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Abstract. This paper presents a theoretical model for the behavior of partially confined axi-symmetric
reinforced concrete members subjected to axial load. The analysis uses the theories of elasticity and
plasticity to cover the full range of the concrete behavior. Analysis of the elastic range of the problem
involves boundary conditions that are defined along a relatively simple geometry. However, extending the
analysis into the plastic range involves difficulties that arise from the irregular geometry of the boundary
between the plastic zone and the elastic zone, a boundary which is also changing as the axial load
increases. The solution is derived by replacing the discrete steel ties with an equivalent tube of thickness
teq and by analyzing the concrete cylinder, which is uniformly confined by the equivalent tube. The
equivalency criterion initiates from a theoretical analysis of the problem in its elastic range where further
finite element analysis shows that this criterion is valid also for the plastic range of the cylinder material.
According to the proposed model, the efficiency of the lateral reinforcement can be evaluated by the
equivalent thickness teq. Comparison with published test results of confined reinforced concrete stress-
strain curves shows good agreement between the test and the analytical results. 
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1. Introduction 

1.1 Models of concrete confined by lateral ties

Early studies of confined concrete have shown that hydrostatic pressure (active pressure) on

concrete cylinders increases concrete strength and ductility (Richart et al. 1928). During the last

three decades, research has examined the effect of passive confinement due to lateral and

longitudinal reinforcement. Based on extensive study, researchers (e.g., Mander et al. 1984, Scott et al.

1982, Sheikh and Uzumeri 1980) arrived at a number of conclusions regarding the importance of
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concrete confinement, provided by the reinforcement. They found that in order to enhance the

behavior of RC structural elements under compression, lateral reinforcement should be placed at

relatively close spacing, the longitudinal reinforcement should be well distributed around the cross-

section perimeter and the yield strength of the lateral reinforcement should be increased. They also

found that spirals or circular hoops are more efficient than rectangular hoops. 

Research and modeling of concrete confined by lateral reinforcement (i.e., stirrups or ties) can be

classified into four main approaches (or stages). The first approach is empirical, in which the stress-

strain relationship of confined concrete were fitted to experimental results (Park et al. 1982, Fafitis

and Shah 1985, Hoshikuma et al. 1997). Another approach is based on a physical-engineering model

that deduces an arch action between the lateral reinforcement ties (or stirrups). This arch action,

which is presumed to be parabolic, provides the lateral pressure that causes the confined behavior of

the concrete core (Sheikh and Uzumeri 1982). Therefore, the “effectively confined core area”

(ECCA), has a parabolic shape in the vertical and horizontal directions. The parabolic shape and the

initial slope of the parabola (45o) were derived from experimental results (Sheikh and Uzumeri

1980). Further study was done by Mander et al. (1988) using the ECCA concept to develop a unified

stress-strain model for confined concrete with a monotonic and cyclic loading, based on an equation

proposed by Popovics (1973). The models that are based on the physical-engineering approach

assume that the lateral steel yields before the concrete reaches its confined strength. The third

approach is based either on the first or on the second approach, however, rather than assuming

yielding of the confining steel it includes computation of the steel stress (at the concrete peak stress)

either by introducing compatibility conditions (at the concrete-tie interface) or by introducing

empirical expressions (Saatcioglu and Razvi 1999). The compatibility conditions are solved by an

iterative procedure (Cusson and Paultre 1995) or by a direct formulation (Legeron and Paultre 2003).

The fourth approach was introduced by Karabinis and Kiousis (1994), which proposed a plasticity

model for the confined concrete core. The shape of the confined core, on which their model has been

applied, was based on the assumption of the parabolic arch action (Sheikh and Uzumeri 1980, 1982).

This paper presents a theoretical model for concrete confined by steel ties. It analyzes the concrete

behavior according to the theory of plasticity. However, instead of presuming a parabolic shape of

the effectively confined concrete core the current model proposes a way to analyze an equivalent

uniformly confined concrete cylinder. The equivalency criterion initiates from a theoretical analysis

of the problem in its elastic range. Nevertheless, further finite element calculations show that this

criterion is valid also in the non-linear range of the cylinder material and various experimentally

measured stress-strain relationships that were calculated by the proposed model show good

agreement with the experimental results. 

1.2 Basis for the current model

The solution to the problem of a cylinder subjected to axial pressure and confined by the passive

action of lateral elastic-perfectly plastic rings (see Fig. 1a) was presented by Eid (2004) and it is

valid for the elastic behavior of the cylinder. The variables of the elastic problem are as follows (see

also Fig. 1a):

a - cylinder’s radius;

b & t - width and thickness of the confining rings;

s - clear spacing between the rings;

q - axial pressure (positive in compression);
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Ec, ν - Young’s modulus and Poisson ratio of the cylinder;

Es - Young’s modulus of the confining rings;

m - confinement-to-cylinder modulus ratio, Es /Ec;

Additionally, in order to obtain a more general solution, which pertains to “families of cases”

these variables have been normalized into non-dimensional variables noted by an index “1” (e.g.,

b1 = b/a, s1 = s/a). The radius of the cylinder analyzed in this work (a) is equal to the radius of the

concrete core that is confined inside the lateral reinforcement (ties), i.e., it does not include the

concrete cover. 

The elastic solution shows that within a reduced cylinder radius (RCR) there is a zone of

uniformly distributed stresses, in which the tangential stress is equal to the radial stress and the axial

and shear stresses are equal to zero (Eid 2004) as shown in Fig. 2. This behavior within the RCR is

Fig. 1 Description of the problem: (a) Concrete cylinder confined by steel rings and (b) the equivalent
cylinder

Fig. 2 Contour maps of radial stresses (normalized with respect to the rings’ confining pressure p) for two
cases of spacing: (a) s1 = 0.3 and (b) s1 = 0.5, in a cylinder, confined by rings with b1 = 0.1 and ν = 0.2
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typical of a fully confined cylinder, which is acted along its surface by a uniform lateral pressure.

Unlike the elastic problem, in which the boundary conditions are defined along a relatively simple

geometry, developing this solution into the plastic range involves difficulties that arise from the

irregular geometry of the boundary between the plastic zone and the elastic zone, a boundary which

is also changing as the axial load increases. 

This mathematical difficulty leads to the need of an approximate solution for this problem. Based

on the concept of the RCR, the original problem can be represented by an equivalent model of a

concrete cylinder confined by a uniform steel tube. As opposed to the original problem, the

equivalent model has relatively simple boundary conditions, which make the problem simpler for

analysis by elasto-plastic material models.

2. Equivalent uniform confinement model

2.1 The concept of equivalent uniform confinement

The concept of the RCR that was observed in the elastic solution (Eid 2004) can be applied for

the full elasto-plastic analysis of an equivalent cylinder with uniform boundary conditions that are

provided by a uniform equivalent tube of constant thickness teq, and modulus of elasticity Eeq which

represents the ties (Fig. 1). The radius of the equivalent cylinder is taken as equal to that of the

original problem in order to include the confinement effect near the cylinder surface, outside the

elastically observed RCR (e.g., as in Fig. 2). Therefore, a proper criterion must be set for the

properties of the equivalent uniform tube. It should be noted that with regards to the equivalency

criterion the equivalent tube can be of any material (i.e., Eeq can be the modulus of elasticity of any

material). However, in order to preserve the response of the steel ties (to the action of the axial

pressure) during the elasto-plastic range of the analysis – the tube should respond in the same way

as the ties that it represents, hence, it should have their mechanical properties (i.e., Eeq = Es, Fig. 1).

Thus, an equivalency criterion is required only for setting the thickness teq of the tube. 

2.2 Equivalency criterion

Since the problem of a concrete column that is partially confined by steel ties is commonly

characterized by the axial stress-strain relationship, the axial strain εz is chosen here for determining

the equivalency criterion. This criterion initiates from the elastic analysis of a partially confined

cylinder, as explained in the following text. 

Consider the longitudinal (axial) strain of the partially confined cylinder due to the action of the

confining rings (Fig. 1) , which is given by:

(1)

where p is a lateral pressure that is applied by the ring (assumed constant over its width). The

function f2 is obtained from substitution of the stresses σz, σr and σθ in Eq. (1), where the

expressions of the stresses are given in Eid (2004). This substitution results in f2, which is a

function of the non-dimensional variables ν, β, r1, z1, s1, b1, and it is given by:

εz

c

εz

c
r z,( ) 1

Ec

----- σz ν σr σθ+( )–[ ] p

Ec
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∞
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(2)

where n is the number of pairs of rings applied symmetrically with respect to the origin and β and

f1(k1) are given by: 

(3)

(4)

where k is the wave number (a constant with a dimension of length−1) and k1 = ka. I0(ζ ) and I1(ζ )

are order zero and one modified Bessel functions (of the first kind) of the general argument ζ . The

geometrical variables in Eqs. (1)-(4) are defined in Fig. 1, and subscript “1” denotes their

normalization with respect to the radius a. 

Fig. 3 shows the variation of the strain  versus r/a (r1) for b1 = 0.1, s1 = 0.3 (Fig. 3a) and for

s1 = 0.5 (Fig. 3b). It can be seen in the figure that the longitudinal strain  obtained from the

elastic solution is also constant within an RCR but varies significantly near the cylinder surface. Let

 be the axial strain averaged over the radius at a given z due to the action of the rings. It is

further noted that when the axial strain is averaged over the full cylinder’s radius (i.e., within r = 0

to a) it is very close to the constant  within the RCR (  at z = 0, Fig. 3). 

Hence, the axial strain is averaged over the radius and along the longitudinal axis within a typical

confined zone between two pressure bands (i.e., within the range −(s + b)/2 < z < (s + b)/2, Fig. 1)
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c

Fig. 3 Distribution of the axial strain due to the ring action for (a) s1 = 0.3 and (b) s1 = 0.5, in a cylinder,
confined by rings with b1 = 0.1, t1m = 0.35 and ν = 0.2, Ec = 30000 MPa (Note that compression is
positive)
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and it is denoted here . Thus, for the partially confined cylinder (due to the action of the

confining rings), , is given by: 

(5)

It should be noted that the total average axial strain εz, avg is composed of the constant strain due

to the action of the longitudinal (axial) stress acting at the ends of the column, q, and of the average

axial strain of the partially confined cylinder due to the (elastic) action of the confining rings 

[given in Eq. (5)]. Thus, the total average axial strain εz, avg, is given by:

 (6)

It can be shown that the axial strain εz, tu in a cylinder that is fully confined by a tube of thickness teq,

with a confinement-to-cylinder modulus ratio m, radius a and under an axial pressure q, is given by:

 

(7)

 

The equivalent thickness teq is computed by equating the total average axial strain of the partially

confined cylinder εz, avg Eq. (6) to the axial strain of a fully confined equivalent cylinder (Eq. 7), as

follows: 

(8)

Rearranging terms in Eq. (8) yields an expression for the equivalent thickness teq:

 (9)

2.2.1 Calculation of the average axial strain

It is noted that the expression · (s1 + b1) · a (see Eq. 5) is also equal to the difference between

the averaged displacements of two cross-sections normal to the longitudinal (z) axis, located at a

distance of a typical zone Δz = s + b from each other. Hence, from Eq. (5) it follows that:
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where w is the axial displacement and ΔwΔz = s + b is the difference between axial displacements at

two points, located at a distance equal to that of a typical zone Δz = s + b.

The pressure acting on the cylinder’s surface due to the action of the confining rings is repeated

over a typical zone Δz. Therefore ΔwΔz = s + b is constant and it depends neither on z nor on r. This

deduction was confirmed by several examples with different problem’s parameters. For example,

Fig. 4 shows the axial displacements of several cross-sections for b1 = 0.1, s1 = 1.0, p/Ec =

3.33 · 10−6 and ν = 0.15. It can be seen that ΔwΔz = s + b remains constant for any radius r (or r1) or

for any axial coordinate z (provided that Δz = s + b).

Fig. 4 Distribution of normalized axial displacements resulting from the lateral pressure of the confining rings
along several cylinder’s cross-sections for b1 = 0.1, s1 = 1.0, p/Ec = 3.33 · 10−6 and ν = 0.15. Note that
ΔwΔz = s+b is equal for any two cross-sections that are (s + b) apart
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Introducing in Eq. (10) a constant ΔwΔz = s + b yields the following expression:

(11)

Hence, for any given level of a lateral pressure p the following expression can be written:

(12)

Furthermore, at the limit case of s1 = 0 the average axial strain of the partially confined cylinder

due to the confining rings  is equal to the axial strain of the fully confined cylinder, which is

given by:

 

(13)

Substituting terms from Eqs. (12) and (13) into Eq. (11) yields the constant F2 (Eq. 12) and 

as follows:

(14)

The following expression for the total average strain εz, avg is obtained from substituting 

from Eq. (14) into Eq. (6):

(15)

where f3 is the p/q ratio, which is given by Eid (2004):

(16)

The summation in Eq. (16) represents the accumulative influence of the confining rings (ties). It

can be shown (Eid 2004) that f3 converges for five pairs of rings (n = 5 in Eq. 16). 

Substituting εz, avg from Eq. (15) into Eq. (9) and rearranging terms yields the following expression

for the equivalent confining tube thickness normalized with respect to the cylinder’s radius, a:

 

(17)

Eqs. (16) and (17) show that teq depends on the geometrical parameters a, s1, b1, on the concrete

Poisson’s ratio ν, on the modulii ratio m and on the mixed geometrical-mechanical parameter t1m.
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According to these parameters of the problem, the full elasto-plastic analysis of the original partially

confined cylinder can be replaced by an analysis of an equivalent cylinder, confined inside a

uniform tube whose thickness is given by Eq. (17). The mechanical properties of the materials in

the original and in the equivalent problems remain the same. 

3. Elasto-plastic analysis of the equivalent model

Once the parameters of the equivalent confined cylinder are determined it can be analyzed with

proper material models for the confined concrete and for the confining equivalent tube.

3.1 The concrete constitutive model

Several relatively recent models that are based on the theory of plasticity have been proposed to

simulate the tri-axial behavior of concrete (e.g., Karabinis and Kiousis 1994, Imran and

Pantazopoulou 2001, Grassl et al. 2002). The Imran and Pantazopoulou (2001) concrete plasticity

model was developed using experimental background of 130 tri-axial tests conducted on cylindrical

specimens. This model is applied herein to represent the compression behavior of the concrete

confined in the equivalent tube (and hence of concrete confined by lateral steel rings). The main

features of this plasticity model are given in Appendix I. 

It should be noted though, that the original model was developed for the case of a known (active)

constant lateral pressure that acts on the concrete to provide the confinement. Thus, the model

includes a constant parameter that represents the maximum (contraction) volumetric strain εv, max,

which is determined empirically (Imran and Pantazopoulou 2001). In the case of concrete confined

by lateral reinforcement, the lateral steel responds to the axial pressure and hence, the lateral

(passive) pressure is developed with the axial pressure or strain (and according to the steel

constitutive model). As a result the parameter that represents the maximum (contraction) volumetric

strain increases with the increase of the lateral pressure. A constant value of εv, max is not suitable for

this case and therefore, the concrete constitutive model of Imran and Pantazopoulou (2001) is

applied here with an expression for a variable maximum volumetric strain. This expression is

derived from a function of εv (see Eq. (A.7) in Appendix I), which was also proposed by these

researchers (Imran and Pantazopoulou 1996).

 

3.2 The steel constitutive relations

The steel behavior, described in Fig. 5, is uniaxial because the bars and ties are loaded uniaxially.

Depending on the type of the steel and for most cases, an elastic-perfectly plastic curve can be used

(denoted as EPP in Fig. 5). Elastic-plastic steel behavior that includes hardening is represented by a

stress-strain curve denoted EPH in Fig. 5. The steel hardening initiates at a strain denoted εsh

(Fig. 5) and it is modeled by a multi-linear curve. Additionally, the constitutive relations of

reinforcing steel that has rounded stress-strain curves are modeled by a multi-linear curve denoted

ML in Fig. 5.

The quantitative parameters (e.g., εsh, εsu, fy, in Fig. 5) are set according to the reported properties

of the reinforcing steel. 
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3.3 The solution procedure

The stress-strain curve of an axially loaded concrete column confined by steel ties is obtained by

analyzing its equivalent uniformly confined cylinder whose axial strain εz is increased incrementally.

First, determine the equivalent model’s parameters, which are as follows:

- The concrete’s core diameter;

- The concrete material constants (according to Table 1 in Imran and Pantazopoulou 2001);

- The steel material constants (see Fig. 5);

- The thickness of the equivalent circumferential steel tube teq Eq. (17) 

Initially the model’s response is elastic [with suitable elastic constants that correspond to the

concrete strength, e.g.,  (Mander et al. 1988), where fc0 and Ec are given in MPa

and ν = 0.15]. Once Eq. (A.1) (see Appendix I) is satisfied the material’s behavior goes into the

elasto-plastic range. In this range the incremental stress tensor is calculated according to the elastic

incremental strain tensor, as follows:

 (18)

where, Cijkl is the isotropic material tensor and  is the plastic incremental strain tensor.

Using the consistency condition df = 0, which requires that the stress state at any point remains on

the loading surface, and the flow rule  (where dλ is a scalar defining the plastic strain

magnitude and g is the plastic potential function), the stress-strain incremental relationship Eq. (18)

can be rewritten as follows:

Ec 5000 fc0=
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e
Cijkl dεkl dεkl

p
–( )= =
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p

dεi j

p
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∂g
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---------=

Fig. 5  Constitutive relations of the reinforcing steel
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 (19)

where  and κ is the hardening parameter (see Appendix I).

A return mapping algorithm (Ortiz and Simo 1986) has been used for solving the integration of

the elasto-plastic constitutive relations of the current problem. For the current model, this algorithm

includes the following steps:

(I) Geometric update (strain increments in the axial z direction):

(II) Solution of the elastic problem (elastic predictor):

(III) Check for “yielding” – is the concrete still within its elastic range?:

YES: 
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where, 

(V) Check convergence: if

NO: i + 1→ i GOTO (IV) (Plastic correctors)

YES: Check equilibrium at the concrete-steel boundary. This equilibrium condition corresponds

to a compatibility condition, which requires equal tangential strains of the concrete and

of the confining steel at the concrete-cylinder’s perimeter. Force equilibrium of half a

cylinder’s cross-section (Fig. 6) yields the relation between the lateral pressure, p (or

σlat) and the tension stress that develops in the equivalent steel fs, which is a function

of the tangential strain at the concrete-cylinder’s perimeter (and of the steel’s

constitutive relations). 

if  (see Fig. 6)

NO: GOTO (II)

YES:

GOTO (I) (Geometric update)

The simulation terminates when the plastic strain reaches its ultimate value εpult (see Appendix I),

which indicates that the state of stress has reached the residual strength envelope. Note that in some

cases this condition may result in from rupture of the lateral steel, which in this case determines the

mode of failure (see also section 4.7).

Description and definition of the variables that are used in the above solution procedure are given

in Appendix I. Note that bold parameters represent tensors and “(0)” and “(i)” superscripts denote

initial and ith steps (respectively). Also note that when the concrete reaches a state of softening the

parameter ψ (see Eq. (A.3) in Appendix I) is used instead of the hardening parameter κ.
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Fig. 6 Equilibrium at the concrete-steel boundary 
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4. Comparison with test results

Published test results (of the measured longitudinal stress and strain) of various RC columns are

compared in Figs. 7-14 with their analytical simulations by the proposed model. The tests that were

analyzed cover a relatively wide range of the problem’s parameters (i.e., cylinder’s diameter, that

ranges from 145 to 500 mm, concrete strength that ranges from 25 to 72 MPa, steel yield strength

Fig. 7 Experimental and analytical axial behavior of
specimen No. 1 tested by Mander et al.
(1988) ( fc0= 29 MPa, D = 500 mm, φt = 12
mm, sb = s + b=41 mm, fy = 340 MPa).

Fig. 8 Experimental and analytical axial and lateral
behavior of specimen No. 4 tested by Mander
et al. (1988) ( fc0 = 29 MPa, D = 500 mm,
φt = 10 mm, sb = s + b = 119 mm, fy = 320 MPa)

Fig. 9 Experimental and analytical axial behavior of
specimen 3A tested by Li et al. (2001) ( fc0=
63 MPa, D = 240 mm,  φt = 6 mm, sb = s + b
= 20 mm, fy = 445 MPa)

Fig. 10 Experimental and analytical axial behavior
of specimen 3B tested by Li et al. (2001)
( fc0 = 72.3 MPa, D = 240 mm, φt = 6 mm,
sb = s + b = 20 mm, fy = 445 MPa)
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that ranges from 320 to 900 MPa and tie spacing that ranges from 0.19 to 0.84 of the column

radius), as detailed in Table 1. 

Note that the expression of the thickness teq has been developed for confining rings with a

rectangular cross-section whereas the ties’ cross section is circular. Therefore, the width of the rings

Fig. 11 Experimental and analytical axial behavior of
specimen 1:1.5:3,60 tested by Iyengar et al.
(1970) ( fc0= 25.08 MPa, D = 150 mm, φt =
6.5 mm, sb = s + b = 60 mm, fy = 318.7 MPa)

Fig. 12 Experimental and analytical axial and lateral
behavior of specimen 30-M-50 tested by
Assa et al. (2001) ( fc0= 34.13 MPa, D = 145
mm, φt = 6.25 mm, sb = s + b = 50 mm, fy =
909 MPa)

Fig. 13 Experimental and analytical axial behavior
of specimen No. 1 tested by Sheikh and
Toklucu (1993) ( fc0= 35.9 MPa, D = 356 mm,
φt = 11.3 mm, sb = s + b = 55.9 mm, fy = 452
MPa)

Fig. 14 Experimental and analytical axial behavior
of specimen No. 3 tested by Sheikh and
Toklucu (1993) ( fc0= 35.9 MPa, D = 356 mm,
φt = 11.3 mm, sb = s + b = 111.3 mm, fy = 452
MPa)



P
a
rtia
lly co
n
fin
ed
 circu
la
r m
em
b
ers su
b
jected
 to
 a
xia
l co
m
p
ressio
n

7
5
1

Table 1 Geometrical and mechanical properties of tests that were simulated by the proposed model

Reference
Specimen 

No.
D

mm
φt

mm
c(4) 
mm

a
mm

sb
(3)

mm
s1 b1 s1 + b1 t1

m(1) 
Es/Ec

t1m
ρv

(%)
fc0

MPa
fy

(2)
 

MPa

Mander et al. (1988) 1 500 12 25 219 41 0.132 0.055 0.187 0.043 8.1 0.348 2.52 29
340

(EPH)

Mander et al. (1988) 4 500 10 25 220 119 0.495 0.045 0.54 0.036 8.1 0.288 0.60 29
320

(EPH)

Li et al.  (2001) 3A 240 6 15 102 20 0.137 0.059 0.196 0.046 5.3 0.244 2.77 63
445

(EPP)

Li et al.  (2001) 3B 240 6 15 102 20 0.137 0.059 0.196 0.046 4.9 0.228 2.77 72.3
445

(EPP)

Iyengar et al. (1970) 1:1.5:3,60 150 6.5 0 71.8 60 0.746 0.091 0.837 0.071 8.4 0.597 1.54 25.1
318.7
(EPP)

Assa et al. (2001) 30-M-50 145 6.25 0 69.375 50 0.631 0.090 0.721 0.071 7.2 0.509 1.77 34.13
909

(EPP)

Sheikh & Toklucu (1993) 1 356 11.3 22 150.15 55.9 0.297 0.075 0.372 0.059 7.0 0.414 2.39 35.9
452

(ML)

Sheikh & Toklucu (1993) 3 356 11.3 22 150.15 111.8 0.669 0.075 0.744 0.059 7.0 0.414 1.20 35.9
452

(ML)

(1) Es = 210000 MPa,  (MPa).
(2) Steel constitutive relations; (EPP) = Elastic-perfectly plastic, (EPH) = Elastic-perfectly plastic with hardening, (ML) = Multi-linear (see Fig. 5).
(3) sb = s + b.
(4) c = concrete cover.

E
c

5000 f
c0=
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Table 2 Comparison between test results and the proposed model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Reference
Specimen 

No.

Confined strength
fcc (MPa)

Confined strain
εcc

Strain at 0.85 · fcc
εc85

Experi-
mental

Model
Experi-
mental/ 
Model

Experi-
mental

Model
Experi-
mental/ 
Model

Experi-
mental

Model
Experi-
mental/ 
Model

Mander et al. (1988) 1 51 50.3 1.01 0.0073 0.006 1.22 0.0188 0.018 1.04

Mander et al. (1988) 4 36 34.53 1.04 0.0033 0.0034 0.97 0.0063 0.006 1.05

Li et al. (2001) 3A 92.2
95.45

[95.08]
0.97

[0.97]
0.0085

0.0053
[0.0076]

1.6
[1.12]

0.0153
0.0176

[0.0171]
0.87

[0.89] 

Li et al. (2001) 3B 108.8
105.3

[104.8]
1.03

(1.04]
0.0085

0.005
[0.0074]

1.7
[1.15]

0.0142
0.0164

[0.0162]
0.87

[0.88]

Iyengar et al. (1970) 1:1.5:3,60 35.78 34.86 1.03 0.0041 0.0046 0.89 0.0099 0.0096 1.03

Assa et al. (2001) 30-M-50 58.18
63.99

[63.25]
0.91

[0.92]
0.0132

0.009
[0.0143]

1.46
[0.92]

0.032
0.0286

[0.0281]
1.12

[1.14]

Sheikh & Toklucu (1993) 1 61.03 64.74 0.94 0.0133 0.01 1.33
Not

Available
Not

Available
-

Sheikh & Toklucu (1993) 3 48.82 51.06 0.96 0.0068(1) 0.0084 0.81(1) 0.016 0.0163 0.98

[…] Multi-linear (ML in Fig. 5) stress-strain behavior of the steel.
(1) Average that corresponds to εcc ranging between 0.0036 and 0.01 (see also Fig. 14). Note that Sheikh & Toklucu (1993) used the lower value
of 0.0036.
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Table 2 Continued 

(12) (13) (14) (15) (16) (17) (18) (19)

Reference
Specimen 

No.

Lateral pressure at peak stress 
σlat,c (MPa)

Ultimate axial strain
εcu

Experimental Model
Experimental/ 

Model
Experimental Model

Experimental/ 
Model

Mander et al. (1988) 1 - 4.22 - 0.058 0.051 1.14

Mander et al. (1988) 4 0.96(2) 0.94 1.02 0.035 0.024 1.46

Li et al. (2001) 3A - 6.11 - 0.035 0.04 0.88

Li et al. (2001) 3B - 6.11 - 0.032 0.041 0.78

Iyengar et al. (1970) 1:1.5:3,60 - 2.28 - 0.03 0.021 1.43

Assa et al. (2001) 30-M-50 7.68(2*) 7.6
[7.6]

1.01
[1.01]

0.0462
0.049(3)

(0.043) (3)
 0.94(3)

(1.07) (3)

Sheikh & Toklucu (1993) 1 6.89(2*) 5.88 1.17 0.0293
0.038

(0.0304)
0.77

(0.96)

Sheikh & Toklucu (1993) 3 2.71(2*) 2.95 0.92 0.0253
0.0277

(0.0258)
0.91

(0.98)

[…] Multi-linear (ML in Fig. 5) stress-strain behavior of the steel;
(…) failure is indicate by rupture of the steel ties (applicable with reported values of the steel’s rupture strain). 
(2) Calculated from the thin-tube analogy using the measured spiral strain values. (2*) Calculated by the reference authors.
(3) In this case the steel's multi-linear and the elastic-perfectly plastic (ML and EPP in Fig. 5, respectively) stress-strain behavior results in the
same concrete ultimate axial strain. 
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in the analysis of reinforcing ties is taken as equal to the tie diameter φt (i.e., b = φt) and the rings’

thickness (t) is set to match the cross-section areas of the ring to that of the tie, i.e., .

It is also noted that the observation that there is no difference between the confinement provided by

spirals and by hoops (Sheikh and Toklucu 1993) is applied in the current model.

In the following comparison of the model with test results of relatively large-scale specimens,

both analytical and published experimental results refer to the confined core and they include

neither the concrete cover nor the longitudinal steel (the effects of these parameters can be added to

the response of the confined concrete core). However, for the small-scale specimens 1:1.5:3,60 and

30-M-50 (see in Table 1 Iyengar et al. 1970, Assa et al. 2001, respectively) the current analysis as

well as the published experimental results refer to the full diameter of the specimens, which

includes the effect of the concrete cover. In these cases the behavior of the concrete cover was

modeled according to the unconfined concrete stress-strain curves published by Mander et al.

(1988): it was taken into account as long as the axial strain (εz) was smaller or equal to the spalling

strain (εsp = 0.006), where for εz that was larger than 2εc0 (and smaller than εsp) the uniaxial stress-

strain relationship of the cover was assumed to be a straight line which reaches zero stress at a

strain equal to εsp (Mander et al. 1988). Note though, that in these small scale tests the thickness of

concrete cover was equal to half of the diameter of the confining ties and no longitudinal

reinforcement was used. 

4.1 Overall response 

Figs. 7-14 show that there is a good agreement between the overall response predicted by the

model and the corresponding experimental results. In addition to the overall response Table 2 shows

a comparison between the experimental and the analytical values of the confined concrete strength

fcc, of its corresponding axial strain εcc, the strain at 85% of the concrete strength, εc85, the lateral

pressure at peak axial stress, σlat,cc, and the ultimate axial strain, εcu.

4.2 Confined strength, fcc

Table 2 shows that the model’s prediction of the confined strength is within −4% to +6% of the

experimental measurements (column 5 in Table 2). It can be seen that the type of constitutive

relations of the steel (elastic-perfectly plastic vs. multi linear) does not have an influence on this

result.

4.3 Strain at peak stress, εcc

A somewhat lesser agreement between the model and the experimental results has been obtained

for the strain εcc that corresponds to the confined strength (column 8 in Table 2). It is interesting to

note that using a multi-linear stress-strain model for the steel (ML curve in Fig. 5) in the

simulations of the tests reported by Assa et al. (2001), Li et al. (2001), significantly improved the

model results: the analytical strains εcc of these cases, which were 46, 60 and 70 percent lower than

their corresponding experimental values when the EPP material model (see Fig. 5) was used to

simulate the steel, were only 8 percent higher, and 12 and 15 percent lower when the multi-linear

t
π

4
---b

π

4
---φ

t
=

⎝ ⎠
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relations (with fsu equal to fy that was used for the EPP model) were used. The results that were

obtained with the ML steel model are given in square brackets in column 8, Table 2. Note that the

strength of the steel, which was used in these tests, was higher than 400 MPa (Table 1). It is likely

that this type of steel has rounded stress-strain curves (e.g., Legeron and Paultre 2003). Therefore,

the multi-linear (ML in Fig. 5) stress-strain curve may be more adequate to model this type of steel.

4.4 Strain at 85% of the concrete strength, εc85 

Column 11 in Table 2 shows that there is a good agreement between the analytical and the

experimental results that were measured of εc85 (strain at 85% of the concrete strength). Similarly to

the simulated values of the confining strength, the steel constitutive model did not have a significant

influence on the analytical values of εc85. This is shown by the results of εc85 that were obtained

with the elastic-perfectly plastic versus the multi-linear models (values without brackets versus

values in brackets, respectively, in columns 10 and 11, Table 2) for the lateral steel, which differed

from each other by only 1-3% (columns 10 and 11, Table 2).

4.5 Lateral behavior

Figs. 8 and 12 show the axial and lateral response predicted by the model and the corresponding

available experimental results. It can be seen in Fig. 8 that there is a good agreement between the

predicted and the experimental results for specimen No. 4, tested by Mander et al. (1988). As for

specimen No. 30-M-50 (tested by by Assa et al. 2001) - Fig. 12 shows that there is a good

agreement between the predicted and the experimental results only at the pre-peak behavior. It is

noted that this specimen had relatively small dimensions (145 × 300 mm) and high strength

confining steel (with fy = 909 MPa, Table 1), which may need a material model for its simulation

that is different than that used in the current work.

The stress of the lateral steel, as predicted by the model, is indicated in Figs. 7-14, which together

with Table 2 show that there is a fair to good agreement between the analytical and the

experimental results of the lateral pressure at peak stress, σlat,cc (col. 16 in Table 2).

4.6 Ultimate axial strain

Table 2 shows that there is a fair agreement between the analytical and the experimental results

that were measured of the axial strain εcu (col. 19 in Table 2). It is worth noting that the best

agreement between the model’s prediction and the experimental results is achieved when the

measured rupture strain of the steel is well defined (or known). As mentioned in section 3.3 the

simulation terminates when the concrete plastic strain reaches its ultimate value εpult (see Appendix I),

which indicates that the state of stress has reached the residual strength envelope. However, another

indicator for terminating the simulation is when the lateral strain reaches the rupture strain of the

confining steel (as explained in the following section). 

4.7 Mode of failure

Usually for highly confined concrete columns the failure mode is rupture (or snapping) of the ties

followed by concrete crushing (e.g., see Mander et al. 1988, Li et al. 2001) and for lowly confined
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concrete columns the failure mode is buckling of longitudinal bars, followed or accompanied by

concrete crushing and rupture of the steel ties (with smaller angle of the failure plane measured

from the vertical axis and strongly defined diagonal failure plane). Since the current model deals

only with the confined concrete core it cannot simulate directly buckling of the longitudinal bars.

Therefore, failure is indicated in the model by the concrete crushing (i.e., when εp = εpult) and if

there is rupture of the ties – it is indicated as well.

Out of the cases that were checked (Table 1) the measured stress-strain behavior of the steel ties

has been given only for three specimens (30-M-50 by Assa et al. 2001 and specimens 1 and 3 by

Sheikh and Toklucu 1993). The corresponding calculated results that were obtained with the

reported steel rupture strains of these tests differ only by 2 to 7% from the experimental results (see

values given in brackets in col. 19, Table 2) and in these cases the authors reported rupture of the

confining ties. This shows that using the measured rupture strain of the steel ties (rather than a

“typical” stress-strain curve) gives better results for the ultimate axial strain. In four specimens (1

and 4 tested by Mander, 3A and 3B tested by Li et al.) a typical (i.e., not specific) stress-strain

behavior of the steel was given and for these cases the analytical lateral strain at concrete crushing

was less than the rupture strain. In these cases Mander et al. (1988) reported “hoop fracture with a

strongly defined diagonal failure plane” in Column 4 and a failure that was due to the hoop fracture

with a “lack of well defined failure mode for well-confined columns” (such as column 1). Li et al.

(2001) reported that the failure observed for specimens confined by normal yield strength steel was

“usually gradual and quite gentle after the first transverse bar fractured”.

5. Finite element analysis

A numerical FEM analysis was carried out in order to compare the model results with those of

the FEM analysis. Furthermore, distribution of the stresses and strains along a typical zone of the

concrete cylinder at the stage of its plastic behavior, which can not be measured experimentally, can

be examined and studied with this numerical tool. The ATENA 2D (2003) computer program was

used to carry out the non-linear FEM simulations of four experiments whose details are given in the

first four rows of Tables 1 and 2. These tests had volumetric steel tie ratios that ranged between 0.6

to 2.5 percent, as well as low and high values of their diameters, spacing and unconfined concrete

strengths (Table 1). 

5.1 FEM mesh and material models

The axisymmetrical cylinder has been modeled by isoparametric axisymmetric, 4-nodes

quadrilateral and 3-nodes triangle elements. Each of the transverse ties is represented by six one-

node axisymmetric circumferential truss element (Axisymmetric truss elements have been used in

order to avoid shear stresses at the cylinder-ring boundary). A typical axi-symmetric model is

shown in Eid (2004). 

The concrete material model of the ATENA 2D FEM program uses the Menetrey and Willam

(1995) failure surface, which is described in Appendix II. An elasto-plastic with hardening material

law was used to simulate the steel. Its parameters were equal to those that were used in the current

analytical model (see Fig. 5).



Partially confined circular members subjected to axial compression 757

5.2 FEM results

Figs. 7-10 show the stress-strain curves of the experiments that were simulated by the FEM

analysis. The use of different concrete material models for the FEM analysis and for the analytical

model yielded stress-strain curves of the concrete columns, which had similar shapes with

differences that were mainly in the post-peak range (Figs. 7-10). It is noted that the reasons for

performing the FEM analysis were to examine the equivalency criterion and the stress and strain

distributions in the confined concrete along a typical zone at the concrete plastic range. Therefore,

although the axial post peak behaviour of the model and of the FEM are not the same, the use of

the FEM analysis is appropriate and important for the above reasons, i.e., examination and study of

the concrete stress and strain distributions and of stresses and strains that develop at the lateral steel

reinforcement (including at the stage of the concrete plastic behavior). Thus, the results of the FEM

analysis support the equivalency criterion of the proposed model. This is demonstrated in Figs. 15

and 16, which show (respectively) the lateral steel stress (vs. the concrete axial strain εz) and the

Fig. 15 FEM and analytical results of the circumferential steel stress versus axial strain εz 
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radial distribution of the axial strain (at z = 0) at the stage of the concrete plastic response (at peak

stress). Fig. 15 shows a good agreement between the results of the proposed model, of the tests

(specimen 4) and of the FEM analysis. 

Fig. 16 shows that similarly to the elastic behavior, the axial strain distribution is constant within

a reduced cylinder radius also when the concrete behavior is plastic. It can be seen in the figure that

when the axial strain is averaged along the cylinder radius (εz, r-avg in Fig. 16) the value of the

constant strain is very close to that of εz, r-avg. Furthermore, this result is hardly influenced by the ties

spacing: the difference between εz, r-avg and the constant value of εz is less than 0.5% for s1 values of

0.13, 0.14 or 0.5 (Figs. 16(a), 16(c,d) and 16(b), respectively). These results indicate that the

equivalency criterion (see section 2.2), which is set at the stage of the elastic response, holds in the

plastic range as well.

6. Influence of the problem’s variables on the confinement

According to the proposed model, the efficiency of the lateral reinforcement can be evaluated

Fig. 16 FEM calculations of the axial strain distribution along the radius for z = 0 at concrete peak stress 



Partially confined circular members subjected to axial compression 759

according to the thickness teq: the thicker teq the higher the confinement effect. Figs. 17 and 18 show

the effect of the different problem’s variables on the normalized equivalent thickness teq1. These

figures show that increasing the (normalized) ties spacing, s1 + b1 (Fig. 17), and t1m (Fig. 18),

results in a decrease of teq1/t1, while increasing the (normalized) diameter of the steel cross-section,

b1, results in an increase of teq1/t1. These figures also show that the current model converges well to

the simple solution of zero tie spacing (s1 = 0), where the equivalent thickness, teq, is equal to that

Fig. 17 teq1/t1 versus steel tie spacing s1 + b1 for
different values of b1, t1m = 0.7 and ν = 0.2 

Fig. 18 teq1/t1 versus t1m for different values of s1

and b1, and for ν = 0.2

Fig. 19 teq1 versus sb1 (s1 + b1) for reinforced concrete
practical values of b1, m and for ν = 0.15

Fig. 20 Concrete strength enhancement versus tie
spacing sb1 (= s1 + b1) and diameter for
fy = 400 MPa and for m = 9 and m = 5 
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of the ring thickness, t (teq1/t1 = 1).

For practical cases of reinforced concrete the modules ratio m ranges from 5 to 9 and b1 ranges

from 0.04 to 0.09. Fig. 19 shows that in this range teq1 depends only on the spacing s1 + b1 and on

the ties diameter b1. It is interesting to note that according to the proposed model and for practical

cases of reinforced concrete, the equivalent uniform steel tube’s thickness for a normalized spacing

s1 + b1 that is larger than 0.5, is less than 0.15 of the reinforcing ties’ diameter (recalling that in the

current model φt = b = 4/π · t, where φt is the tie’s diameter).

Fig. 20 demonstrates the influence of the normalized ties spacing, s1 + b1, and of the normalized

tie diameter, b1, on the confined strength fcc, for fy = 400 MPa (elastic-perfectly plastic steel

behavior) and for m = 5 and m = 9 (which respectively correspond to concrete with unconfined

strengths of 71 and 22 MPa). It can be seen that the effect of the confinement on enhancing the

concrete strength is more pronounced for normal strength concrete than for higher strength concrete

(compare in Fig. 20 solid and dashed lines that correspond to m = 9 and m = 5, respectively). The

figure shows that the enhancement of the concrete confined strength is most significant within a tie

spacing of up to about 0.5 of the column’s radius (s1 + b1 < 0.5). Within this range the confined-to-

unconfined concrete strength ratio can be as high as 5 and 2.75 for normal strength concrete (i.e.

m = 9) and for higher strength concrete (i.e., m = 5), respectively. If, however, the spacing s1 + b1 is

larger than 0.5 the strength enhancement is not greater than 2.0 (see m = 9 and b1 = 0.09 in Fig. 20)

and for most cases it is even smaller than 1.5.

7. Conclusions

This paper presents a theoretical model for the behavior of partially confined axi-symmetric

reinforced concrete members subjected to axial load. The analysis uses the theories of elasticity and

plasticity to cover the full range of the concrete behavior. This is done by replacing the incremental

steel ties with an equivalent tube of thickness teq and by analyzing the concrete cylinder, which is

uniformly confined by the equivalent tube. The diameter of the concrete cylinder is equal to that of

the original problem (i.e., the diameter of the concrete core confined by the ties). The equivalency

criterion initiates from a theoretical analysis of the problem in its elastic range where further finite

element analysis shows that this criterion is valid also in the plastic range of the cylinder material.

Comparisons with published test results of confined reinforced concrete stress-strain curves show

good agreement between the analytical results and the test. However, these comparisons also

showed that the calculation of the confined strain and the mode of failure (i.e., rupture of the

confining reinforcement) is sensitive to the stress-strain behavior of the lateral steel. 

The current model has three main limitations: It applies to unconfined concrete strengths of 28-

73 MPa, according to the constitutive concrete model that was used in the analysis (Imran and

Pantazopoulou 2001). It refers to the behavior of a typical zone in a RC column (and does not

simulate phenomena that might occur at the ends of the column). Additionally, this model deals

with the confined concrete core and it includes neither the longitudinal steel nor the concrete cover

(whose response can be added separately). Therefore the current model cannot simulate directly the

possibility of longitudinal bars buckling. 

According to the proposed model, the efficiency of the lateral reinforcement can be evaluated by

the thickness teq. It is shown that for practical cases of reinforced concrete the equivalent uniform

steel tube’s thickness for a normalized spacing s1 + b1 that is larger than 0.5, is less than 0.15 of the
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reinforcing ties’ diameter. The model also shows that the effect of the confinement on enhancing the

concrete strength is more pronounced for normal strength concrete than for higher strength concrete

and that this effect is most significant up to a tie spacing of 0.5 of the column’s radius. Within this

range and for reinforcing ties with fy = 400 MPa the confined-to-unconfined concrete strength ratio

can be as high as 5 and 2.75 for normal strength concrete (i.e. m = 9, fc0 ≈ 22 MPa) and for higher

strength concrete (i.e., m = 5, fc0 ≈ 71 MPa), respectively. When the spacing s1 + b1 is larger than 0.5

the strength enhancement is not greater than 2.0 and for most cases it is even smaller than 1.5.
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Appendix I 

The functions of the hardening, failure and softening surfaces (respectively, fhard, ffail, fsoft) of the concrete
material model (Imran and Pantazopoulou 2001) have the form of the Hsieh et al. (1988) function and they
are given by the following expressions:

(A.1)

(A.2)

(A.3)

where fc0 is the uniaxial compressive strength of concrete and σ1 is the major principal stress. The parameters
A, B, C, D, Ehtc are constants and I1

trans is an empirically obtained function that depends on the concrete
uniaxial compressive strength fc0 and represents the effect of the concrete physical properties on its strength
characteristics (Imran and Pantazopoulou 2001). The hardening parameter, κ , ranges from κ0 (= 0.37) at the
initial hardening surface, when plasticity commences, to κ = 1.0, when the state of stress reaches the failure
surface (Eq. A.1 becomes Eq. A.2). κ is defined by the following expression (Imran and Pantazopoulou
2001):

 (A.4)

where εp is the accumulated plastic strain:

(A.5)
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and εpmax is the value of the plastic strain when the state of stress reaches the failure surface:

(A.6)

where Gh is a material constant and εv, max is the maximum volumetric contraction experienced by the material.
The superscript “u” denotes the strain data from uniaxial compressive tests. For cases of active confinement,
in which the lateral pressure is constant during the increase of the axial strain, the maximum (contraction)
volumetric strain εv, max can be determined empirically (Imran and Pantazopoulou 2001). However, for a
concrete cylinder in which the lateral pressure is passive (such as the lateral pressure that develops by the
steel ties) the maximum (contraction) volumetric strain increases with the increase of the lateral pressure.
Therefore, a constant value of εv, max is not suitable for the case of passive confinement. In cases of axi-
symmetric state of stress, εv, max can be calculated from the following expression, which was also proposed by
Imran and Pantazopoulou (1996):

(A.7)

where σlat is the lateral (radial) stress, εz is the axial strain, ε0
z  is the axial strain at zero volumetric strain

(taken as equal to the axial compressive strain at peak stress when softening commences) and  is the axial
strain at which cracking occurs in the lateral direction.

The softening parameter, ψ (Eq. A.3), ranges from ψ = 1.0 at peak stress (Eq. A.3 becomes Eq. A.2) to ψ = 0
at the residual strength envelope. The parameter ψ is defined by the following expression (Imran and
Pantazopoulou 2001):

(A.8)

where εpult is the ultimate plastic strain at which the state of stress reaches the residual strength envelope (and
the simulation terminates). It is given by the following expression:

(A.9)

Plastic potential function

A Druker-Prager type criterion is used as the plastic potential function g for the non-associated plastic flow
(see e.g., Karabinis and Kiousis 1994). The function g is given by:

 (A.10)

where c is a constant and α is the slope of the Druker-Prager function, which is evaluated based on test
results as follows (Imran and Pantazopoulou 2001):

(A.11)

where αu is the value of a when uniaxially loaded concrete reaches its peak stress and η is the ratio εp/εpmax at
zero volumetric plastic strain under uniaxial compression, taken as 0.34 (Imran and Pantazopoulou 2001).

Appendix II

The concrete material which is used by ATENA 2D (2003) is given by the Menetrey and Willam (1995)
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failure surface F and the plastic potential g as follows:

(A.12)

(A.13)

where, 

(A.14)

(A.15)

(A.16)

c is a hardening/softening parameter, which depends on the plastic strain and β1 is a constant parameter.

Notation

a : cylinder radius;
b : width of lateral pressure band or ring;
Cijkl : isotropic material tensor
D : gross diameter of RC column
Ec : cylinder elastic modulus;
Es : elastic modulus of the reinforcement;
fc0 : uniaxial concrete compressive strength;
fcc : confined concrete compressive strength;
fy : ring yield stress;
fhard, ffail, fsoft : functions of the hardening, failure and softening surfaces;
g : plastic potential function;
m : confinement-to-cylinder modulus ratio, Es/Ec;
I1 : first invariant of the stress tensor;
J2 : second invariant of the deviatoric stress tensor;
J3 : third invariant of the deviatoric stress tensor; 
k : wave number;
p : lateral pressure;
q : axial pressure;
s : ties spacing;
sb : center to center ties spacing;
t : ring thickness;
teq : ties equivalent thickness;
u : radial displacement;
w : axial displacement;
εcu : ultimate axial strain; 
εp : accumulated plastic strain
εs : tension strain of the confining reinforcement;
εsp : concrete cover spalling strain;

F 1.5
ρ

fc0
-----

2

m
ρ

6fc0

-------------r θ e,( ) ξ

3fc0

-------------+ c–+ 0= =

g β1

1

3
-------I1 2J2+=

r θ e,( ) 4 1 e
2

–( )cos
2
θ 2e 1–( )2+

2 1 e
2

–( )cosθ 2e 1–( ) 4 1 e
2

–( )cos
2
θ 5e

2
4e–+[ ]

1/2
+

--------------------------------------------------------------------------------------------------------------------------------------=

m 3
f c0

2
f t

2
–

fc0 ft
-----------------

e

e 1+

------------=

ξ
1

3
-------I1= ; ρ 2J2= ; cos3θ

3 3

2
----------

J3

J2

3/2
--------=



Partially confined circular members subjected to axial compression 765

εy : ring yield strain;
εz : axial strain;

: axial strain due to the action of the confining rings;
: axial strain averaged over the radius at a given z due to the action of the rings;
: axial strain due to action of the rings, averaged over the radius and over z, within a typical
zone;

εz,avg : total axial strain averaged over the radius and over z within a typical zone; 
εz,tu : axial strain in the equivalent tube;
εcc : confined concrete compressive strain;
εc85 : strain at 85% of the concrete strength;
εij, ε : strain tensor;
φt : diameter of reinforcing ties;
κ : hardening parameter;
σlat = p : lateral pressure; 
σlat, cc : lateral pressure at peak axial stress; 
σij, σ : stress tensor;
ν : Poisson’s ratio;
ψ : softening parameter;

Dimensionless variables:
b1 : b/a;
k1 : ka;
r1 : r/a;
s1 : s/a;
t1 : t/a;
teq1 : teq /a;

εz

c

εz r avg–,

c

εz avg,

c




