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Abstract. This paper presents a virtual boundary element-equivalent collocation method (VBEM) for
the plane magnetoelectroelastic solids, which is based on the fundamental solutions of the plane
magnetoelectroelastic solids and the basic idea of the virtual boundary element method for elasticity.
Besides all the advantages of the conventional boundary element method (BEM) over domain
discretization methods, this method avoids the computation of singular integral on the boundary by
introducing the virtual boundary. In the end, several numerical examples are performed to demonstrate the
performance of this method, and the results show that they agree well with the exact solutions. So the
method is one of the efficient numerical methods used to analyze megnatoelectroelastic solids.

Key words: magnetoelectroelastic solids; plane problem; virtual boundary element; fundamental solution;
collocation method.

1. Introduction

Because of possessing mechanical, electric and magnetic field coupling capacity, the

magnetoelectroelastic solids become a kind of new functional material, and show better foreground

in many high-tech areas. Over the years, a large amount of studies have been done in mechanics,

materials science and physics fields (Liu et al. 2001, Wang and Shen 2002, 2003, Pan and Heyliger

2003, Wang and Mai 2004, Jiang and Ding 2004) and it has become a new cross subject. Due to

multi-fields coupling, the magnetoelectroelastic solids problem is solved more difficultly than

elasticity one.

As for numerical solution of magnetoelectroelastic solids problem, to the author’s knowledge, a

little of work has been done. Buchanan (2004) used the finite element method to analyze the

† Professor, Corresponding author, E-mail: ywa@dlut.edu.cn
‡ Doctoral Candidate, E-mail: li_xiaochuan@tom.com
‡† Associate Professor, E-mail: yugr2004@yahoo.com

DOI: http://dx.doi.org/10.12989/sem.2006.22.1.001



2 Wei-An Yao, Xiao-Chuan Li and Gui-Rong Yu

vibration problem of infinite plates. Garcia Lage et al. (2004) presented a partial mixed layer wise

finite element model for adaptive plate structures. Ding and Jiang (2003, 2004) obtained the

fundamental solution and the boundary integral formulation of 2D and 3D problems in

magnetoelectroelastic solids, and utilized the boundary element method (BEM) to analyze them.

However, the classical boundary element methods (BEM) all inevitably come across the

computation of singular integral, which are caused when the source point lies in the integral element

or closes to the integral element. In order to solve this problem, Sun et al. (1997, 1999) developed

the virtual boundary element method (VBEM) for elasticity. The method skillfully avoids the

computation of singular integral, and the numerical results with it show higher precision. Recently,

Yao and Wang (2005) successfully applied VBEM to analyze the mechanical behavior of the

piezoelectric media. The method merely uses collocations technology on real and virtual boundary,

so it is a kind of boundary-type meshless method, simultaneity, is integrate-free one. In resent years,

as more researchers pay attention to the meshless method, many achievements have obtained in the

area. As for the boundary-type meshless methods, Mukherjee et al. (1997, 2000) proposed the

boundary node method (BNM) combined of moving least squares (MLS) interpolation with

boundary integral equations (BIE) and solved three-dimensional linear elasticity problems; Chen

(2002) presented the boundary particle method (BPM) based on the multiple reciprocity principle

and applied either high-order nonsingular general solutions or singular fundamental solutions as the

radial basis function and gave numerical investigations on Helmholtz problems and convection-

diffusion problems. By far, the VBEM has not been used to analyze the magnetoelectroelastic solid

problems yet.

Based on the basic idea of VBEM for elasticity and the fundamental solutions presented by Ding

and Jiang (2004), this paper presents the virtual boundary element-equavilent collocation method for

the plane problem of magnetoelectroelastic solids. Finally, several numerical examples are employed

to verify the performance of the method presented in this paper, and the numerical results show that

they agree well with the exact solution available. So the virtual boundary element is very efficient

numerical method to analyze the plane magnetoelectroelastic solids.

2. Functional equations and boundary conditions

The transversely isotropic magnetoelectroelastic solids are studied here, where the z-axis is the

polar direction. If geometry size, load etc. in y direction satisfy the given condition, the problem can

be simplified as a plane problem in the xoz plane. The functional equations of the plane problem are

as follows: 

(1) Governing equations:

(1)

(2) Gradient equations:

∂ σx

∂ x
---------

∂ τxz

∂ z
----------+ fx=

∂ τxz

∂ x
----------

∂ σz

∂ z
---------+ fz=,

∂Dx

∂ x
----------

∂Dz

∂ z
---------+ ρ=

∂Bx

∂ x
---------

∂Bz

∂ z
---------+ 0=,⎩
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⎧
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(2)

(3) Constitutive equations:

(3)

where u, w are displacement components in the x, z direction, respectively; σx, σz and τxz are stress

components, respectively; Dx, Dz and Φ are electric displacement components and electric potential,

respectively; Bx, Bz and Ψ are magnetic induction components and magnetic potential, respectively;

fx, fz and ρ are body force components and density of free charges in region V, respectively; cij, κij

and μij are elastic modus, dielectric constant and magnetic constants, respectively; eij , qij and αij are

piezoelectric, piezomagnetic and electromagnetic constants, respectively.

And the boundary conditions on Γ are expressed as: 

(1) mechanical boundary conditions

                (4)

 (5)

where ni are the direction cosines of the outward normal on the boundary Γ.

(2) electrical boundary conditions

 (6)

    (7)

(3) magnetic boundary conditions

 (8)
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(9)

meanwhile .

3. The fundamental solution (Ding and Jiang 2004)

The fundamental solutions to the problem are necessary when VBEM is applied to solve that one.

Ding and Jiang (2004) obtained the two-dimensional fundamental solutions for an infinite

magetoelectroelastic plane by virtue of the trail-and error method to construct harmonic functions.

For sake of convenience, the following notations are introduced:

Un(n = 1~4) are the general displacemen u, w, Φ and Ψ, respectively; Tn(n = 1~7) are the general

stress σx, τxz, σz, Dx, Dz, Bx and Bz, respectively;  and  are, respectively, the

general displacements,  and , and the general stress,  and

, at field point X(x, z) due to x- and z-direction unit point force ( j = 1, 2), unit point charge

( j = 3) and unit point current ( j = 4) acting at a source point .

As showed by Ding and Jiang (2004), the fundamental solutions to the problem of

magetoelectroelastic plane are as follows:

 

(10)

(11)
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(12)

(13)

(14)

where zi = siz and , in addition si, kmi, ωmi, λi, αi, βi and γi all are relate to material

constants of magnetoelectroelastic solid, and their expression are gave by Ding and Jiang (2004).

4. Virtual boundary element−equivalent collocation method

Above all, extend the region V to the infinite region, in which a virtual boundary Γ' is selected to
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be similarity with real boundary, as shown in Fig. 1. The similarity ratio between the virtual

boundary and the real one is discussed in next section in detail. Then discretize the real boundary Γ

and the virtual boundary Γ', and choose Ν points Xξk, Xηk  on them, respectively.

Suppose there are general unknown virtual loads  on the virtual

boundary, where  and ak4 denote x- and z-direction point force, point charge and point

current at the point Xηk , respectively.

Assume that, in region V, there are M points Xdm , where subjected to x- and z-

direction point force and point charge dm1, dm2 and dm3, respectively. According to the fundamental

solutions for plane magnetoelectroelastic solids problem and superposition principle, the expressions

of the displacements, electric potential, magnetic potential, stress, electric displacements and

magnetic induction at random point X in region V are as follows:

 (15)

(16)

Eq. (15) and Eq. (16) satisfy all the differential Eqs. (1)-(3) in the domain V, but include 4N

unknown values . Further, let Eq. (15) and Eq. (16) satisfy given

boundary conditions at points , so 4N algebra equations can be obtained in

matrix form

HA = Y  (17)

where H represents an influence matrix of dimensions 4N × 4N, A = [a11 a12  a13  a14 … aN1  aN2  aN3

aN4]
T is a undetermined vector of dimension 4N, and Y stands for a 4N dimensional vector which is

formed according to the given boundary conditions at points  on the real

boundary.

Solve above equations, and all the unknown virtual loads akj can be achieved. Finally, substitute

obtained virtual loads akj into Eq. (15) and Eq. (16), numerical solutions of the displacement,

electric potential, magnetic potential, stress, electric displacement and magnetic induction et al. at

random points in domain V are obtained.

k 1 2 … N, , ,=( )
ak1 ak2 ak3 ak4, , ,( ) k 1 2 … N, , ,=( )
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∑
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∑
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Fig. 1 The real boundary and its corresponding virtual boundary
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5. Numerical examples

In the following the numerical examples, the composite materials BaTiO3-CoFe2O4 are specified,

which material constants are given by Ding and Jiang (2004) as

(×1010 N/m2)

(C/m2)

(N/Am)

(×10−8 C/Vm)

(×10−12 Ns2/C2)

(×10−6 Ns/VC)

Example 1: Consider a magnetoelectroelastic rectangle domain, as shown in Fig. 2, under

uniform axial tension, electrical displacement or magnetic induction, respectively. The dimension of

the rectangle is a = 3 cm, h = 10 cm. In terms of its symmetry, only the quarter part of the rectangle

domain in top right corner is studied. The problem is treated as a plane-strain one and the boundary

conditions are

u = τxz = Dx = Bx = 0,  at x = 0  (18)

σx = τxz = Dx = Bx = 0, at x = a (19)

τxz = w = Φ = Ψ = 0,  at z = 0 (20)

and the boundary condition at z = h is

c11 16.6=    c12 7.7=    c13 7.8=    c33 16.2=    c44 4.3=    c66 4.45=, , , , ,

e31 4.4–=    e33 18.6=    e15 11.6=, ,

d31 580.3=    d33 699.7=    d15 550=, ,

ε11 1.12=    ε33 1.26=,

g11 5.0=    g33 3.0=,

μ11 5.0=    μ33 10.0=,

Fig. 2 The rectangle domain problem for the megnatoelectroelastic solid
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(a) under uniform tension

    (21)

(b) under uniform electric displacement

  (22)

(c) under uniform magnetic induction 

 (23)

In the calculation, set the ratio between the virtual boundary and the real boundary as 2.5, take

total 40 collocations on the virtual boundary and the real boundary, respectively. The numerical

results at the point (a, h) are given in Table 1, where the values in the parenthesis are the exact ones

which are calculated with formulas presented by Ding and Jiang (2004). The results show that the

numerical solutions by VBEM have higher accuracy. Table 2 lists the results with different ratio of

between virtual boundary and the real boundary under uniform tension, which validates the

explanation about scope of ratio by Sun et al. (1999).

σz 10 N/m
2

=   τxz Dz Bz 0 at z= = =, h=

Dz 10
9–

C/m
2

=   σz τxz Bz 0 at z= = =, h=

Bz 10
7–

N/Am=   σz τxz Dz 0 at z= = =, h=

Table 1 The compassion of the numerical results and exact ones in the rectangle domain problem

Case
u

(×1013 m)
w

(×1012 m)
Φ

(×103 V)
Ψ

(×104 A)
σz

(N/m2)
Dz

(×109 C/m2)
Bz

(×107 N/Am)

a
−9.49977

(−9.49976)
5.68337

(5.68338)
9.49550

(9.49549)
2.13907

(2.13906)
10.00000

(10.00000)
0.00000

(0.00000)
0.00000

(0.00000)

b
−2.10784

(−2.10785)
0.949553

(0.949549)
−6.28945

(−6.28944)
0.256686

(0.256691)
0.00000

(0.00000)
1.00000

(1.00000)
0.00000

(0.00000)

c
5.07666

(5.07667)
2.13906

(2.13906)
2.56691

(2.56691)
−7.5213

(−7.5213)
0.00000

(0.00000)
0.00000

(0.00000)
1.00000

(1.00000)

Table 2 The σz, Φ and ψ at the point (a, h) under simple tension when ratio between the virtual boundary and
the real boundary is given different values

Ratio 1.2 1.3 1.5 1.8 2.0 2.5 3.0 3.5
Exact 

solutions

σz

(N/m2)

VBEM 10.4832 10.0254 10.0203 10.0008 9.99990 10.000 10.000 10.000 10.000

Error (%) 4.832 0.254 0.203 0.008 −0.001 0.000 0.000 0.000 —

Φ
(×103 V)

VBEM 7.02874 9.53179 9.36279 9.49960 9.52025 9.49550 9.49550 9.49549 9.49549

Error (%) −25.978 0.382 −1.398 0.043 0.261 0.000 0.000 0.000 —

ψ
(×104 A)

VBEM 5.20744 1.77593 2.34816 2.14990 2.13717 2.13908 2.13908 2.13906 2.13906

Error (%) 143.445 −16.976 9.775 0.507 −0.088 0.000 0.000 0.000 —
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Example 2: Consider a simply-supported rectangle beam, as shown in Fig. 3, subjected to

distributed load on the upper surface, . The dimension of beam is

L = 20 cm, h = 2 cm. The problem is treated as a plane-stress one and the boundary conditions are

 (24)

         (25)

              (26)

In the calculation, set the ratio of the virtual boundary and the real boundary as 2.5, take total 80

collocations on the virtual boundary and the real boundary, respectively. The numerical results at 8

reference points are given in Table 3, where the values in the parenthesis are the exact ones which

are calculated with formulas presented by Ding and Jiang (2004).

q x( ) q0sinπx/L q0 10N/m
2

–=( )=

σz x( ) q0sinπx/L    τxz Dz Bz 0= = =    at z h/2=, ,=

σz τxz Dz Bz 0= = = =    at z h/2–=,

σx w Φ Ψ 0= = = =    at x 0 or L=,

Fig. 3 A simple-supported rectangle beam under distributed load

Table 3 The comparison of the numerical results and exact ones in the simple-supported rectangle beam

Points
w

(×108 m)
Φ

(×10 V)
ψ

(×102 A)
σz

(N/m2)
Dz

(×1010 C/m2)
Bz

(×109 N/Am)
σx

(N/m2)

(0.100, 0.000)
−0.2000

(−0.2000)
−0.2314

(−0.2314)
−0.1808

(−0.1808)
−4.9995

(−5.0000)
−0.1107

(−0.1114)
−0.2289

(−0.2282)
0.02748

(0.02818)

(0.125, 0.000)
−0.1847

(−0.1847)
−0.2138

(−0.2138)
−0.1671

(−0.1671)
−4.6193

(−4.6190)
−0.1029

(−0.1029)
−0.2109

(−0.2109)
0.02602

(0.02604)

(0.150, 0.000)
−0.1414

(−0.1414)
−0.1636

(−0.1637)
−0.1279

(−0.1279)
−3.5354

(−3.5153)
−0.07875

(−0.07875)
−0.1614

(−0.1614)
0.01990

(0.01993)

(0.175, 0.000)
−0.07652

(−0.07652)
−0.08856

(−0.08857)
−0.06921

(−0.06921)
−1.9133

(−1.9130)
−0.04269

(−0.04262)
−0.08688

(−0.08734)
0.01074

(0.01078)

(0.100, 0.010)
−0.1993

(−0.1993)
−0.08726

(−0.08728)
−0.2184

(−0.2184)
−10.0000

(−10.0000)
0.0000

(0.0000)
0.0000

(0.0000)
−610.4

(−610.4)

(0.125, 0.010)
−0.1842

(−0.1842)
−0.08062

(−0.08063)
−0.2018

(−0.2018)
−9.2388

(−9.2388)
0.0000

(0.0000)
0.0000

(0.0000)
−564.0

(−564.0)

(0.150, 0.010)
−0.1409

(−0.1409)
−0.06170

(−0.06172)
−0.1544

(−0.1544)
−7.0711

(−7.0711)
0.0000

(0.0000)
0.0000

(0.0000)
−431.6

(−431.6)

(0.175, 0.010)
−0.07628

(−0.07628)
−0.03338

(−0.03340)
−0.08357

(−0.08357)
−3.8268

(−3.8268)
0.0000

(0.0000)
0.0000

(0.0000)
−233.6

(−233.6)
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Example 3: Consider the plane problem of an infinite magnetoelectroelastic material with a

circular hole, as shown in Fig. 4, subjected to a sinusoidal surface charge distribution ω = −ω0sinθ

(ω0 = 1C) on the rim of the hole. The radius of the hole is r0 = 1 cm. The problem is treated as a

plane-strain one and the boundary conditions are

 (27)

In the calculation, set the ratio of the virtual boundary and the real boundary as 0.7, take total 50

collocations on the virtual boundary and the real boundary, respectively. (Note: Presently no exact

solution is found)

Figs. 5-8 show two displacement components, u and w, electric potential Φ and magnetic potential

Ψ around the hole subjected to a sinusoidal surface charge distribution.

Figs. 9-11 present the circumferential components of stress σθ, electric displacement Dθ and

magnetic induction Bθ at the perimeter of the hole. They all reach their maximum value at θ = 0o

and θ = 180o  as indicated in the figures.

Dr ω    σr τrθ Br 0  when r r0== = =,–=

Fig. 4 Infinite plane magnetoelectroelastic solid with a circular hole subjected to a sinusoidal surface charge
along the surface of the hole

Fig. 5 Distribution of u versus θ on the rim of the
circular hole subjected to a sinusoidal surface
charge

Fig. 6 Distribution of w versus θ on the rim of the
circular hole subjected to a sinusoidal surface
charge
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Example 4: Consider the plane problem of an infinite magnetoelectroelastic material with a

circular hole, as shown in Fig. 12, respectively subjected to uniform distributed load ,

electric displacement  and magnetic induction  on infinite, but no load on the rim

of the hole. The radius of hole is still r0 = 1 cm. The problem is treated as a plane-strain one, while

the boundary condition at the rim of the hole as

(28)

and the boundary condition on infinite as 

σz

∞

σ0=

Dz

∞

D0= Bz

∞

B0=

σr τrθ Dr Br 0= = = = at r r0=

Fig. 7 Distribution of Φ versus θ on the rim of the
circular hole subjected to a sinusoidal surface
charge

Fig. 8 Distribution of Ψ versus θ on the rim of the
circular hole subjected to a sinusoidal surface
charge

Fig. 9 Distribution of σθ versus θ on the rim of the
circular hole subjected to a sinusoidal surface
charge

Fig. 10 Distribution of Dθ versus θ on the rim of the
circular hole subjected to a sinusoidal surface
charge

Fig. 11 Distribution of Bθ versus θ on the rim of the circular hole subjected to a sinusoidal surface charge
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(a) under uniform distributed load 

(29)

(b) under electric displacement 

(30)

(c) magnetic induction 

(31)

In the calculation, set the ratio of the virtual boundary and the real boundary as 0.7, take total 60

collocations on the virtual boundary and the real boundary, respectively. (Note: Presently no exact

solution is found)

σz

∞

σr θ( ) σ0sin
2
θ τrθ θ( ) σ0sinθcosθ=    Dr Br 0 when r ∞→= =, ,=

Dz

∞

Dr θ( ) D0sinθ Dθ θ( ) D0cosθ=    σr Br 0 when r ∞→= =, ,=

Bz

∞

Br θ( ) B0sinθ Bθ θ( ) B0cosθ=    σr Dr 0 when r ∞→= =, ,=

Fig. 12 A circular hole in an infinite plane magnetoelectroelastic solid

Fig. 13 The distribution of σr versus r when θ = 0
and subjected to σ

z

∞

Fig. 14 The distribution of σθ versus r when θ = 0
and subjected to σ

z

∞
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Fig. 13 and Fig. 14 indicate the distribution of σr, σθ with increase of r when θ = 0 due to .

As shown in Fig. 14, σθ is the maximum at rim of the hole and the stress concentration factor is

2.678. On infinite distance, both drive to single tension state, that is, .

Fig. 15 and Fig. 16 indicate the distribution of σr, σθ with the increase of r when θ = π/2 due to

. As shown in the Figs. 15-16, σr gradually rises with increase of r and finally approaches to σ0;

negative σθ exists on the region near the rim of the hole, but it quickly vanishes with the increase

of r.

σz

∞

σr 0→ σθ σ0→,

σz

∞

Fig. 15 The distribution of σ
r
 versus r when θ = π/2

and subjected to σ
z

∞

Fig. 16 The distribution of σθ versus r when θ = π/2
and subjected to σ

z

∞

Fig. 17 Distribution of σθ versus θ on the rim of the
circular hole subjected to σ

z

∞

Fig. 18 Distribution of Dθ versus θ on the rim of the
circular hole subjected to σ

z

∞

Fig. 19 Distribution of Bθ versus θ on the rim of the
circular hole subjected to σ

z

∞

Fig. 20 The result of σθ at the point (1, 0) subjected
to , when the radius of the virtual
boundary is given different values

σ
z

∞
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Figs. 17-19 indicate the distribution of σθ, Dθ and Bθ at the rim of the hole due to . The

maximum values of σθ are observed at θ = 0o and θ = 180o, whereas Dθ reaches its maximum value

at θ = 65o and θ = 115o, and Bθ reaches its maximum value at θ = 70o and θ = 110o as indicated in

the Figs. 17-19.

Fig. 20 indicates numerical results with the different virtual boundary due to . The figure

shows that the perfect results can be obtained when take the virtual boundary in sizeable scopes.

Here it must be explained that in a sense the virtual boundary element method approaches the

conventional boundary element method when the virtual boundary approaches the real boundary,

σz

∞

σz

∞

Fig. 21 Distribution of σθ versus θ on the rim of the
circular hole subjected to D

z

∞

Fig. 22 Distribution of Dθ versus θ on the rim of the
circular hole subjected to D

z

∞

Fig. 23 Distribution of Bθ versus θ on the rim of the
circular hole subjected to D

z

∞

Fig. 24 Distribution of σθ versus θ on the rim of the
circular hole subjected to B

z

∞

Fig. 25 Distribution of Dθ versus θ on the rim of the
circular hole subjected to B

z

∞

Fig. 26 Distribution of Bθ versus θ on the rim of the
circular hole subjected to B

z

∞
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that is, there are singular integral and major errors; on the other hand, that the smaller radius of

virtual boundary leads to ill-conditioned coefficient matrix and bad computational accuracy.

Figs. 21-23 indicate the distribution of σθ, Dθ and Bθ at the rim of the hole due to . They all

reach theirs maximum value at θ = 0o and θ = 180o.

Figs. 24-26 indicate the distribution of σθ, Dθ and Bθ at the rim of the hole due to . The

maximum values of σθ and Bθ are observed at θ = 0o and θ = 180o, whereas Dθ reaches its

maximum value at θ = 70o and θ = 110o as indicated in Figs. 24-26.

6. Conclusions

The paper proposes the virtual boundary element-equivalent collocation method for the plane

problem of magnetoelectroelastic solids. The numerical results show that:

(1) The virtual boundary element method successfully avoids singular integral existed in classical

boundary element method. There is higher accuracy not only in the domain but also on the

boundary. The method is an efficient numerical approach for problem of magnetoelectroelastic

solids.

(2) When virtual boundary is outside of the real boundary, the ratio between the virtual boundary

and real boundary should be taken 1.5-3.5; otherwise the ratio should be taken 0.3-0.8.

(3) The virtual boundary method is comprehensible and legible, and is easy to implement by

program.

The paper only presents pilot study to the virtual boundary element method applied to

magnetoelectroelastic solids, and there is lots of work needed to be done in the further.
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