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Response of a rectangular plate-column system on a 
tensionless Winkler foundation subjected to static 

and dynamic loads
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Abstract. The response of a plate-column system having five-degree-of-freedom supported by an elastic
foundation and subjected to static lateral load, harmonic ground motion and earthquake motion is studied.
Two Winkler foundation models are assumed: a conventional model which supports compression and
tension and a tensionless model which supports compression only. The governing equations of the
problem are obtained, solved numerically and the results are presented in figures to demonstrate the
behavior of the system for various values of the system parameters comparatively for the conventional
and the tensionless Winkler foundation models.
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1. Introduction

Plate-column systems, i.e., plates which support a column having a tip mass on elastic foundation,

have been studied widely to investigate the soil-structure interaction under static and dynamic

loadings. The earthquake response of these systems is usually analyzed under the assumption that

the base plate is firmly bounded to the soil, i.e., compressive and tensile stresses can be transmitted

between the plate and the foundation. However, when the overturning moment of the inertia forces

exceeds the available overturning resistance due to gravity load, a part of the plate loses the contact

with the foundation. It is reported that such uplift has been observed in several earthquakes in tower

and oil tanks.

The assumption that the foundation reacts in compression as well as in tension, in the analysis of

these types of problems simplifies the problem considerable. However, it is rational to expect that

the contact between the plate and the foundation is established through the foundation stresses only

within the region when the plate penetrates into the foundation. On the other hand, no interaction is

expected outside of this region, when the plate lifts off the foundation. In such cases, the problem

displays a non-linear character and the solution becomes difficult, since the contact region is not
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known in advance due to the tensionless character of the foundation. The extent of the contact

region depends on the geometry of the problem and on the configuration of the loading. Generally,

the evaluation of the contact region can be accomplished by using iterative methods. Studies

involving plates on tensionless foundation have been carried out by various authors dealing with the

rectangular (Dempsey et al. 1984, Celep 1988b, Papanikolaou and Doudoumis 2001, Silva et al.

2001) and circular plates (Weisman 1970, Villaggio 1983, Celep 1988a, Celep and Turhan 1990,

Güler and Celep 1995, Celep and Genço lu 2003, Celep and Güler 2004). Solutions are given for a

rectangular plate under static load and for circular plates for static and dynamic cases. Recently,

buckling and post-buckling behavior of rectangular plates laterally constrained by a tensionless

foundation and subjected to in-plane compressive forces are investigated (de Holanda and

Gonçalves 2003, Shen and Li 2004). The solutions of static problems are accomplished mostly by

applying approximate numerical techniques including nonlinear finite-element formulation and

perturbation technique, to the non-linear governing equations of the problem. On the other hand, for

the dynamic problems, i.e., for oscillations of a plate on a tensionless foundation, the contact region

of the plate depends on time and usually the analysis is carried out numerically by adopting step-

wise solution in time domain by updating the contact region continuously.

Housner (1963) investigated the dynamic behaviour of the rigid block including the foundation

uplift. Meek (1975) and Psycharis (1983) extended this study by considering earthquake response of

flexible structures. Yim and Chopra (1984, 1985) investigated a beam-column system and a multi-

story system. The circular plate-column system is studied by including free and forced vibrations as

well as the earthquake excitation (Celep and Güler 1991, Celep 1992). The present study deals with

a system consisting of a rigid rectangular plate and an elastic column having a tip mass. The static

behaviour of the plate-column system on the elastic tensionless Winkler foundation is investigated

under a horizontal tip load. The study also includes the investigation of the system under the

assumption that it is subjected to a ground harmonic motion and an earthquake motion. Numerical

results are reported to demonstrate the effects of the parameters of the system on its static and

dynamic behaviour, i.e., the tip mass, the lateral load and its application angle, the plate load and

the dimensions of the plate.

2. Statement of the problem

The system considered is given in Fig. 1. It is a rectangular rigid plate of dimension 2A and 2B,

of mass Mp subjected to a uniformly distributed load Qo(t) in addition to its weight. The plate is on

a tensionless Winkler foundation of stiffness Kf and supports an axially inextensible and massless

column of height L, lateral stiffnesses Kx and Ky and damping Cx and Cy in the directions X and Y,

respectively. The column supports a tip mass Mc and the mass is subjected to a horizontal load Po(t)

with an angle α. It is assumed that the system is subjected to a horizontal ground excitation in two

directions, Ugx(t) and Ugy(t). The displaced configuration of the system at any instant of time under

the external loads and the horizontal ground excitation can be defined by the horizontal structural

displacements Ux(t) and Uy(t), the vertical displacement Wo(t) and the rotation of the rigid plate θx(t)

and θy(t) around the axes Y and X, respectively, as shown in Fig. 1. The structural displacements are

the displacements which come into being as a result of bending deformations of the column. The

rigid plate is penetrated into the foundation and partly lifted off the foundation. The vertical

displacement of the rigid plate W(X, Y, t) ; the vertical load Pf (t) and the moments Mfx(t) and Mfy(t)

g
o
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in the directions X and Y applied to the plate at the mid support from the foundation can be

expressed as

(1)

Obviously, the relations Pf − Wo, Mfx − θx and Mfy − θy are linear up to the uplift of the base plate

from the foundation. As usual the tensionless character of the Winkler foundation under the rigid

plate is taken into consideration in Eq. (1), by introducing the contact function H(X, Y, t) defined as

(2)

The contact curve which separates the contact and the lift-off regions is a straight line and can be

described as  as shown in Fig. 1. Depending on the vertical

W X Y t, ,( ) Wo t( ) θx t( )X θy t( )Y for A X A≤ ≤– B– Y B≤ ≤+ +=

Pf t( ) W X Y t, ,( )Kf H X Y t, ,( ) Xd Yd
B–

B

∫
A–

A

∫=

Mfx t( ) W X Y t, ,( )Kf H X Y t, ,( )Y Xd Yd
B–

B

∫
A–

A

∫=

Mfy t( ) W X Y t, ,( )Kf H X Y t, ,( )X Xd Yd
B–

B

∫A–

A

∫–=

H X Y t, ,( ) 1 for W X Y t, ,( ) 0>=

H X Y t, ,( ) 0 for W X Y t, ,( ) 0≤=

Wo t( ) θx t( )X θy t( )Y+ + 0=

Fig. 1 Rectangular rigid plate-column system supported on a tensionless Winkler foundation
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displacement and the rotations of the plate, the contact region of the rigid plate has various shapes,

such as rectangular, trapezoid and triangle. Two equations governing the small amplitude motion of

the system can be derived by considering the lateral equilibrium of forces acting on the tip mass Mc:

(3)

where the dots denote the differentiation with respect to the time t. Equations of motion of the rigid

plate can be written similarly, by considering the vertical motion and the rotations:

(4)

Although the system is assumed to undergo only small displacements and rotations, the second

terms in the left side of the last two equations represent the P-Δ effects due to the slenderness of the

system. Substitution of the displacement function and the foundation reactions given in (1) into

equations of motion (4) yields the following five coupled differential equations

(5)

where the dots denote the differentiation with respect to the non-dimensional time τ and

(6)

and the non-zero elements of the matrices are

(7)
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The non-dimensional parameters related to the geometry, the load and the foundation introduced

are defined as

(8)

where Tc is the natural period of the rigidly supported structure and cx and cy are the corresponding

damping ratios. Furthermore, a and b represent the slenderness-ratio parameters and mp is the ratio

of the foundation mass to the superstructure mass. The system of five-degree-of-freedom has five

free vibration mode shapes. Two of them are modal lateral vibrations in the two directions and they

may be called as column vibrations and they are related to the linear elastic system of the mass Mc

and the lateral stiffnesses Kx and Ky. The other two are also lateral mode shapes and they may be

called as rocking vibrations and they are related to the system supported to the elastic foundation of

stiffness Kf in two directions. The last one is related primarily to the vertical vibrations on the

elastic foundation. However, due to the interaction between them, they all related to each other and

this interaction depends on the numerical values of the system parameter and it becomes more

pronounced, when uplift takes place. In fact the off-diagonal terms in the mass and stiffness

matrices show the interaction between these five fundamental mode shapes.

Static and dynamic behaviour of the system is represented by the governing equation of the

problem (5), which represents the small amplitude motion of the system including the P-Δ effect of

the tip mass. Due to this effect the mass matrix and due to the tensionless nature of the foundation,

the stiffness matrix has time dependent coefficients and the governing Eq. (5) is highly non-linear.

The evaluation of the system of non-linear equations requires an iterative solution by the fact that

after lift-off these equations depend continuously on the varying degree of the contact between the

rigid plate and the foundation. On the other hand, they are relatively simple for a conventional

Winkler foundation for which the contact functions can be evaluated easily as

(9)

and consequently the governing Eq. (5) will be a linear one.
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The static configuration of the system subjected to the horizontal force Po at the tip mass and the

uniformly distributed load Qo on the rigid plate can be studied easily by using the static version of

the Eq. (5)

ku = p (10)

for both the conventional and the tensionless foundation models.

3. Numerical results and discussion

The static and dynamic response of the system to a specified static load and ground motion can

be evaluated by applying a numerical solution procedure to the governing equation of the problem (5).

The equation is non-linear mainly by the dependence of the stiffness coefficients on whether the

plate is in full contact with the foundation or it is partially uplifted. In the later case, the coefficients

depend continuously on the vertical displacements of the plate on the contact area. When a partial

contact develops, the solution of the static case requires an iterative solution. The iterative solution

is accomplished by assuming an initial contact configuration for the specific loading case and by

checking whether the Eq. (10) is satisfied. By updating the contact configuration it is possible to

find a solution in a few iteration steps. On the other hand, the dynamic behavior of the system is

obtained by assuming an initial condition for the problem and by employing a step-wise numerical

solution procedure for the governing differential Eq. (5) along the time axis. At each time step the

contact functions Ho, Hx, Hy, Hxy, Hxx and Hyy are evaluated numerically and updated according to

the vertical displacement configuration of the plate at the previous time step and the elements of the

matrix k are obtained accordingly. Before producing the results to present, the numerical procedure

is verified by considering a number of special cases. Thereafter, for identification of the response of

the system numerous results are produced for static and dynamic cases and presented in figures.

Assuming that the system is under static loads, Figs. 2(a), (b) and (c) show the variations of the

lateral load po a function of the rotation of the plate θx as for various values of the direction angle

of the load α, the plate length b and the vertical plate load qo. As it is seen, linear variations are

obtained for small values of the lateral load, as long as the full contact is maintained. However,

asymptotic variations are displayed for larger values of the load, when a partial contact starts to

develop. As the load increases beyond at incipient uplift, the plate separates over increasing lift-off

region from the foundation. The linear variation becomes stiffer and the asymptotic values of the

load increases, as the angle α, the length b and the vertical load qo become larger, which indicates

that an increase of these parameters delays the onset of the uplift. The linear variations would

continue, when a conventional Winkler foundation were taken into consideration. Numerical results

corresponding to large values of the displacement should be treated with caution as they may be

exceeding the limitations of the small deformation assumption for the system.

Consider that the system is subjected to a horizontal load po and it will start to oscillate after

removing it. When no uplift takes place, the oscillations come into being as a combination of the

free vibration mode shapes. At the onset of the uplift, oscillations of the system come into being by

resembling to a harmonic variation and a free vibration period can be evaluated approximately.

Figs. 3(a) and (b) show the variations of the non-dimensional period To as a function of the lateral

load po for various values of the direction angle of the load α and the vertical plate load qo. As it is
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seen, oscillations which are forced vibration of the linear system have a period independent of the

initial displacement as well as the load po. However, the period lengthens as the load, consequently

the initial displacement increases and an uplift of the plate takes place. On the other hand, an

increase in the plate load qo delays the onset of the uplift and the increase in the period. As Fig. 3

reveals, the period displays an asymptotic variation. It means that for larger values of the load po, a

Fig. 2 Variation of the lateral load po with the rotation of the plate θx for various values of (a) the application

angle α = 0, ■; 15o, ◆; 30o, ▲; 45o, ●; 60o +, 75o, ×: (b) the length of the plate b = 0.1, ■; 0.2, ◆; 0.3,
▲; 0.4, ●; 0.5, +; (c) the plate load qo = 0, ■; 0.0001, ◆; 0.0002, ▲; 0.0003, ●, 0.0004 +; for cx = cy =
0.1, kx = ky = 0.1, α = 0, mc = 0.001, mp = 2, a = b = 0.3, qo = 0.0002
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static equilibrium configuration can not be established, i.e., the system does not have any displaced

configuration which can be assumed as an initial configuration for an oscillatory motion.

Assuming that the system is subjected to a harmonic ground motion such as ,

the governing equation of the problem is evaluated and the time variation of the lateral

displacement of the tip mass  is displayed for the conventional and the

tensionless Winkler foundation models in Figs. 4(a, b) and Figs. 4(c, d), respectively. In order to

display the interaction between the system and the foundation, the ground motion frequency is

assumed to be equal to the first (rocking vibration for which the foundation stiffness is more

effective) and the second (column vibration for which the column stiffness is more effective) free

vibration frequencies of the system in the lateral direction, namely, ωg = 4.59 and ωg = 38.3. As the

figures show, in the first case mainly the corresponding rocking vibration is excited, whereas the

contribution of the column vibration to the oscillation can not be noticed. However, in the second

case it can be seen easily that the two vibrations are excited together. The comparison of the figures

yields that the rocking motion with larger amplitudes appears to be much more effective that the

column vibration. Consequently, the amplitudes of the displacement increase, when the ground

motion excites the rocking motion. However, when the ground motion excites the column vibration,

the column damping becomes effective and the amplitudes of the displacement decrease, whereas

u··gx τ( ) u··gosin ωgτ( )=

vx τ( ) ux τ( ) θx τ( )+=

Fig. 3 Variation of the non-dimensional period To with the lateral load po for various values of (a) the

application angle α = 0, ■; 15o, ◆; 30o, ▲; 45o, ●; 60o +, 75o, ×: (b) the plate load qo = 0.0005, ■;
0.00010, ◆; 0.00015, ▲; 0.00020, ●, 0.00025, +; 0.00030, ×; for cx = cy = 0.1, kx = ky = 0.1, α = 0,
mc = 0.001, mp = 2, a = b = 0.3, qo = 0.00020
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Fig. 4 Variation of the displacement of the tip mass vx(τ) = ux(τ) + θx(τ) for various values of the tip mass mc

= 0.01, ■; 0.001, ◆; 0.0001, ▲; 0.000001, ●; under the ground motion (a) = 0.1sin4.59τ for the
conventional Winkler foundation; (b) = 2.0sin38.3τ for the conventional Winkler foundation; (c)

= 0.1sin4.59τ and the tensionless Winkler foundation (d) = 2.0sin38.3τ and for tensionless
Winkler foundation for cx = cy = 0.1, kx = ky = 0.1, mp = 2, a = b = 0.3, qo = 0.2

u··gx
u··gx

u··gx u··gx
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Fig. 5 Spectra of (a, c) the displacement vx, max and (b, d) the acceleration  of the tip mass under the

ground motion = 0.1sinωgτ for various values of the tip mass (a, b) mc = 0.0005, ■(□); 0.001 ◆(◇);
0.002, ▲(△); 0.004, ●(○); and the length of the plate (c, d) a = b = 0.1, ■(□); 0.2, ◆(◇); 0.3, ▲(△);
0.4, ●(○); for the conventional (tensionless) foundation for cx = cy = 0.1, kx = ky = 0.1, mc = 0.001, mp

= 2, a = b = 0.3, qo = 0.0002

v··x max,

u··gx
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Fig. 6 Spectra of (a, b) the displacement vx, max and (c, d) the absolute acceleration  of the tip mass
under the El Centro ground motion as a function of the lateral stiffness kx = ky for various values of the
angle of excitation direction a = 0o, ■ ; 15o ◆ ; 30o, ▲ ; 45o, ● ; for (a, c) the conventional and for (b, d)
for the tensionless foundation model for cx = cy = 0.1, mc = 0.001, mp = 2, a = b = 0.3, qo = 0.0002

v··x abs max, ,
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the participation of the column vibration to the displacement becomes more pronounced. In case of

the tensionless foundation, the oscillations lengthen and the vibration frequency decreases as the

uplift starts, consequently the variations become complex. The figures show that the higher mode

(column vibration) contributes little to the lateral displacement and to the overturning moment at the

base of the structure. Consequently the uplift of the base plate has little influence on the higher

mode response of the system.

In order to study the effects of the foundation uplift on the maximum response of the structure,

response spectra of the system are evaluated. Fig. 5 shows spectra of the displacement vx, max =

[vx(τ)]max =  and the acceleration  of the

tip mass under the ground motion  for various values of the tip mass mc and the

length of the plate a = b as a function the ground motion frequency ωg for the conventional and the

tensionless foundation model. As it is expected for the conventional foundation case, bell shape

variations are obtained and the maximum spectral values come into being at the free vibration

frequency, i.e., at about ωg = 4.59 for the numerical values of the parameters assumed. For the

tensionless case, the response behaviour is strikingly different. The maximum spectral values of the

displacement appear earlier and larger depending on onset of the uplift, whereas that of the

acceleration become smaller. Furthermore, the bell shape variations alter due to the uplift of the

plate. However, when the frequency of the ground motion increases gradually, at the approach to

the critical frequency the displacement and the acceleration display a sudden increase, almost like a

jump, whereas a smooth decrease appears after passing the critical frequency. The critical frequency

depends in varying degree on the parameters of the system including on the slenderness and on the

amplitude of the excitation in a complicated manner. As Figs. 5(c) and (d) show, when the length of

the base plate decreases, i.e., when the system becomes slender, the spectral displacements and

acceleration increases for the conventional foundation model. However, in the tensionless model

case also an increase in the spectral displacements is noticed, whereas the numerical values of the

spectral accelerations do not show any particular change, except for the critical frequency. Similar

variations are given in Figs. 5(a) and (b) for various values of the plate mass mc.

The above numerical results are presented in a non-dimensional form which applies to all systems

having the same non-dimensional parameters, irrespective of their actual dimensional values.

However, because actual earthquake motion records are given dimensionally, the earthquake

response of the system can be evaluated within the framework of the present formulation only by

assuming a numerical value at least for one parameter having acceleration dimension. In the present

case the numerical value  is assumed. Figs. 6(a, c) and Figs. 6(b, d) illustrate

the response of the system to the north-south component of the El Centro ground motion for the

conventional and tensionless foundations, respectively. In figures the spectra of the displacement

vx, max = [vx(τ)]max =  and the absolute acceleration 

 of the tip mass for various values of the arrival angle of the ground

motion α is presented for two types of the foundation model. The spectral displacement and

acceleration display a smooth variation with respect to the arrival angle α, i.e., the spectral values in

the direction x decreases as the arrival angle increases. When the lateral stiffness of the column (kx

and ky) is large with respect to the foundation stiffness, then the rocking motion becomes

pronounced compared to the column vibration. On the other hand, the column vibration appears to

be significant in comparison of the rocking motion, when kx and ky decrease. The corresponding

curves for the tensionless case display larger values and complex variations.

ux τ( ) θx τ( )+[ ]
max

v··x max,
v··x τ( )[ ]max u··x τ( ) θ

··
x τ( )+[ ]max= =

u··gx 0.1sinωgτ=

Tc

2
/L 0.0045s

2
/m=

ux τ( ) θx τ( )+[ ]
max

v··x abs max, ,
v··x τ( ) u··gx τ( )+[ ]max=

u··x τ( ) θ
··
x τ( ) u··gx τ( )+ +[ ]max=
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4. Conclusions

The static and dynamic behaviour of a rectangular plate-column system under a lateral tip load, a

harmonic ground excitation and the El Centro earthquake motion has been investigated for various

values of the system parameters by including the effects of the uplift of the base plate. Although the

study is based on relatively simple structural idealizations, it incorporates the features of the

foundation uplift. Special attention is paid to the non-dimensionlization of the formulation. The

numerical results are presented for the conventional and the tensionless Winkler foundation model

comparatively. A study of the presented numerical results may lead to the following conclusions:

(a) Inclusion of the tensionless response of the foundation softens the static and dynamic behavior

of the system due to the decrease in the support flexibility. The base plate of a slender system

has greater tendency to uplift resulting in greater variations in the behaviour of the system.

(b) The period of the system increases, when the tensionless model of the foundation is taken into

consideration. However, the dynamic behaviour of the displacement and the acceleration

becomes more complex.

(c) When the uplift develops, the displacements of the system under the harmonic ground motion

increase, whereas the accelerations and the structural displacements are reduced and the critical

frequency shifts by undergoing a gradual decrease. However, in case of the El Centro motion,

the same tendency in the variation can be seen particularly for the small lateral column rigidity.

(d) The uplift of the base plate is influenced mainly by the fundamental mode (rocking

oscillations) and the higher modes (column vibrations) have less effect on the process.

(e) The P-Δ effect has a negligible effect on the response of the system.
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