
Structural Engineering and Mechanics, Vol. 21, No. 6 (2005) 713-735 713

Use of equivalent spring method for free vibration 
analyses of a rectangular plate carrying multiple
three-degree-of-freedom spring-mass systems

Jia-Jang Wu†

Department of Marine Engineering, National Kaohsiung Marine University,

No. 142, Hai-Chuan Road, Nan-Tzu, Kaohsiung 811, Taiwan, Republic of China

(Received April 7, 2005, Accepted September 7, 2005)

Abstract. Due to the complexity of mathematical expressions, the literature concerning the free
vibration analysis of plates carrying multiple three-degree-of-freedom (dof) spring-mass systems is rare. In
this paper, the three degrees of freedom (dof’s) for a spring-mass system refer to the translational motion
of its lumped mass in the vertical  direction and the two pitching motions of its lumped mass about
the two horizontal (  and ) axes. The basic concept of this paper is to replace each three-dof spring-
mass system by a set of equivalent springs, so that the free vibration characteristics of a rectangular plate
carrying any number of three-dof spring-mass systems can be obtained from those of the same plate
supported by the same number of sets of equivalent springs. Since the three dof’s of the lumped mass for
each three-dof spring-mass system are eliminated to yield a set of equivalent springs, the total dof of the
entire vibrating system is not affected by the total number of the spring-mass systems attached to the
rectangular plate. However, this is not true in the conventional finite element method (FEM), where the
total dof of the entire vibrating system increases three if one more three-dof spring-mass system is
attached to the rectangular plate. Hence, the computer storage memory required by using the presented
equivalent spring method (ESM) is less than that required by the conventional FEM, and the more the
total number of the three-dof spring-mass systems attached to the plate, the more the advantage of the
ESM. In addition, since manufacturing a spring with the specified stiffness is much easier than making a
three-dof spring-mass system with the specified spring constants and mass magnitude, the presented
theory of replacing a three-dof spring-mass system by a set of equivalent springs will be also significant
from this viewpoint.

Key words: equivalent spring method; finite element method; rectangular plate; three-dof spring-mass
system; free vibration.

1. Introduction

Vibration characteristics of a structure mounted with various concentrated elements, such as

lumped mass, distributed mass, springs, etc., are important information for machine designers. For

this reason, beams and plates carrying various concentrated elements have called for the attentions

of several researchers. For example, Rossi et al. (1993) have studied the exact solutions for the

frequencies and mode shapes of a Timoshenko beam carrying a spring-mass system with three types
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of boundary conditions. Wu and Chou (1998) have calculated the natural frequencies and mode

shapes of a Bernoulli-Euler cantilever beam carrying multiple one-dof spring-mass systems using

the analytical-and-numerical-combined method and Wu and Chen (2001) have determined those of

a Timoshenko beam carrying multiple one-dof spring-mass systems using the numerical assembly

technique. Larrondo et al. (1992) and Rossit and Laura (2001) have performed the free vibration

analysis of a Bernoulli-Euler beam with elastically mounted concentrated masses by means of

various analytical approaches. The theoretical results were compared with the experimental ones and

satisfactory agreement was achieved. Gúrgóze (1996) has used the Lagrange method to derive the

frequency equation of a clamped-free Bernouli-Euler beam mounted with a tip mass and a spring-

mass system. Wu and Whittaker (1999), Wu (2002), Chang and Chang (1998) and Jen and Magrab

(1993) have investigated those of beams carrying single and multiple two-dof spring-mass systems

by means of various approaches. Ingber et al. (1992) have performed the free vibration analysis of a

clamped plate with concentrated masses and springs by means of mixed boundary-finite element

method and confirmed the theoretical results with their experiments. Rossi and Laura (1996) have

investigated the influence of Poisson’s ratio and position of concentrated mass on the natural

frequencies and mode shapes of a cantilever plate using finite element method. Since it may be not

always reasonable to simplify the attachments as concentrated masses, Kopmaz and Telli (2002)

have studied the free vibrations of a rectangular plate carrying a distributed mass by means of the

Galerkin method. Avalos et al. (1993, 1994) and Wu and Luo (1997a, 1997b) have respectively

investigated the free vibrations of plates with various boundary conditions carrying elastically

mounted mass(es) (i.e., one-dof spring-mass system(s)) using the optimized Rayleigh-Ritz method

and analytical-and-numerical-combined method, respectively. Recently, Wu (2005) has studied the

free vibration characteristics of a rectangular plate carrying multiple three-degree-of-freedom spring-

mass systems using the equivalent mass method.

From the review of existing literature, one sees that the literature concerning the plates carrying

various concentrated elements is much less than that concerning the beams carrying various

concentrated elements. Besides, due to the complexity of the mathematical expressions, either the

concentrated masses or the distributed masses were rigidly attached to the plate in the works of

Ingber et al. (1992), Rossi and Laura (1996), Kopmaz and Telli (2002) and the literature regarding

the elastic attachments is comparatively fewer. The free vibration analysis of a plate carrying a

single one-dof spring-mass system has been made by Avalos et al. (1993, 1994) and that carrying

multiple one-dof spring-mass systems by Wu and Luo (1997a, 1997b). For the vibration problem of

a plate carrying multiple three-dof spring-mass systems, the work of Wu (2005) should be one of

the most concerned literature. Because the information regarding vibration characteristics of plates

carrying multi-dof spring-mass systems is limited, the last problem is further studied. Comparing

with the work of Wu (2005), the advantages of the current paper are: (i) This paper uses the

equivalent spring method, instead of the equivalent mass method (Wu 2005), to tackle the problem.

This provides a technique for evaluating the overall elastic effect of each three-dof spring-mass

system. (ii) Because manufacturing a spring with the specified stiffness is much easier than making

a three-dof spring-mass system with the specified spring constants and mass magnitude, the

presented theory of replacing a three-dof spring-mass system by a set of equivalent springs will be

significant in certain practical applications.

This paper starts with the derivation of the stiffness and mass matrices of a three-dof spring-mass

system, required by conventional finite element method (FEM), based on the force and moment

equilibrium equations and then eliminates the three degrees of freedom (dof’s) for the lumped mass
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of the spring-mass system from the foregoing element stiffness and mass matrices to yield the

effective stiffness matrix and a set of equivalent springs for the three-dof spring-mass system,

required by the presented equivalent spring method (ESM). Next, the overall property matrices of

the entire vibrating system are determined using the standard assembly technique of finite element

method (Bathe 1982). The main difference between FEM and ESM is that, in FEM, the total dof of

the entire vibrating system increases three if one more three-dof spring-mass system is attached to

the plate, while, in ESM, the total dof of the entire vibrating system is not affected by the total

number of the three-dof spring-mass systems attached to the plate. This is because all dof’s of a

three-dof spring-mass system are suppressed by its equivalent springs. The last feature of ESM will

save much computer storage memory if the total number of spring-mass systems attached to the

plate is very large.

For convenience, a rectangular plate is called the bare plate if it carries nothing, and is called the

loaded plate if it carries any number of spring-mass systems in this paper. In FEM, the natural

frequencies and the corresponding mode shapes of the loaded plate are determined using Lanczos

algorithm (Cullum and Willoughby 2002), however, in ESM, they are determined using half-interval

technique and Gauss-Jordan elimination method (Gerald and Wheatley 1998), respectively, because

the coefficients of the stiffness matrix for each set of equivalent springs are functions of natural

frequencies of the loaded plate. For validation, the natural frequencies of a simply supported

rectangular plate carrying a three-dof spring-mass system determined by the FEM and ESM are

compared with those of the same plate carrying a one-dof spring-mass system. It is found that, if

the mass, the resultant spring constant and the attached positions of the three-dof spring-mass

system are close to the associated ones of the one-dof spring-mass system, and the mass moments

of inertia of the three-dof spring-mass system approach zero, then the natural frequencies of the

rectangular plate carrying a three-dof spring-mass system will be close to those of the same plate

carrying a one-dof spring-mass system. Finally, the free vibration characteristics of a rectangular

plate carrying multiple three-dof spring-mass systems are studied to show the availability of the

presented technique.

2. Property matrices for a three-dof spring-mass system

For the rectangular plate carrying a three-dof spring-mass system as shown in Fig. 1, the dynamic

equilibrium of the spring-mass system requires that

(1)

(2)

(3)

where Fv,  and  represent the external force and moments on the lumped mass ( ) of

the v-th spring-mass system in the vertical  direction and about the  and  axes, respectively,

 and  are the associated accelerations,  and  are the associated mass and

mass moments of inertia for the lumped mass in the vertical  direction and about the  and 

axes, respectively,  and  are parameters to define the spacing of the four helical springs and
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eccentricity of the center of gravity of the v-th lumped mass  in the  direction, while 

and  are those in the  direction. Besides, Fi (i = p, q, r, s) represent the interactive forces

between the three-dof spring-mass system and the plate at the four attaching points, p, q, r and s,

given by 

(4)

(5)

(6)

(7)

where  denotes the spring constant for each of the four helical springs, uv ,  and  are the

displacement and rotational angles for the lumped mass  of the v-th spring-mass system in

the vertical  direction and about the  and  axes, respectively, while ui denotes the vertical

displacement of the rectangular plate at the attaching point i (i = p, q, r, s) of the v-th spring-mass

system.

Introducing Eqs. (4)-(7) into Eqs. (1)-(3), one obtains

(8)
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Fig. 1 A rectangular plate carrying an arbitrary three-dof spring-mass system 
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Writing Eqs. (4)-(10) in matrix form yields

(11)

where

(12a)

(12b)

(12c)

(12d)

(12e)
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(12h)
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(12j)

In Eqs. (11) and (12), [m] and [k] are respectively the mass matrix and stiffness matrix of the v-th

three-dof spring-mass system shown in Fig. 1.
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3. Effective stiffness matrix for a three-dof spring-mass system

For free vibration, the external force and moments are zero, i.e., . Thus,

Eqs. (1)-(3) respectively reduce to 

(13)

(14)

(15)

Introducing Eqs. (4)-(7) into Eqs. (13)-(15) yields

(16)

(17)

(18)

Writing the last three equations in matrix form, one obtains

 (19)

For free vibration of the loaded plate (i.e., the bare plate together with the three-dof spring-mass

system), one has
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where  is the amplitude of Fj ( j = p, q, r, s),  is the natural frequency of the loaded plate; 

( j = p, q, r, s, v) and  ( j = x, y) are respectively the vibration amplitudes of uj ( j = p, q, r, s, v)

and  ( j = x, y); while .

The substitution of Eqs. (20a) and (20b) into Eq. (19) yields
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where
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Substituting Eqs. (20a)-(20c) into Eqs. (4)-(7), introducing Eq. (22) into the resulting expressions
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where

(26a)

(26b)

and

(26c)

Eq. (25) reveals that the v-th three-dof spring-mass system shown in Fig. 1 can be replaced by an

effective stiffness matrix with its coefficients,  (i, j = 1, 2, 3, 4), defined by Eqs. (26c). From

Eqs. (23)-(26), it can be seen that the last stiffness matrix coefficients are functions of natural

frequency  of the loaded plate.

4. Equivalent springs for a three-dof spring-mass system

It is evident that the dynamic characteristics of the rectangular plate carrying a three-dof spring-

mass system as shown in Fig. 1 may be obtained from the same bare plate supported by four

equivalent springs with their spring constants  (i = p, q, r, s) determined by

(27a)

(27b)

(27c)

(27d)
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The last expressions are obtained from Eqs. (25) and (26). It is seen that the effective stiffness

matrix given by Eq. (26c), , is equivalent to the set of the four equivalent springs (for the v-th

three-dof spring-mass system) with their spring constants defined by Eqs. (27a)-(27d). 

5. Solution of the problem

In this paper, two methods, the conventional finite element method (FEM) and the equivalent

spring method (ESM), are used to calculate the natural frequencies and mode shapes of the loaded

plate. The key points for the last two methods are described in the following.

5.1 By using conventional finite element method (FEM)

First of all, each three-dof spring-mass system is regarded as a finite element with element

property matrices given by Eqs. (12a) and (12b). Then, the overall stiffness matrix [K] and overall

mass matrix [M] for the loaded plate is determined by means of the standard assembly technique of

finite element method (Bathe 1982). Eliminating the rows and columns of [K] and [M],

corresponding to the constrained degrees of freedom of the plate, will yield the equations of motion

for the entire vibrating system (Clough 1993)

(28)

where  and  are, respectively, the mass matrix and stiffness matrix obtained from [M] and

[K] by imposing the prescribed boundary conditions; while  and  are, respectively, the

associated acceleration and displacement vectors.

For free vibration of the loaded plate, one has 

(29a)

(29b)

Substitution of the last relations into Eq. (28) leads to

(30)

Eq. (30) is a typical eigenvalue equation, therefore, many techniques may be used to determine the

eigenvalues  and the corresponding eigenvectors  ( j = 1, 2, ...). In this paper, Eq. (28) was

solved by means of the Lanczos method (Cullum and Willoughby 2002).

5.2 By using equivalent spring method (ESM)

Because each three-dof spring-mass system (see Fig. 1) possesses three dof’s, the order of the

overall property matrices  and  for the last FEM increases 3 when one more spring-mass

system is attached to the plate. However, this is not true for the current ESM because the three

dof’s of each spring-mass system are eliminated when the spring-mass system is replaced by a set

keff

v( )[ ]

M̃[ ] ũ
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of equivalent springs with the coefficients of its stiffness matrix given by  (i, j = 1 to 4) (see

Sections 3 and 4). In other words, the order of the overall property matrices for the loaded plate

remains unchanged no matter whether or not the total number of the three-dof spring-mass systems

attached to the plate is changed. 

If the effective stiffness matrix for the vth three-dof spring-mass system shown in Fig. 1 is

represented by  (see Eq. (26c)), then the contribution of the vth three-dof spring-mass system

on the overall stiffness matrix of the loaded plate is given by

(31)

where 

(32)

except that

(33)

with

i = np if I = 1; i = nq if I = 2; i = nr if I = 3; i = ns if I = 4

j = np if J = 1; j = nq if J = 2; j = nr if J = 3; j = ns if J = 4 (34)

In Eq. (31), [KL] and [KB] are the overall stiffness matrix of the loaded plate and the bare plate,

respectively; while np, nq, nr and ns represent the numberings for the degrees of freedom

corresponding to the transverse displacements (in  direction) of the attaching points p, q, r and s,

respectively.

The solution procedures for ESM are:

1. Calculate the overall stiffness matrix [K] and overall mass matrix [M] of the bare plate using

the conventional FEM.

2. Give a trial value to the natural frequency  for the loaded plate and calculate the coefficients

of effective stiffness matrix,  (i, j = 1, 2, 3, 4) with Eqs. (23) and (26c).

3. Add the coefficients of effective stiffness matrix,  (i, j = 1, 2, 3, 4), for each three-dof

spring-mass system to the associated ones of overall stiffness matrix [K] and denote the

resulting stiffness matrix by [K]s. Eqs. (32)-(34) show the contribution of the vth three-dof

spring-mass system on the overall stiffness matrix [K].

4. Impose the boundary conditions of the plate to determine the effective overall stiffness matrix

 and overall mass matrix .

5. Evaluate the value of the determinant

(35)

6. If the value of the determinant is equal to zero (i.e., ), then the trial value of 

selected by step 2 is one of the natural frequencies of the loaded plate. Otherwise, steps 2-5

must be repeated with a new trial value of  until .
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7. Determine the corresponding mode shape from the simultaneous equations

(36)

In this paper the iterations for steps 2-6 were performed with the half-interval method and the

corresponding mode shape was determined by solving Eq. (36) with the Gauss-Jordan elimination

method (Gerald and Wheatley 1998). Clearly, the computer time required by the ESM depends on

many factors, such as the scheme of computer program adopted, the lowest (initial) trial value of

natural frequency, the total number of natural frequencies (n) determined, the difference between the

lowest natural frequency and the highest one among the n natural frequencies, the accuracy of the

natural frequencies desired, etc. In general, if only the lowest six (or less than six) natural

frequencies of the loaded plate are required then the difference between the computer time required

by the ESM and the conventional FEM is insignificant as one may see from the final column of

Table 1. In spite of the fact that the computer time required by the ESM may be not necessarily less

than that required by the FEM, the ESM has the following advantages: (i) Because the dof’s

regarding all the 3-dof spring-mass systems are eliminated by the associated effective stiffness

matrices, the natural frequencies and mode shapes regarding the local vibrations of all the 3-dof

spring-mass systems with respect to the static plate are to disappear in the computer output,

therefore, the time saved by the analysis of its output data will be much more than the computer

time required by its numerical calculations. (ii) Because each spring-mass system (see Fig. 1)

possesses three dof’s, the order of the effective overall property matrices  and  for the

FEM increases by 3 when one more spring-mass system is attached to the plate. However, in ESM,

the order of the overall property matrices for the loaded plate remains unchanged no matter how

many 3-dof spring-mass systems are attached to the plate, because the three dof’s of each spring-

mass system are eliminated when each 3-dof spring-mass system is replaced by a set of equivalent

springs (see Sections 2-4). 

6. Numerical results and discussions

For convenience, a four-letter acronym is used to designate the type of support of a rectangular

K̃[ ]s ω
2

M̃[ ]–( ) ũ
*{ } 0{ }=

K̃[ ] M̃[ ]

Table 1 The four natural frequencies,  ( j = 1 to 4), for an undamped uniform SSSS rectangular plate
carrying a 1-dof and a three-dof spring-mass systems, as shown in Figs. 2(a) and 2(b), with

= 7.85 kg, = 117.4 N/m and = (1.5 m, 0.5 m)

Methods
dof of each 
spring-mass 

system

Natural frequencies,   ( j = 1 to 4) (rad/s) CPU
time
(sec)

*ESM 3 94.5099 149.1904 241.5197 717.0250 68.9

*FEM 3 94.5099 149.1904 241.5197 717.0250 68.2

Wu and Luo (1997a) 1 94.5128 149.1958 241.5223 717.0268 ----

Avalos et al. (1993) 1 95.7515 153.5814 248.0038 706.4264 ----

*ESM refers to the equivalent spring method presented in this paper; FEM refers to the conventional finite
element method.

ω j

mz

1( )
kz

1( ) x
1( )

y
1( ),( )

ω j

ω 1 ω 2 ω 3 ω 4



724 Jia-Jang Wu

plate starting at the left edge and proceeding in a clockwise direction. Hence, the SSSS plate refers

to a rectangular plate with its four edges simply supported, and the SFSF plate refers to a

rectangular plate with its two opposite edges normal to the -axis simply supported and the other

two edges (normal to the -axis) free. It is evident that the letters, S and F, refer to the simple and

free supports, respectively. In this section, the reliability of the presented theory and the developed

computer programs are confirmed first and then the free vibration characteristics of a SFSF square

plate carrying four three-dof spring-mass systems are studied.

6.1 Reliability of the theory and the computer programs

To confirm the reliability of the presented technique and the developed computer programs, a

uniform undamped SSSS rectangular plate carrying a one-dof spring-mass system (see Fig. 2(a))

and the same plate carrying a three-dof spring-mass system (see Fig. 2(b)) are investigated in this

subsection. The material properties and dimensions of the SSSS plate are: length a = 2.0 m, width

b = 1.0 m, thickness h = 0.005 m, mass density ρ = 7850 kg/m3, Young’s modulus E = 2.051 ×

1011 N/m2, Poisson’s ratio ν = 0.3 and bending rigidity D = Eh3/[12(1 − ν 2)] = 2.348 × 103 Nm.

Besides, the physical properties of the spring-mass systems shown in Fig. 2 are: spring stiffness

x

y

Fig. 2 A rectangular SSSS plate carrying (a) a one-dof spring-mass system and (b) a three-dof spring-mass
system with = 7.85 kg, = 117.4 N/m and = (1.5 m, 0.5 m)mz

1( )
kz

1( )
x

1( )
y

1( ),( )
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= 117.4 N/m and lumped mass  = 7.85 kg. It is noted that the last information concerning

the plate and the spring-mass system is exactly the same as that of Wu and Luo (1997a).

From Figs. 2(a) and 2(b), one may infer that the natural frequencies of the plate carrying a three-

dof spring-mass system shown in Fig. 2(b) will approach to the corresponding ones of the same

plate carrying a one-dof spring-mass system shown in Fig. 2(a), if the following conditions are

satisfied: (i) The mass moments of inertia,  and , and the spacing λ for the three-dof spring-

mass system approach zero; (ii) The resultant spring constant and the  and  co-ordinates for

the centre of gravity of the three-dof spring-mass system are identical to the corresponding ones

of the one-dof spring-mass system. In this paper, , ,

= 117.4/4 = 29.35 N/m and  = (1.5 m, 0.5 m) are used. 

Table 1 shows the four natural frequencies,  ( j = 1 to 4), of the last loaded plate. The natural

frequencies listed in 5th and 6th rows of the table are for the SSSS plate carrying a one-dof spring-

mass system given by Wu and Luo (1997a) and Avalos et al. (1993), while those listed in 3rd and

4th rows are for the same plate carrying a three-dof spring-mass system obtained from this paper.

Among which the data listed in 5th and 6th rows are, respectively, calculated by using the finite

element method (Wu and Luo 1997a) and the analytical method (Avalos et al. 1993), respectively,

while those listed in 3rd and 4th rows are determined by the presented effective spring method

(ESM) and the conventional finite element method (FEM) with property matrices of each three-dof

spring-mass system given by Eqs. (12a) and (12b). From the table, one finds that the natural

frequencies of the SSSS plate carrying a three-dof spring-mass system, obtained from this paper

using either ESM or FEM, are very close to the corresponding ones of the same plate carrying a one-

dof spring-mass system given by the existing literature. For this reason, one believes that the theory

and the computer programs presented in this paper should be viable for investigating the dynamic

characteristics of a rectangular plate carrying multiple three-dof spring-mass systems in this research. 

6.2 Free vibration analysis of a SFSF plate carrying a three-dof spring-mass system

In this subsection, a uniform undamped SFSF square plate carrying a three-dof spring-mass

system is studied (see Fig. 3). The material properties and dimensions of the SFSF square plate are:

length a = 1.0 m, width b = 1.0 m, thickness h = 0.003 m, mass density ρ = 7820 kg/m3, Young’s

modulus E = 206.8 GN/m2 and Poisson’s ratio ν = 0.29. The physical properties of the three-dof

spring-mass system are: lumped mass  = 23.46 kg, mass moments of inertia  = 10−6

kg · m2, spacings  and . The  and  co-ordinates

of the attaching points, p, q, r and s, are: = (0.375 m, 0.125 m), = (0.375 m,

0.875 m), = (0.625 m, 0.875 m) and = (0.625 m, 0.125 m). Three cases are

studied and the associated spring constants for each of the four helical springs of the three-dof

spring-mass system are: = 3750.0, 5250.0 and 6750.0 N/m, respectively. From the last given

data for the three-dof spring-mass system, one sees that the  and  co-ordinates for the centre of

gravity of the spring-mass system are identical to those of the centre of the SFSF square plate.

The lowest six natural frequencies of the bare SFSF plate are shown in the final row of Table 2

and the corresponding mode shapes are plotted by meshes of Fig. 4 and dashed curves in contour

plots of Figs. 4-7 and 9. Besides, the lowest six mode shapes of the loaded SFSF plate with =

3750.0 N/m obtained by using the FEM and ESM are, respectively, plotted by solid curves in

contour plots of Figs. 5 and 6. The 3rd to 8th rows of Table 2 list the lowest six natural frequencies,

( j = 1 to 6), of the SFSF square plate carrying a three-dof spring-mass system with different
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spring constant . From the last figures and Table 2, one finds that the installation of a three-dof

spring-mass system to the SFSF square plate will influence the 1st and 3rd natural frequencies and

mode shapes of the bare SFSF plate to some degree. This is a reasonable result because the center

of gravity for the three-dof spring-mass system is very close to the crest of the 1st and 3rd mode

shapes of the bare SFSF plate, as one may see from Fig. 4. In addition to 1st and 3rd modes, the

three-dof spring-mass also slightly influences the 5th natural frequencies of the bare SFSF plate.

This is because the locations of the four helical springs are very close to the crest of the 5th mode

kz

1( )

Fig. 3 A SFSF square plate carrying a three-dof spring-mass system with = 23.46 kg, =  0.125 m,
= 0.375 m, = 10−6 kg · m2 and = (0.375 m, 0.125 m), 

= (0.375 m, 0.875 m), = (0.625 m, 0.875 m) and = (0.625 m, 0.125 m). The
stiffness for each of the four helical springs of the three-dof spring-mass system are: = 3750.0,
5250.0 or 6750.0 N/m
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Table 2 Influence of stiffness  for each of the four helical springs of the three-dof spring-mass system on
the lowest six natural frequencies,  ( j = 1 to 6), of the loaded SFSF square plate shown in Fig. 3,
with = 23.46 kg, ,  , kg · m2

and , , = (0.625 m,
0.875 m) and = (0.625 m, 0.125 m) 

Spring 
constant,

(N/m)
Methods

Natural frequencies,  ( j = 1 to 6) (rad/s)

3750.0
ESM 58.2010 72.9789 161.0306 183.4530 215.0264 300.9359

FEM 58.2010 72.9789 161.0306 183.4530 215.0264 300.9359

5250.0
ESM 63.1064 72.9789 161.8907 183.4530 215.9455 300.9359

FEM 63.1064 72.9789 161.8907 183.4530 215.9456 300.9359

6750.0
ESM 67.6585 72.9789 162.7923 183.4529 216.8556 300.9359

FEM 67.6585 72.9789 162.7923 183.4529 216.8557 300.9359

Bare plate FEM 45.0048 72.9793 159.0543 183.4556 212.6873 300.9381
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shape shown in Fig. 4(e).

From the 3rd to 8th rows of Table 2, one also sees that the larger the spring constant  for each

of the four helical springs of the three-dof spring-mass system, the higher the natural frequencies,

( j = 1 to 6), of the loaded SFSF plate. Moreover, the mode shapes obtained from FEM and ESM

are in close agreement (see Figs. 5 and 6) and the natural frequencies of the loaded plate

determined by using FEM and ESM are in good agreement (see Table 2). These results further

confirm the reliability of the presented equivalent spring method.

kz

1( )

ωj

Fig. 4 Meshes and contour plots for the lowest six mode shapes of the bare SFSF plate corresponding to
(a) = 45.0048 rad/s, (b) = 72.9793 rad/s, (c) = 159.0543 rad/s, (d) = 183.4556 rad/s,
(e) = 212.6873 rad/s, (f) = 300.9381 rad/s  
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Fig. 5 Contour plots for the (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, (e) 5th and (f) 6th mode shapes of the SFSF
square plate carrying a three-dof spring-mass system, with = 3750.0 N/m, obtained from FEM
(⎯) and the corresponding ones of the bare SFSF plate (----)
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Fig. 6 Contour plots for the (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, (e) 5th and (f) 6th mode shapes of the SFSF
square plate carrying a three-dof spring-mass system, with = 3750.0 N/m, obtained from ESM
(⎯) and the corresponding ones of the bare SFSF plate (----)
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Fig. 7 Contour plots for the (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, (e) 5th and (f) 6th mode shapes of the SFSF
square plate carrying a three-dof spring-mass system, with  = 1.2219 kg · m2 and = 0.2444
kg · m2, obtained from ESM (⎯) and the corresponding ones of the bare SFSF plate (----)
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6.3 Influence of mass and its mass moments of inertia of the three-dof spring-mass system

This subsection studies the effects of mass and its mass moments of inertia,  and , for the

lumped mass of the three-dof spring-mass system on the free vibration characteristics of the last

SFSF square plate. All the physical properties of the plate and the three-dof spring-mass system are

exactly the same as those of the last subsection except that the spring constant for each of the four

helical springs of the spring-mass system is = 3750.0 N/m and mass moments of inertia are:

 or  = 1.2219 kg · m2 and = 0.2444 kg · m2, respectively.

The influences of mass  and its mass moments of inertia (  and ) for the lumped

mass of the three-dof spring-mass system on the lowest six natural frequencies and mode shapes of

the loaded SFSF plate are shown in 3rd to 6th rows of Table 3 and Fig. 7, respectively. For

comparison, the lowest six natural frequencies of the bare SFSF plate are listed in the final row of

Table 3. From the table, one sees that the lumped mass  and its mass moments of inertia

(  and ) have significant influence on the lowest six natural frequencies of the bare SFSF

plate. For the case of neglecting the mass moments of inertia (  and ), the lumped mass

 has the most significant influence on the first natural frequency of the bare SFSF plate (see

3rd, 4th and 7th rows of Table 3). This is a reasonable result because the center of gravity for

lumped mass  is very close to the crest of the first mode shape of the plate (cf. Figs. 4(a)

and 7(a)). In addition, one also sees that the change of  and  will influence the 2nd, 4th and

6th natural frequencies,  and , of the SFSF square plate to some degree (see 3-6 rows of

Table 3). This is to be expected because the mode shapes corresponding to the 2nd, 4th and 6th

natural frequencies are the torsional (vibration) modes of the bare SFSF plate, as one may see from

Figs. 4 and 7. 

6.4 Natural frequencies and mode shapes of a SFSF plate with four identical 3-dof

spring-mass systems

To show the applicability of the presented technique, the lowest six natural frequencies of a SFSF
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6–

= = Jx
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1( ) Jy
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1( ) Jy
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Jx
1( ) Jy

1( )

mz

1( )( )

mz

1( )

Jx
1( ) Jy

1( )

ω2 ω4, ω6

Table 3 Influence of mass ( ) and its mass moments of inertia (  and ) for the lumped mass of the
three-dof spring-mass system on the lowest six natural frequencies,  ( j = 1 to 6), of the loaded
SFSF square plate (carrying a three-dof spring-mass system) (cf. Fig. 3) with =23.46 kg, =
3750.0 N/m, , , and = (0.375 m, 0.125 m),

, = (0.625 m, 0.875 m) and = (0.625 m,
0.125 m) 

Mass moments of 
inertia,  and  

(kg · m2)
Methods

Natural frequencies,  ( j = 1 to 6) (rad/s)

10−6 ESM 58.2010 72.9789 161.0306 183.4530 215.0264 300.9359

FEM 58.2010 72.9789 161.0306 183.4530 215.0264 300.9359

Jx
(1) = 1.2219 ESM 58.2010 87.1636 161.0306 185.3038 215.0264 301.4907

Jy
(1) = 0.2444 FEM 58.2010 87.1636 161.0306 185.3038 215.0264 301.4907

Bare plate FEM 45.0048 72.9793 159.0543 183.4556 212.6873 300.9381
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square plate carrying four identical three-dof spring-mass systems, SM1, SM2, SM3 and SM4, as

shown in Fig. 8, are investigated here. The locations and physical properties of the four identical

three-dof spring-mass systems are shown in Table 4. Table 5 shows the lowest six natural

Fig. 8 A SFSF square plate carrying four identical three-dof spring-mass systems with their locations and
physical properties shown in Table 4

Table 4 The locations and physical properties for the four three-dof spring-mass systems, SM1, SM2, SM3
and SM4, attached to the SFSF square plate shown in Fig. 8

Locations and 
physical properties

Spring-mass systems attached to the SFSF square plate

SM1 SM2 SM3 SM4

* (0.125,0.125) (0.125,0.625) (0.625,0.625) (0.625,0.125)

(0.125,0.375) (0.125,0.875) (0.625,0.875) (0.625,0.375)

(0.375,0.375) (0.375,0.875) (0.875,0.875) (0.875,0.375)

(0.375,0.125) (0.375,0.625) (0.875,0.625) (0.875,0.125)

Lumped mass mz (kg) 23.46/4 = 5.865

Spring constant  (N/m) 3750/4 = 937.5

Mass moments of inertia
 (kg · m2)

Spacings ax1 = ax2 = ay1 = ay2 (m) 0.125

*The unit of coordinates is meters.

x p y p,( )
x q y q,( )
x r y r,( )
x s y s,( )

kz

Jx Jy=
Jx Jy

1

12
------ 5.865× 0.25

2

0.25
2

+( )× 0.06104= = =

Table 5 The lowest six natural frequencies,  ( j = 1 to 6) , for the SFSF square plate carrying four identical
three-dof spring-mass systems (cf. Fig. 8) with their locations and physical properties shown in Table 4 

Vibrating
systems

Methods
Natural frequencies,  ( j = 1 to 6) (rad/s)

Loaded plate
ESM 53.4559 77.3556 160.5900 185.1642 214.0428 301.7541

FEM 53.4559 77.3556 160.5900 185.1642 214.0428 301.7541

Bare plate FEM 45.0048 72.9793 159.0543 183.4556 212.6873 300.9381

ω j

ω j

ω 1 ω 2 ω 3 ω 4 ω 5 ω 6
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Fig. 9 Contour plots for the (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, (e) 5th and (f) 6th mode shapes of the SFSF
square plate carrying four three-dof spring-mass systems obtained from ESM (⎯) and the
corresponding ones of the bare SFSF plate (----)
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frequencies, ( j = 1 to 6), of the loaded plate. The mode shapes of the loaded plate are shown in

Fig. 9. From Figs. 6 and 9, one finds that the influence of multiple spring-mass systems on the

mode shapes of the bare SFSF plate is less than that of single spring-mass system. In general, the

influence of a concentrated load on the dynamic characteristics of a plate is more than that of a

distributed load if the magnitude of the concentrated load is equal to that of the distributed load.

Therefore, the distribution of the spring-mass system on the plate is also an important factor

affecting the vibration characteristics of the plate. 

7. Conclusions

1. A technique of replacing a three-degree-of-freedom (three-dof) spring-mass system by a set of

equivalent springs has been presented. By means of this equivalent spring method (ESM), one

may obtain the dynamic characteristics of a rectangular plate carrying any number of three-dof

spring-mass systems from the same plate supported by the same sets of equivalent springs. If n

denotes the total number of three-dof spring-mass systems attached to the plate, then the total

dof of the entire vibrating system using ESM is 3n less than those using the conventional FEM.

In the conventional FEM, all natural frequencies and the associated mode shapes, either related

to the plate or to the attached three-dof spring-mass systems, will appear in the computer output.

However, in the presented ESM, only those related to the plate are output, this will significantly

reduce the trivial output data when n is very large.

2. All parameters concerning a three-dof spring-mass system, such as lumped mass, spring

stiffness, mass moments of inertia, the attaching position on the plate and the spacing between

the helical springs, will affect the natural frequencies of the plate to some degree. It is hoped

that the technique presented in this paper will provide a useful tool for solving the relevant

problems.
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