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Earthquake response analysis of series reactor
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Abstract. A direct transfer substructure method is presented in this paper for analyzing the dynamic
characteristics and the seismic random responses of a series reactor. This method combines the concept of
FRF (frequency response function) and the transfer matrix algorithm with the substructure approach. The
inner degrees of freedom of each substructure are eliminated in the process of reconstruction and the
computation cost is reduced greatly. With the convenient solution procedure, the dynamic characteristics
analysis of the structure is valid and efficient. Associated with the pseudo excitation algorithm, the direct
transfer substructure method is applied to investigating the seismic random responses of the series reactor.
The numerical results demonstrate that the presented method is efficient and practicable in engineering.
Finally, a precise time integration method is employed in performing a time-history analysis on the series
reactor under El Centro and Taft earthquake waves.
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1. Introduction

Seismic events could destroy a lot of buildings, bridges, industrial and port facilities as well as

giving rise to great economic losses. Thus, to ensure the structural safety under disastrous

earthquake actions is usually of great importance in engineering practice. As a result, many analysis

methods for structural seismic responses have been presented in recent years (Somerville 2000,

Chandler and Lam 2001, Cofer et al. 2002, Lin et al. 2001). However, large numbers of finite

elements are inevitable in dynamic analysis for large-scale and complex structures, and the numeric

analysis using these known methods is difficult due to the unavoidable computational efforts. For

solving this problem, many substructure synthesis methods have been developed in the past and

subsequently applied to numerous different projects (Hurty 1960, Gladwell 1964, Craig and Chang

1976, Craig 1995). On the other hand, the transfer matrix algorithm is efficiently used in dynamic

analysis for chain structures, especially for one-dimensional structures (Geradin and Chen 1995, Lee

2000). It is well known that the transfer matrix algorithm is not convenient for complex structures.

Thus, with combination of the transfer matrix algorithm and the substructure synthesis method, an

accurate and efficient method, named the direct transfer substructure method (DTSM), is presented
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in this paper and applied to calculating the dynamic characteristics and the seismic random

responses of a series reactor. 

The principle of DTSM is to divide a complex chain structure into a series of substructures, then

construct the transfer matrix of each substructure using the concept of FRF (frequency response

function). Finally, the dynamic model of the whole structure is reconstructed by combining those

transfer matrices of substructures. Using the eigensolution of each substructure, the FRF matrix can

be achieved conveniently and the transfer matrix of each substructure can be determined directly.

Because the inner degrees of freedom of every substructure are eliminated, the numerical

computational efforts required in DTSM are greatly reduced. Furthermore, the implementation of

DTSM is simple and convenient. In addition, since FRF of every substructure could be obtained by

experiments directly, this method could facilitate the incorporation of experimental results. 

The random vibration approach has been widely recognized as a reasonable method, and therefore

it has often been applied to structural seismic responses analysis. The theoretical framework of a

methodology for stochastic-response analysis to random-excitation fields is already available.

However, its application within the earthquake engineering community is viewed as impractical

except for simple structures with a small number of degrees of freedom and supports (Ernesto and

Vanmarcke 1994). When large numbers of finite elements and degrees of freedom are inevitable in

random response analysis for large-scale and complex structures, some unacceptable computational

efforts and a great deal of CPU time are unavoidable. A random vibration approach, called the

pseudo excitation method (PEM), has been developed in Lin et al. (2001). The essential principle of

PEM is that the random excitation applied to the structure is converted into certain harmonic

excitations, and the stationary random responses are computed by means of harmonic vibration

analysis for any linear structure. However, a large amount of computer time is consumed by

repeated harmonic response calculations in the random response analysis of complex structures. The

direct transfer substructure method, associated with the pseudo excitation algorithm, can be

exploited to compute the seismic random responses of the chain structure efficiently.

The purposes of this paper are: (1) to build the proper model of the series reactor according to the

experimental data, (2) to present a direct transfer substructure method for dynamic characteristic

analysis of the series reactor, (3) to apply the direct transfer substructure method to calculate the

seismic random response of the structure, and (4) to analyze the transient response of the structure

under actual measurement seismic excitations using the precise integration method. 

2. Modeling and experimental validation of a single reactor

A single reactor consists of four main components: reactor body, star frame, insulator and

insulated tube. As shown in Fig. 1(a), the reactor body is sandwiched between two star frames and

the lower star frame is fixed on twelve circumferential insulators with bolts. These insulators are

connected with twelve insulated tubes, which are fixed in the ground base. The mass of the reactor

body is 7110 kg. The inner and outer diameter of the reactor body are 1.116 m and 2.790 m,

respectively. Using the finite element method (FEM) (Bathe 1982), the single reactor is discretized

for dynamic analysis. The reactor body is modeled by solid brick elements and the other

components, insulators and insulated tubes, are modeled by three-dimensional beam elements, as

Fig. 1(b) shows. The entire structure has 168 elements, 252 nodes and 936 degrees of freedom. 

Based on the FEM model, the characteristic roots of the single reactor are calculated and the
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results are shown in Table 1, where the second row expresses the experimental results. The

numerical results are in good agreement with the experimental results, indicating that the modeling

of the structure is reasonable.

3. The eigensolutions analysis of a series reactor using the direct transfer sub-

structure method

3.1 The model of a series reactor

As shown in Fig. 2, the structure, analyzed to obtain its earthquake response in this paper, is a

series reactor, a kind of protective device of large electric appliances. As an important short-circuit

protection device, a series reactor is used to ensure the security of large electric applications and

plays a considerable role in the electric, chemical and metallurgical industries and so on. Hence, to

ensure its safety under earthquake actions is of great significance and thus an effective seismic

analysis is critical. 

The series reactor is a chain structure, constituted by superimposing a single reactor above another

(Fig. 3(a)). It can be divided into three substructures, as shown in Fig. 3(b). Each substructure is

connected to adjacent substructures by joints of the corresponding interface. As with the single

reactor, the series reactor is discretized with the aid of FEM. The reactor bodies are modeled by

solid brick elements and the other components, insulators and insulated tubes, are modeled by 3D

Fig. 1 (a) Single reactor configuration and (b) FEM model

Table 1 Comparison of the eigenvalues (Hz) of a single reactor obtained by FEM and experiment

Vibration mode 1st 2nd 3rd 4th 5th

FEM 17.1020 17.1020 24.1201 46.3029 52.6054

Experiment 16.75 16.75 24.75

Error /% 2.10 2.10 2.55
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beam elements. Then the first substructure, same as the second substructure, has 120 elements, 204

nodes and 720 degrees of freedom. The third substructure has 168 elements, 252 nodes and 936

degrees of freedom. Since we have confirmed that the model of the single reactor is correct by

experiment, it is reasonable to expect that the model of the series reactor, assembled with several

single reactors, is proper.

3.2 The frequency response function matrix of a substructure

It is assumed that the interface constraints on the ith (i = 1, 2, 3) substructure of the series reactor

are released. The dynamic equation of the ith substructure can be expressed as

(1)

where the subscript i refers to the ith substructure. Mi and Ki are the mass and stiffness matrices,

respectively. xi(t) is the displacement response vector; and fi(t) is the excitation vector applied to the

ith substructure. 

Mix
··
i t( ) Kixi t( )+ fi t( )=

Fig. 2 A series reactor
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The eigenvalues and eigenvectors of substructure i can be obtained by solving the eigenproblem

of Eq. (1). Let Λi be the spectrum matrix, a diagonal matrix of generalized eigenvalues, and Φi be a

full matrix whose columns are the corresponding eigenvectors. The following generalized

orthogonality properties can be established:

(2)

Using a transformation of coordinates, the displacement response vector xi(t) can be expressed as

 (3)

where pi(t) is the modal coordinate vector of the ith substructure. Then Eq. (1) becomes

(4)

Under harmonic excitation at a frequency ω,  and  are proposed. j

is the imaginary unit. Fi and Xi are the amplitude vectors of the excitation and the displacement

response, respectively. Xi can be expressed as 

(5)

Φi

T
MiΦi I Φi

T
KiΦi Λi=,=

xi t( ) Φipi t( )=

p·· i t( ) Λi pi t( )+ Φi

T
fi t( )=

fi t( ) Fie
jω t

= xi t( ) Xie
jω t

=

Xi Φi Λi ω
2
I–[ ]

1–

Φi

T
Fi Hi ω( )Fi==

Fig. 3 (a) Series reactor configuration and (b) FEM model with three substructures
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The frequency response function (FRF) matrix Hi(ω) can be given by

(6)

Thus, FRF can be calculated by simple multiplication when the eigensolution of the ith substructure

is obtained. Note that the complete substructure modal set is not needed to obtain the FRF matrix

because of the special nature of Eq. (6). The participant substructure modes can be obtained from

finite element analysis or experimental testing.

3.3 Transfer matrix of a substructure

The physical characteristics matrices can be partitioned into partial matrices (vectors). The

superscripts U, L and I refer to the partial matrices (vectors) corresponding to the upper joints,

lower joints and the inner nodes of a substructure, respectively. Therefore, Eq. (5) can be written as

follows:

(7)

where .

For natural vibration, the external forces acting on the ith substructure are zero, i.e., . By

expanding Eq. (7), an equation is deduced to show the relation between the upper and the lower

joint response vectors.

(8)

where Ti is the transfer matrix of the ith substructure. (a, b = U, I, L) is only correlated with the

eigensolution corresponding to the upper and the lower joints without regard to the inner degrees of

freedom of the ith substructure. Therefore, the degrees of freedom at the inner nodes of the ith

substructure are eliminated completely in the transfer matrix and the computation cost has a

dramatic decrease.

3.4 The natural frequencies of the series reactor

The conditions for geometric compatibility and force equilibrium of the ith substructure can be

given as

(9)
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According to the boundary conditions expressed in Eq. (9), the transfer equations of 1~3

substructures of the series reactor can be obtained as follows:

(10)

where  is the transfer matrix of the entire structure. 

In order to calculate the structural natural frequencies, the terminal conditions of the whole

structure should be introduced to Eq. (10). For the series reactor, its top is a free boundary and its

base is a fixed boundary; the total boundary conditions can be expressed as

(11)

According to the terminal conditions of the whole structure, the second line of Eq. (10) is

 (12)

To guarantee that Eq. (12) has nonzero roots, the determinant of  must be zero,

(13)

where  is a function of frequency ω. The natural frequencies of the series reactor can

be determined from Eq. (13). Through scanning the particular desired frequency range, the results of

Eq. (13) can be determined. The structural natural frequencies are shown in Table 2 where DTSM

denotes the direct transfer substructure method. Since the order of  is just the number of

physical connections at one end of a substructure, the numerical computation time required for

resolving Eq. (13) could be reduced markedly. A Pentium-IV personal computer (main frequency

1.2 GHz) is used for analysis. Under the identical computational condition, the computation time

consumed using DTSM is 35.42 s, as compared with 112.46 s consumed using FEM. Moreover, the

results obtained by both methods have a uniform precision. It indicates that DTSM is an efficient

method for dynamic characteristics analysis.

3.5 The modal shapes of the structure

Let a natural frequency of the structure solved from Eq. (13) be introduced into Eq. (12). The

force vector  for this order natural frequency can be calculated. Substituting  for the

corresponding vector in Eq. (8), the corresponding modal shape at the joints can be determined in

X 1

U

F 1

U⎩ ⎭
⎨ ⎬
⎧ ⎫

T
X 3
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F 3

L
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⎨ ⎬
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⎧ ⎫
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F 1
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0    X 3

L
0=,=

T33 ω( )F3

L
0=

T33 ω( )

det T33 ω( ) 0=

det T33 ω( )

T33 ω( )

F 3
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F 3
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Table 2 Comparison of the eigenvalues (Hz) of a series reactor obtained by DTSM and FEM

Method
Vibration mode

1,2 3 4 5,6 7 8,9 10 20 30

DTSM 4.4262 9.7960 14.9483 16.1072 31.6035 39.1171 46.8752 66.6209 86.2192 

FEM 4.4110 9.7725 14.9361 16.0200 31.5750 38.6434 46.7231 66.2226 85.9725 
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turn and the modal shape at the inner nodes can be calculated directly from Eq. (7). In the same

way, other modal shapes can be obtained. The first seven modal shapes are plotted in Fig. 4.

4. Stochastic-response analysis for the series reactor

Lin et al. (2001) have suggested the pseudo excitation method (PEM) for random seismic

response analysis. According to PEM, the random excitations applied to a structure are converted

into certain harmonic excitations. The stationary random responses can be represented by means of

harmonic vibration results. However, using this method, a large amount of computation time is

consumed by repeated harmonic response analysis in the numerical integral procedure for

calculating the displacement (stress or strain) variance. On the other hand, the harmonic response of

a chain structure can be calculated effectively using DTSM. Thus, DTSM, combining with PEM, is

exploited to calculate the seismic random response of the series reactor. First, the seismic random

excitations are transformed to sinusoidal ones. Then, DTSM is employed to compute the response

under these certain sinusoidal excitations and the seismic random response of the series reactor is

analyzed accurately and conveniently.

4.1 The harmonic response of the structure

It is assumed that the ith substructure is subjected to a harmonic excitation;  is the frequency

and  is the amplitude vector of the harmonic excitation. Corresponding to the upper joints, the

lower joints and the inner nodes,  can also be partitioned into partial vectors and the superscripts

U, L and I respectively refer to the partial vectors, i.e., . The steady-state

response of substructure i can be expressed as

ω̃i

F̃i

F̃i

F̃i F̃i
U
  F̃i

I
  F̃i

L[ ]
T

=

Fig. 4 Modal shapes of the series reactor
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(14)

By substituting  for ω in Eq. (5), the transfer equations indicate the relation of the state vectors

between the upper and the lower joints.

 (15)

where  is the transfer matrix for calculating the steady-state response of the ith substructure under

harmonic excitations. Each block in the transfer matrix is stated as follows:

(16)

(17)

(18)

(19)

(20)

(21)

The block matrix of the frequency response function matrix can be simply acquired with the aid

of the corresponding eigensolution of the ith substructure. Furthermore, DTSM does not need to

transform the excitations applied to the inner nodes into equivalent excitations acting on the joint

nodes and the solution process for the harmonic response becomes very convenient. 

According to the boundary conditions for geometric compatibility and force equilibrium of the ith

substructure, as expressed in Eq. (9), the transfer equation of the 1~3 substructure of the series

reactor can be obtained as follows:

(22)

where  is the transfer matrix of entire structure. 

The terminal conditions of the entire chain structure should be introduced into Eq. (22) for solving
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(23)

The force vector  can simply be obtained from above equation. After introducing  into Eq. (22),

 can be obtained directly from the following equation

(24)

Using these known vectors, the interface force and displacement vectors of each substructure can

be calculated from Eq. (15). The procedure of computing the interface force and displacement

vectors of each substructure is convenient and simple because the transfer matrix of each

substructure has been determined. The force and displacement vectors of the inner nodes of each

substructure can be obtained from Eq. (14).

4.2 The seismic random response of the series reactor

If the ith (i = 1, 2, 3) substructure of the series reactor is subjected to a horizontal seismic random

excitation, the equation of motion can be expressed as

(25)

where E is the indicating vector for locating the loads.  is a stationary random process of seismic

acceleration and its power spectral density (PSD) is known. Ci is a uncoupled damping matrix of

this substructure and the following equation should be satisfied.

 (26)

where Di is a diagonal matrix and its kth diagonal element is 2ζikωik, where ζik is damping ratio of

kth mode and ωik is the kth natural frequency of substructure i. Its frequency response function

matrix can be given as

 (27)
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8 degree, S0 is 73.776 cm2 · s−3. ζs = 0.623 and ωs = 15.708 rad/s are taken.

According to the PEM (Lin et al. 2001), the random excitation can be converted into the pseudo

harmonic excitation and Eq. (25) becomes the following harmonic equation

 (29)

Therefore, using the algorithm of DTSM introduced in section 4.1, the harmonic response can be

calculated efficiently and stated in a form as

 (30)

where y could be the structural displacement or force response and Y is the corresponding amplitude

on the interfaces of the substructures. Note that Y is a function of ω. The PSD matrix of y is

calculated from the following equation:

(31)

The variance of y can be obtained in the form of

(32)

In order to compute variances, the above integral equation is solved in the region ω = [0,18]Hz

and the integration step is 0.1 Hz. The displacement variances along the X direction of the a,b,c,d

nodes on top of the series reactor (Fig. 3(b)) are listed in Table 3. In this table, MSM is defined as

the mode-superposition method. The first twenty modes of the entire structure are employed in the

mode-superposition analysis. The critical damping is 0.01 for analyzing the damped structure. From

Table 3, it can be seen that the results obtained by both methods have a uniform precision, but both

the mode extraction time and computation time consumed by DTSM are greatly reduced compared

with those of MSM.

Using the DTSM, the force variances on interfaces of each substructure can be efficiently

calculated using the same process as that for solving the displacement variances. The pressure force

variances along the axial direction of the series reactor are depicted in Fig. 5, where the A, B and C

interfaces are used to denote the bottom cross-sections of substructures, and their specific positions

are marked in Fig. 3(b).
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Table 3 Peak displacement variance and computation time

Structure Method
Displacement variance /μm Mode 

extraction time /s
Computation 

time /sa b c d

Damped
MSM 15.9704 15.9059 15.9704 15.9059 73.54 126.40 

DTSM 16.7096 16.6234 16.7133 16.6411 22.12 45.14

Undamped
MSM 68.3934 68.1149 68.3934 68.1149 73.54 125.32 

DTSM 66.3516 66.0602 66.3654 66.1142 22.12 32.19 
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5. Precise time integration of the series reactor under earthquake

For time domain response analysis, we employ the precise time integration algorithm, which has

been presented in Zhong et al. (1994, 1996). The algorithm is explicit and the time-step sizes are

not constrained by any of the natural periods of the discretized structure.

The equation of motion of the series reactor can be expressed in the form of Zhong et al. (1994)

(33)

where v is the state vector, defined as  and v0 is the initial state vector. Before solving

Eq. (33), we should first get the solution of the corresponding homogeneous equation.

(34)

If it is assumed that H is a matrix whose elements are independent of t, the general solution of

Eq. (34) can be written as

(35)

Let the length of a time step be Δt and . The solutions can be given by repeated

matrix-vector multiplications.

(36)

where m can be selected as an integer power of 2, m = 2N. When m is large enough, τ = Δt/m could

be too small to cause any significant truncation error. Therefore,  can be approximated

using the truncated Taylor expansion.

 (37)
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Fig. 5 Force variances of circumference nodes
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With Eq. (37), matrix T can be computed as

 (38)

Using only N matrix multiplications, a precise approximation to T can be obtained.

For the nonhomogeneous system (33), assume that the nonhomogeneous term f (t) is linear in a

time step (tk, tk+1), then

(39)

Thus, the precise time integration formula for the nonhomogeneous Eq. (33) can be written as

(40)

The precise time integration method is applied to performing a time history analysis on the series

reactor. El Centro and Taft earthquake waves are used as ground acceleration excitations. Both

earthquake waves are scaled to simulate the ground excitations at earthquake intensity 8 degree and

the peak values of acceleration are adjusted to 400 cm/s2. The top displacement response time

histories in the series reactor subject to corresponding earthquake waves are plotted in Fig. 6 and

Fig. 7 respectively. The peak top displacement is 0.03464 m under the El Centro earthquake wave,

and 0.04306 m under the Taft earthquake wave.

6. Conclusions

An analysis procedure for obtaining the seismic responses of a series reactor is presented in this

paper.

(1) A single reactor is modeled using the finite element method. The results obtained from the

model are in agreement with experimental data. It is indicated that the model of the series

reactor, assembled with several single reactors, is reasonable. 

T I Ta+( )2
N

I Ta+( )2
N 1–

I Ta+( )2
N 1–

×= =

v· Hv r0 r1 t tk–( )+ +=

vk 1+ T vk H
1–

r0 H
1–
r1+( )+[ ] H

1–
r0 H

1–
r1 r1τ+ +[ ]–=

Fig. 6 Peak displacement response of the series
reactor subject to El Centro earthquake

Fig. 7 Peak displacement response of the series
reactor subject to Taft earthquake
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(2) A direct transfer substructure method (DTSM) is presented for analyzing the dynamic

characteristics and the harmonic responses of the series reactor. Since the transfer matrix of

each substructure is calculated from the corresponding FRF matrix directly, not only the

solution procedure of DTSM is convenient, but also the computation cost is markedly reduced.

Associated with the pseudo excitation algorithm, DTSM is applied to calculate the seismic

random response of the series reactor. The numerical results demonstrate that DTSM is exact

and efficient. 

(3) For time domain response analysis, the precise integration method is employed to solve the

transient response of the series reactor under EI Centro and Taft earthquake waves.

Acknowledgements

The authors would like to acknowledge the support of the Doctoral Dissertation Foundation of

Xi’an Jiaotong University (DFXJTU 2003-9). This work was also partially supported by the

Doctoral Science Foundation of Ministry of Education (20030698017).

References

Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis. New Jersey Prentice-Hall Inc.
Chandler, Adrian M. and Lam, Nelson T.K. (2001), “Performance-based design in earthquake engineering: A

multi disciplinary review”, Eng. Struct., 23(12), 1525-1543.
Cofer, William F., Zhang, Yi, McLean, David l. (2002), “A comparison of current computer analysis methods for

seismic performance of reinforced concrete members”, Finite Elements in Analysis and Design, 38(9), 835-
861.

Craig, R.R. Jr and Chang, C.J. (1976), “A review of substructure coupling methods for dynamic analysis”,
Advances in Engineering Science, 2, 393-408.

Craig, R.R. Jr. (1995), “Substructure methods in vibration”, J. Mech. Design, ASME, 117B, 207-213.
Ernesto, H.Z. and Vanmarcke, E.H. (1994), “Seismic random vibration analysis of multi-support structural

systems”, J. Eng. Mech., ASCE, 120, 1107-1128.
Geradin, M. and Chen, S.L. (1995), “An exact model reduction technique for beam structures: Combination of

transfer and dynamic stiffness matrices”, J. Sound Vib., 185(3), 431-440.
Gladwell, G.M.L. (1964), “Branch mode analysis of vibration systems”, J. Sound Vib., 1, 41-59.
Hurty, W.C. (1960), “Vibration of structure systems by component mode synthesis”, J. Eng. Mech., ASCE, 86,

51-59.
Lee, Usik (2000), “Vibration analysis of one-dimensional structures using the spectral transfer matrix method”,

Eng. Struct., 22(6), 681-690.
Lin, Jiahao, Zhao, Yan and Zhang, Yahui (2001), “Accurate and highly efficient algorithms for structural

stationary/non-stationary random responses”, Computer Meth. Appl. Mech. Eng., 191, 103-111.
Somerville, P. (2000), “Seismic hazard evaluation”, Bulletin of the New Zealand National Society for Earthquake

Engineering, 33(3), 371-386.
Tajimi, H. (1960), “A statistical method of determining the maximum response of a building structure during an

earthquake”, Proc. of the 2nd World Conf. on Earthquake Engineering, Tokyo, Japan, July.
Zhong, Wanxie, Zhu, J.P. and Zhong, X.X. (1994), “A precise time integration algorithm for non-linear systems”,

Proc. 3rd World Congress on Computational Mechanics, Chiba, Japan, 4.
Zhong, Wanxie, Zhu, Jianing and Zhong, Xiang-Xiang (1996), “On a new time integration method for solving

time dependent partial differential equations”, Comput. Meth. Appl. Mech. Eng., 130, 163-178.




