) four-node shell elements were used to represent the deck slab and the stiffening diaphragms of

the outer columns;

b) the arch footings and the outer columns footings were considered as fixed;

c) the Poisson’s ratio of the concrete was held constant and equal to 0.20;

d) a weight per unit volume of 24.0 kN/m3 was assumed for the concrete of arches, girders, floor

beams, columns, bracing members and stiffening diaphragms;

e) an “equivalent” weight per unit volume of 30.5 kN/m3 was assumed for the deck concrete slab

in order to account for the effects of the asphalt pavement and walkways.

The model results in a total of 384 nodes, 464 beam elements and 102 shell elements with 2184

active degrees of freedom.

A preliminary dynamic analysis, was performed to check the similarity between experimental and

Fig. 7 3D view (with element extrusion) of the bridge F.E. model
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theoretical modal parameters. In this analysis, the concrete Young’s modulus was assumed equal to

32.0 GPa for all structural members. It is noted that the assumed value seems to be rather

conservative, based on the results of compression tests of cored concrete samples carried out for the

Spans 03 and 05 of the viaduct; the tests provided compressive strength fc ranging between 30.0 and

54.0 N/mm2 while the elastic modulus was in the range of 32.0-38.0 GPa.

The correlation between the dynamic characteristics of the base model and the experimental

results is shown in Table 2 via the absolute frequency discrepancy, the MAC and the NMD. Table 2

shows imperfect correlation, with frequency discrepancies ranging up to about 9%. However, the

correlation between theoretical and experimental behaviour, notwithstanding its roughness, seems to

provide a sufficient verification of the model main assumptions, being a one-to-one correspondence

between the mode shapes with a worst MAC value of 0.9073 (corresponding to a NMD of about

32%).

Since the geometry of the bridge was accurately surveyed in the field and the soil-structure

interaction is hardly involved at the low level of ambient vibrations, the main uncertainties are

conceivably related to the elastic properties of the concrete. Hence, the distribution of the Young’s

modulus over the entire bridge was updated and two different sets of updating parameters were

used. In order to limit the number of parameters in the structural identification procedure and to

have a well-conditioned updating problem, the bridge was divided in 7 and 10 regions, respectively

(Fig. 8), with the concrete Young’s modulus being assumed as constant within each zone. The

corresponding models are herein after referred to as 7-Parameters model and 10-Parameters model,

respectively. The second set of updating parameters (Fig. 8b) was suggested by engineering

judgement so that the successive steps of the arch erection are roughly accounted for; furthermore,

the first set (Fig. 8a), characterised by a lower number of updating parameters, may be considered

as a special case of the second set (Fig. 8b) so that direct comparison of the optimal estimates is

possible between the two sets.

In principle, the 10-Parameters model should provide, after the updating, a better approximation

of the observed modal behaviour of the bridge than the 7-Parameters model, not only due to the

higher number of updating parameters but also because the compressive tests carried out on the

other spans of the viaduct revealed a non-homogenous distribution of the elastic modulus along the

Table 2 Correlation between theoretical (base model) and experimental modal behaviour

Mode
identifier

fEFDD fFEM DF MAC NMD

(Hz) (Hz) (%) (%)

L1 1.419 1.443 1.69 - -

V1+ 1.973 1.795 9.02 0.9894 10.34

V2+ 2.243 2.261 0.80 0.9513 22.63

L2 2.430 2.294 5.60 - -

L3 3.408 3.219 5.55 - -

V3+ 4.877 4.457 8.61 0.9736 16.46

V4+ 6.009 5.617 5.62 0.9472 23.61

V5+ 6.341 6.268 1.15 0.9437 24.43

V1− 7.965 7.354 7.67 0.9634 19.50

V6+ 9.562 9.045 5.41 0.9073 31.97
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arches, with the lower regions being generally characterized by a better quality of the concrete.

Recalling that the updating of N parameters in a model via system identification requires

experimental evaluation of at least N values and that both the maximum number of updating

parameters and the identified natural frequencies are 10, the structural parameters were determined

by minimising the difference between theoretical and experimental natural frequencies through the

procedure proposed in Douglas and Reid (1982). However, after the updating, a complete

correlation analysis was carried out between theoretical and experimental modal parameters.

5.1 Model updating technique

According to Douglas-Reid approach, the dependence of the model natural frequencies (or in

general of a theoretical response parameter) on the uncertain structural parameters Xk (k = 1, 2,…, N)

is approximated around the current values of Xk, by the following:

(8)fi
* X1 X2 … XN, , ,( ) AikXk BikX k

2
+[ ] Ci+

k 1=

N

∑=

Fig. 8 Regions selected for the Young’s modulus updating:(a) 7-Parameters model, (b) 10-Parameters model
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where fi
* represents the approximation of the i-th frequency of the finite element model.

Eq. (8) clearly shows that (2N + 1) coefficients Aik, Bik and Ci must be determined before to

compare each fi
* to its experimental counterpart in a system identification algorithm. In order to

evaluate these constants, engineering judgement is first used to estimate a base value of the

structural parameters Xk
B (k = 1, 2,…, N) and the range in which such variables can vary. Let us

denote the lower and upper limits of the unknown parameters as Xk
L and Xk

U (k = 1, 2,…, N),

respectively:

Then, the (2N + 1) constants on the right hand side of Eq. (8) are determined by computing the i-th

natural frequencies fi
FEM of the finite element model for (2N + 1) choices of the unknown

parameters. The first choice of the structural parameters corresponds to the base values; then each

structural unknown is varied, one at time, from the base value to the upper and lower limit,

respectively. Thus, the (2N + 1) conditions used to evaluate the constants in Eq. (8) are:

(9)

Once the coefficients Aik, Bik and Ci have been computed, the approximation (8) is completely

defined and it can be used to update the structural parameters. The optimal parameter estimates are

defined to be the values which minimise the following:

(10)

where fi represents the i-th experimentally identified frequency and wi is a weighting constant. In the

present application, unit weighting constants were assumed and the well-known Rosenbrock’s

method (Rosenbrock 1960) was used to minimize the error function (10).

Finally, it is worth underlining that:

a) in principle, the quadratic approximation (8) is as better as the base values are closer to the

solution. Indeed, the accuracy and stability of the optimal estimates may be readily checked

either by the complete correlation with the experimental data or by repeating the procedure with

new base values;
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b) for complex systems, especially for arch bridges or cable-stayed bridges often exhibiting similar

mode shapes, the use of the Douglas-Reid method should prevent misleading correlation

between theoretical and experimental mode shapes.

5.2 Model updating results

Table 3 lists the optimal estimates (EF) of the elastic modulus of the two models, the base values

(EB) and the assumed lower (EL) and upper (EU) limits. Furthermore, Fig. 9 shows the optimal

estimates normalized with respect to the initial value. By examining Table 3 and Fig. 9, the

following comments can be made:

Fig. 9 Optimal estimates of the structural parameters

Table 3 Changes in the structural parameters selected for the model updating

Region
EL 

(GPa)
EB

(GPa)
EU 

(GPa)

7-P Model 10-P Model

EF (GPa) EF (GPa)

  1 25.00 32.00 45.00 33.99 36.96

  2 20.00 32.00 45.00 30.85 30.33

  3 20.00 32.00 45.00 41.34 41.20

  4 25.00 32.00 45.00 40.54 39.82

  5 25.00 32.00 45.00 28.37 27.90

  6 20.00 32.00 45.00 28.64 29.96

  7 25.00 32.00 45.00 36.57 43.00

  8 25.00 32.00 45.00 36.57 40.49

  9 25.00 32.00 45.00 36.57 30.32

10 25.00 32.00 45.00 36.57 39.31
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1. the optimal estimates of the Young’s modulus range between 28.37 and 41.34 GPa in the

updated 7-Parameters model and between 27.90 and 43.00 GPa in the updated 10-Parameters

model, suggesting a satisfactory quality of the concrete and a good state of preservation of the

bridge;

2. the inspection of Table 3 and Fig. 9 reveals that the 7- and 10-Parameters models provided

coherent information on the distribution of the Young’s modulus, with the optimal estimates

obtained from the two models, although numerically different, being in good agreement. This

correspondence provides an important indication on the reliability of the numerical estimates;

3. the parameters 2-6 (corresponding to the vertical columns of Fig. 8) are nearly equal between

the 7- and 10-Parameters optimal models while the main differences between the updated

parameters of the two models are related to the concrete of the arches. The 7-Parameters

model, as it has to be expected, provided an average value while the 10-Parameters model

converged to a non-homogeneous distribution of the Young’s modulus, characterised by

significantly higher values at the bottom of the arches and lower values at the top (where the

concrete casting was conceivably more difficult). As previously said, this non-homogeneous

distribution of the elastic modulus along the arches was somewhat expected based on the

results of compressive tests carried out on the other spans of the viaduct. Hence, the 10-

Parameters model seems to provide a better approximation of the bridge in its present

condition; this hypothesis is also confirmed by a better correlation with the measurement-based

natural frequencies and mode shapes.

The modal characteristics of the 10-Parameters updated model are compared with the

experimental data in Table 4. It can be observed that the maximum relative error between natural

frequencies, which was before updating 9.02% (Table 2), became less than 4.0%. The measurement-

based mode shapes and computed updated mode shapes, shown in Fig. 10 for a selected number of

modes, exhibit a very good match as well and the correlation of mode shapes was generally

improved, with MAC values ranging from about 0.92 to 0.99.

Table 4 Correlation between the modal behaviour of the 10-Parameters updated model and the experimental
results

Mode
identifier

fEFDD fFEM DF MAC NMD

(Hz) (Hz) (%) (%)

L1 1.419 1.473 3.81 - -

V1+ 1.973 1.907 3.35 0.9898  10.15

V2+ 2.243 2.228 0.67 0.9916   9.23

L2 2.430 2.486 2.30 - -

L3 3.408 3.381 0.79 - -

V3+ 4.877 4.886 0.18 0.9723 16.88

V4+ 6.009 6.043 0.57 0.9259 28.28

V5+ 6.341 6.226 1.81 0.9188 29.73

V1− 7.965 7.904 0.77 0.9683 18.09

V6+ 9.562 9.548 0.15 0.9251 28.45
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6. Conclusions

A rational methodology for the dynamic-based assessment of R.C. arch bridges has been applied

in the paper. The outlined approach is based on ambient vibration testing, output-only modal

identification and updating of the uncertain structural parameters of a F.E. model.

Within the frequency range 0-11 Hz, 7 vertical and 3 lateral modes were successfully identified

using the classical Peak Picking and the Enhanced Frequency Domain Decomposition techniques,

with an excellent agreement being found between the modal estimates obtained from the two

different techniques.

The experimental investigation was complemented by the development of a 3D finite element

model, based on as-built drawings of the bridge and on-site geometric survey. The comparison

between the dynamic characteristics of the base model and the experimental results shows imperfect

correlation, with the maximum error between the model and test frequencies being about 9%.

Fig. 10 Experimental (EFDD) and theoretical (10-Parameters updated model) mode shapes
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However, the correlation between theoretical and experimental behaviour provided a sufficient

verification of the model main assumptions, being a one-to-one correspondence between the mode

shapes and a worst MAC greater than 0.90.

Successively, the Young’s moduli of the concrete main components were successfully updated in

the model to enhance the match between theoretical and experimental modal behaviour through the

simple technique proposed by Douglas and Reid (1982). Since the updated model turned out to fit

accurately the identified modal parameters (natural frequencies and mode shapes), ambient vibration

testing and F.E. updating provided an accurate dynamic-based assessment of the bridge. Updating

results suggested a satisfactory quality of the concrete and a good state of preservation of the

bridge.
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