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Abstract. A general analytical model for thin-walled composite beams with an arbitrary open/(or/and)
closed cross section and arbitrary laminate stacking sequence i.e., symmetric, anti-symmetric as well as
un-symmetric with respect to the mid plane of the laminate, is developed in the first paper. All the
mechanical properties, mechanical centre of gravity and mechanical shear centre of the cross section are
defined in the function of the geometry and the material properties of the section. A program “fungen”
and “clprop” are developed in Fortran to compute all the mechanical properties and tested for various
isotropic sections first and compared with the available results. The locations of mechanical centre of
gravity and mechanical shear centre are given with respect to the fibre angle variation in composite
beams. Variations of bending and torsional stiffness are shown to vary with respect to the fibre angle
orientations.

Key words: FRP (Fibre reinforced plastics); thin-walled composite; open section; mechanical centre of
gravity; mechanical shear centre.

1. Introduction

FRP has been increasingly used over the past few decades in a variety of structures that require

high ratio of stiffness and strength to weight ratios. Recent applications in the construction industry

have shown the structural and cost efficiency of FRP structural shapes such as thin-walled open and

closed sections. Another primary advantage of composites is tailorability. Material and structural

properties can be designed to fit each application. The designer can choose from a variety of fibre

and resin systems and fibre orientations to achieve the optimal performance of the structure.

Thin-walled composite beams are extensively used as truss members, stiffeners, rotor blade spars,

columns and many other structural elements. In the case of thin-walled composite beams, the

designer is able to optimize not only the cross sectional shape but also the material itself to achieve

for example, high bending, torsion and axial stiffness (or some combination thereof).

Many researchers like Vlasov (1961), Gjelsvik (1981), Murray (1984), Murray and Rajasekaran

(1975), Rajasekaran and Padmanabhan (1989), Rajasekaran (1994), Taufik et al. (1999), Wu and

Sun (1992) have studied isotropic thin-walled members of open cross section. For an-isotropic

composite materials, however, the geometric properties used in classical isotropic beam theory such

as area, first moment of area, centre of gravity and shear centre etc. are no longer used because the
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variability of material properties in the cross section. Instead, mechanical properties such as axial

stiffness, mechanical first moment of area, mechanical centre of gravity and mechanical shear centre

should be defined to incorporate both geometry and the material properties. Bauld and Tzeng (1984)

extended Vlasov’s theory to thin-walled beams to symmetric fibre reinforced laminates to develop

the linear and nonlinear theories for the bending and twisting of thin-walled composite beams. Lee

(2000) has discussed the centre of gravity and shear centre of thin-walled open section composite

beams. It appears that the general definition of centre of gravity and shear centre of laminated open

and closed symmetric, anti-symmetric and un-symmetric beams with general configuration has not

been treated in open literature. Wagner and Gruttmann (2002) analysed thin-walled isotropic

composite beams for flexural stresses using displacement method.

Already Murray and Rajasekaran (1975) have developed a technique for formulating the beam

equations reported in Theory of Beam-Columns (Chen and Atsuto 1977, Rajasekaran and

Padmanabhan 1989) for curved beams and Rajasekaran (1994) for tapered thin-walled beams of

generic open section. In similar lines, in the present study, a general analytical model for thin-walled

laminated composite beams with an arbitrary open or closed cross section and arbitrary laminate

sequence in un-symmetric, symmetric and anti-symmetric with respect to mid plane laminate is

developed. The variation of mechanical properties with respect to fibre orientation is also given.

2. Kinematics

The present work is aimed at developing a geometrically non-linear theory valid for composite

beams of open/closed (with one or more cells)/combination of open and closed sections. To be

specific, the theory accounts for anisotropy, constrained warping and bending stiffness of the beam

Fig. 1 Definitions of coordinates in thin-walled section
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as well. Theoretical developments presented in this paper require four sets of coordinate systems,

which are mutually inter-related. The first coordinate system is the orthogonal Cartesian system

(X, Y, Z ) passing through any reference point ‘OR’ for which the X and Y axes lie in the plane of

the cross section and Z axis parallel to the longitudinal axis of the beam. The second coordinate

system is the orthogonal Cartesian system (x, y, z) passing through the point C (XC, YC). The third

coordinate system is the local plate coordinate system (n, s, z) as shown in Fig. 1 where ‘n’ axis is

normal to the middle surface of a plate element, the ‘s’ axis is the tangent to the middle surface and

is directed along the contour line of the cross section. The (n, s, z) and (X, Y, Z ) coordinate system

are related through an angle of orientation ‘β ’ as defined in Fig. 1. ‘β ’ is measured positive in the

anti-clockwise direction and is the angle of orientation of ‘n’ axis with respect to ‘X’ axis at any

point ‘P’. The fourth coordinate set is the contour coordinate ‘s’ along the profile of the section

with its origin at any point ‘O’ on the profile of the cross section. Point ‘S’ (eX, eY) is called ‘pole

axis’ in this paper. The wall thickness and the material properties are assumed to be invariant along

the length of the beam but can vary with respect to ‘s’. The theory developed in this paper is based

on the following hypotheses.

3. Assumptions made

1. The flexure displacement ‘u’ and ‘v’ in X and Y directions respectively and the twist ‘φ ’ of the

cross section are small.

2. The axial displacement ‘w’ is much smaller than ‘u’ and ‘v’ so that the products of the

derivatives of ‘w’ can be neglected in the strain displacement relation.

3. The projection of the cross section on a plane normal to the Z-axis does not distort during

deformation.

4. The torsional shear strain ‘γsz’ on the middle surface of the beam wall is zero for an open

contour while it corresponds to the constant shear flow (with respect to ‘s’) for a closed

contour.

5. Strains are small so that a linear constitutive law can be used to relate the second Piola-

Kirchhoff’s stress tensor to Green’s strain tensor.

6. The ratio of wall thickness to the radius of curvature at any point of the beam wall is small

compared to unity so that it can be neglected in the expression of the strains. It should be noted

that this is actually exact for cross sections composed of linear segments.

7. The shell force and moment resultants corresponding to the circumferential normal stress ‘σss’

and the force resultant corresponding to ‘γns’ are negligibly small.

8. ‘σnn’ can be neglected when deriving the stress-strain law of any layer of the beam wall.

9. Kichhoff-Love assumption in classical theory remains valid for laminated composite thin-walled

beams.

4. Strains and displacement

The coordinates of ‘P’ on the contour of thin-walled cross section with respect to ‘x, y’ axes

passing through ‘C’ are (x, y) and the coordinates of ‘S’ with respect to x, y axes are (ex, ey).

Consider the beam twists by an angle of ‘φ ’ with respect to ‘z’ axis passing through ‘S’ (See Fig. 2). 
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The displacement due to rotation ‘φ ’ of point ‘P’ in ‘x’ direction is given as

(1)

For small angle of twist cosφ = 1; and sinφ = φ ;

(2)

The displacement in ‘y’ direction of point ‘P’ due to twist is given as

(3a)

(3b)

In Eqs. (1) and (3a) ρ and α denote the distance ‘SP’ and the angle ‘SP’ makes with x-axis. In

addition to twist if the displacements of ‘S’ in x and y directions are also added, we get the

displacements of ‘P’ in x and y directions as

(4a)

(4b)

The relationship between (n, s, z) and (x, y, z) coordinate system can be written as

(5a)

(5b)

where  are unit vectors in the x, y, z and n and s directions respectively.

PP′′ ρ cos φ α+( ) ρ cosα–=

PP′′ y ey–( )φ–=

P′P′′ ρ sin α φ+( ) ρ sinα–=

P′P′′ x ex–( )φ=

u uS y ey–( )φ–=

v vS x ex–( )φ+=

i

j

k⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ cosβ sinβ – 0

sinβ cosβ 0

0 0 0

e n

e s

k⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

e n

e s

k⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

cosβ sinβ 0

sinβ – cosβ 0

0 0 1

i

j

k⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

i j k e n e s, , , ,

Fig. 2 Rotation about S axis
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The displacements at point ‘P’ in ‘n’ and ‘s’ directions  are given as

(6)

(7a)

(7b)

where ‘r’ and ‘q’ are the perpendicular distances from ‘S’ to ‘s’ and ‘n’ axes respectively at the

point ‘P’.

The strain displacement relations for the three components εxx, εyy and γxy of Green’s strain tensor,

with due regard to assumption 2 are given by

(8a)

(8b)

(8c)

where ‘ε’ is the normal strain and ‘γ ’ is the shear strain. In Eq. (8) a subscript comma denotes

differentiation. Substituting Eq. (4) in Eq. (8) yields zero for all the three strains thus verifying cross

sectional non-deformability. This also implies that assumption 2 and 3 are mutually compatible.

The warping displacement (axial displacement in ‘z’ direction) is obtained by considering the

shear strains ‘γsz’ and ‘γnz’. Consider h(s) as the thickness of the wall consisting of many layers of

composite laminates and  be the torsional shear flow and the effective in-plane

shear stiffness of the laminate (to be defined later) respectively with reference to a closed contour.

Then the shear strain ‘γsz’ at any point of the mid surface of the contour is given by

(9)

(10)

In Eq. (10) ‘δc’ is a tracer as defined by Bhaskar and Librescu (1995) for indicating a closed cross

section where ‘δc = 1 or 0’ depending on whether the cross section is closed or open. For the sake

of clarity all the mid surface quantities are indicated by asterisk (*) whenever applicable.

In Eq. (10) by virtue of assumption 6  since the cross section is made up of linear

segments and the product term  is small and neglected. Hence from Eq. (10) we can write

(11)

u v,

u

v⎩ ⎭
⎨ ⎬
⎧ ⎫ cosβ sinβ 

sinβ – cosβ 

us y ey–( )φ–

vs x ex–( )φ+⎩ ⎭
⎨ ⎬
⎧ ⎫

=

u uscosβ vssinβ qφ+ +=

v u– ssinβ vscosβ rφ+ +=

εxx u, x
1

2
--- u, x

2
v, x

2
+( )+=

εyy v , y
1

2
--- u, y

2
v, y

2
+( )+=

γxy u, y v, x
1

2
--- u, xu, y v, xv , y+( )+ +=

N sz z n,( ) Gsz s( ),

γsz
* v , z

*
w, s

* 1

2
--- v , s

*
v , z

* w, s
* w, z

*
+( )+ +=

v , z
*

w, s
*

+ 0 δc
N sz z n,( )

h s( )Gsz s( )
--------------------------+=

v , s
*

0=

w, s
* w, z

*,

w, s
* v , z

*
– δc

N sz

hGsz

-----------+=
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Substituting for  from Eq. (7b), we get

(12)

or

(13)

where  denotes .

Integrating both sides of Eq. (13) with respect to ‘s’, we get

(14)

where ω* is the sectorial coordinate given by twice sectorial area i.e., (see Fig. 3) as

(15)

In case of closed contour (with one cell )  is an indeterminate quantity and can be obtained from

the following contour integral equation for the cell as

(16)

From Eq. (13), we get

(17)

or 

(18)

v , z
*

w, s
* us z,

sinβ– vs z,

cosβ r*φ , z δc
N sz

hGsz

-----------+ + +=

w, s
* us′

xd

sd
----- vs′

yd

sd
----- r*φ ′+ +⎝ ⎠

⎛ ⎞
– δc

N sz

hGsz

-----------+=

us′
ud s

zd
-------

w* w0
*

– us′ x* x0
*

–( ) vs′ y* y0
*

–( ) φ ′ ω* ω0
*

–( ) δc
N sz

hGsz

----------- sd
0

s

∫+ +––=

ω* r* sd∫–=

Nsz

w*d

sd
--------- sd∫° 0=

φ ′ r* sd∫°
N sz

hGsz

----------- sd∫°=

N sz φ ′
r* sd∫°

sd

hGsz

-----------∫°

--------------=

Fig. 3 Definition of sectorial coordinate
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In case of multi-cells  is the indeterminate shear flow in each cell and there will be unknown

shear flows equal to the number of cells and can be found out by solving simultaneous equations,

which will be discussed in the later part of the paper.

Substituting Eq. (18) in Eq. (14), we get

(19)

Defining

(20)

(21)

Axial displacement at mid line of the contour is given as

(22)

or

(23)

where  or simply  is called modified warping coordinate valid for both open and closed

sections given by

(24)

In Eq. (23) we represent a measure of the overall ‘z’ displacement of the cross section. It should be

mentioned that in the present theory φ ' turns out to be a function of ‘z’ and not a constant as in St-

Venant’s theory and hence presents model accounts for non-uniform torsion due to restrained

warping.

The displacements u, v, w at any generic point on the projected cross section are given by (see

Fig. 4) mid surface displacements u*, v* and w* by assumption 9 as

(25a)

(25b)

Nsz( )i

w* w0
* x0

*us
′ y0

*vs
′ ω0

*φ ′–+ +{ } x*us
′– y*vs

′ φ ′ ω* δc

r* sd
sd

hGsz

-----------
0

s

∫∫°

sd

hGsz

-----------∫°

---------------------------+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+ +=

wc w0
* x0

*us
′ y0

*vs
′ ω0

*φ ′–+ +=

ψ
1

hGsz

-----------
r* sd∫°

sd

hGsz

-----------∫°

--------------=

w* wc x*us′ y*vs′–– ω* δc ψ sd
0

s

∫+

⎝ ⎠
⎜ ⎟
⎛ ⎞

φ ′+=

w* wc x*us′ y*vs′–– ω*φ ′+=

ω* ω

ω ω* ω* δc ψ sd
0

s

∫+= =

u s z n, ,( ) u* s z,( )=

v s z n, ,( ) v * s z,( ) n
∂ u * s z,( )

∂s
----------------------–=
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(25c)

The strains associated with small displacement theory of elasticity at mid surface are given by

(26)

(27)

The strains at any point are given by

(28a)

(28b)

(28c)

where

(29)

All other strains are identically zero. In Eq. (29),  and  are assumed to be zero and , 

and  are mid surface axial strain and bi-axial curvatures of the shell respectively. The above

shell strains can be converted to beam strain components. By substituting Eq. (7) and Eq. (23) in

Eq. (29), we get

(30)

and 

(31)

w s z n, ,( ) w* s z,( ) n
∂ u

*
s z,( )

∂ z
----------------------–=

ε n
* ∂ u*

∂n
--------- 0; ε s

* ∂ v *

∂s
--------- ; ε z

* ∂ w*

∂z
----------=== =

γ sz
* 0 δc

Nsz

hGsz

-----------φ ′+=

εs εs
* nκ s+=

εz εz
* nκ z+=

γsz δc
Nsz

hGsz

-----------φ ′ nκ sz+=

κ s

∂
2
u*

∂s
2

-----------–= ; κ z 2
∂

2
u

∂s∂ z
------------–= ; κ sz 2

∂
2
u*

∂z∂z
-----------–=

ε s
* κ s ε z

* κ z

κ sz

ε z
* w* ′( ) wc

′ x*us
″– y*vs

″ ωφ″+–= =

εz ε z
* nκ z+ wc

′ x*us
″– y*vs

″ ωφ″+– nu* ′–= =

Fig. 4 Definition of slope
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or

(32)

where prime (’) denotes differential with respect to ‘z’ and double prime (’’) denotes double

differential with respect to ‘z’.

The shear strain γsz can be written as

         (33)

  

(34)

Hence normal strain εz and shear strain γsz can be written in terms of displacements as

(35)

or

(36)

5. Constitutive equations

Thin-walled beam can be considered to be made up of thin plate elements as shown in Fig. 5 of

total thickness ‘h’ consisting of ‘n’ orthotropic layers with the principal natural coordinates ‘L, T, Z’

directions with Z-axis (z-axis) taken positive upward at middle plane (see Fig. 6). The following

assumptions are made.

εz wc
′ x* ncosβ+( )us

″– y* nsinβ+( )vs
″– ω nq–( )φ″+=

γsz δc
Nsz

hGsz

-----------φ ′ n 2
∂

2
u*

∂s∂z
-----------–⎝ ⎠

⎛ ⎞
+=

δcψ 2n–( )φ ′=

εz

γsz⎩ ⎭
⎨ ⎬
⎧ ⎫ 1  x* ncosβ+( )  y* nsinβ+( )  ω nq–( )  0

0  0  0  0  δcψ 2n–( )

wc′

us″–

vs″–

φ″

φ ′⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

ε{ } B[ ] q{ }=

Fig. 5 Coordinate system and layer numbering
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1. The layers are perfectly bonded together.

2. The material of the layer is linearly elastic and has two planes of natural symmetry.

3. Each layer is of uniform thickness.

4. The transverse shear stresses on top and bottom surfaces of the laminate are zero.

5. Kirchhoff’s assumption holds good.

6. The transverse normal does not suffer any elongation.

7. The transverse normal rotates such that it remains perpendicular to the mid surface after

deformation.

Taking a laminate shown in Fig. 6 and using the notations commonly adopted in composite

literature given by Kaw (1997), one can give stresses in X, Y coordinate directions in terms of

principal coordinates namely LT as

(37)

where [T ] is the stress transformation matrix. Using the constitutive law, the stress strain

relationship in LT system can be written as

(38)

where 

(39)

Using the transformation law, the constitutive matrix in XY system is obtained as

(40)

σxx

σyy

σxy⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

T[ ]

σLL

σTT

σLT⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

σLL

σTT

σLT⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ Q11  Q12  Q16

Q21  Q22  Q26

Q61  Q62  Q66

εL

εT

γLT⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

Q[ ] 1

1 νLTνTL–( )
------------------------------

EL  νLTET  0

νTLEL  ET  0

0  0  GLT 1 νLTνTL–( )

=

σXX

σYY

σXY⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ S11  S12  S16

S21  S22  S26

S61  S62  S66

εX

εY

γXY⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

Fig. 6 x, y, L, T system



Mechanical properties of thin-walled composite beams of generic open and closed sections 601

or 

(41)

where

(42)

where ‘θ ’ is the fibre orientation of laminate with respect to X axis of the plate. It should be noted

that X axis of the plate (lamina) corresponds to z (Z) axis of the beam and θ is the fibre orientation

with respect of ‘z’ axis of the beam.

The constitutive equation of the ‘k’th orthotropic lamina in the beam coordinate system is given as

(43)

It is seen from Eq. (43) that σz and τsz are the normal and shear stresses at any point of the thin-

walled contour and they are same as σXX and σXY given in Eq. (41).

From Eq. (36) and using contra-gradient law, we get

(44)

where {Q} are the generalized forces corresponding to {q} where 

(45a)

(45b)

where P = axial load; My, Mx = moments about y and x axes passing through ‘C’ and Mω denotes

warping moment (bi-moment as defined by Vlasov 1961) and T = Torsional moment. Hence

generalized forces are written in terms of stresses as

(46a)

s[ ] T[ ] Q[ ] T[ ]T=

T[ ]

cos
2
θ  sin

2
θ  sin2θ–

sin
2
θ  cos

2
θ  sin2θ

sin2θ

2
-------------   

sin2θ

2
-------------–   cos2θ

=

σ{ }
σz

τsz⎩ ⎭
⎨ ⎬
⎧ ⎫

k

S11  S16

S61  S66

εz

γsz⎩ ⎭
⎨ ⎬
⎧ ⎫

= =

Q{ } B[ ]T σ{ } Ad
A
∫=

q〈 〉 wc′  us″–   vs″–   φ″  φ ′〈 〉=

Q〈 〉 P  My  Mx  Mω
  T〈 〉=

P

My

Mx

M
ω

T⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

B[ ]T
σz

τsz⎩ ⎭
⎨ ⎬
⎧ ⎫

nd sd∫
k 1=

n

∑=
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or

(46b)

or

(47)

where Eij is the mechanical stiffness of a thin-walled composite beam cross section and it is

symmetric and defined by

(48a)

(48b)

(48c)

(48d)

(48e)

(48f)

(48g)

(48h)

(48i)

(48j)

(48k)

(48l)

(48m)

P

My

Mx

M
ω

T⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

B[ ]T S11  S16

S61  S66

B[ ] nd sd∫
k 1=

n

∑

wc′

us″–

vs″–

φ″

φ ′⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

P

My

Mx

M
ω

T⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

E11  E12  E13  E14  E15

E21  E22  E23  E24  E25

E31  E32  E33  E34  E35

E41  E42  E43  E44  E45

E51  E52  E53  E54  E55

wc′

us″–

vs″–

φ″

φ ′⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

E11 A11 sd∫=

E12 A11x* B11cosβ+( ) sd∫=

E13 A11y* B11sinβ+( ) sd∫=

E14 A11ω B11q–( ) sd∫=

E15 2 B16 sd∫– δc A16ψ sd∫+=

E22 A11x*2
2B11x*cosβ D11cos

2
β+ +( ) sd∫=

E23 A11x*y* B11 x*sinβ y*cosβ+( ) D11sinβcosβ+ +( ) sd∫=

E24 A11ωx* B11qx*
– B11ωcosβ D11qcosβ–+( ) sd∫=

E25 2 B16x* D16cosβ+( ) sd δc A16x*ψ B16ψcosβ+( ) sd∫+∫–=

E33 A11y*2
2B11y*sinβ D11sin

2
β+ +( )∫ sd=

E34 A11ωy* B11qy*
– B11ωsinβ D11qsinβ–+( ) sd∫=

E35 2 B16y* D16sinβ+( ) sd δc A16y*ψ B16ψsinβ+( ) sd∫+∫–=

E44 A11ω
2

2B11qω– D11q
2

+( ) sd∫=
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(48n)

(48o)

Aij, Bij, Dij matrices are extensional, coupling and bending stiffnesses respectively defined by 

(49)

and are explicitly given as

(50a)

(50b)

(50c)

Knowing the stress resultants, one can solve for generalized strains and curvatures as

(51)

One way of solving the five simultaneous equations represented by Eq. (47) would be to use the

process of elimination. Another way is to get the matrix equivalent of a thin-walled beam by

changing the axes of reference both in position and direction and the process is known as

orthogonalization and it is possible because E matrix is symmetric. In Eq. (47) 

appear in all the five equations and they are coupled. After orthogonalization each variable will

appear in one and only one equation, i.e., the equations are uncoupled. When the reference axes are

principal axes passing through mechanical Centroid, pole is chosen at mechanical Shear Centre and

the origins of contour chosen at Sectorial Centroid [E] and [E]−1 are diagonal matrices.

6. Mechanical centroid

In Fig. 1 ‘C’ is a mechanical centroid if . Let the coordinate ‘C’ be

(Xc, Yc) with respect to X and Y axes passing through any origin ‘OR’. In Eq. (48b) substituting for

x* as

(52)

E35 2 B16ω D16q–( ) sd δc A16ωψ B16ψq–( ) sd∫+∫–=

E55 4 D66 sd∫ δc A66ψ
2

4B66ψ–( ) sd∫[ ]+=

Aij Bij Dij, , Si j 1 n n
2, ,( ) nd∫=

Aij Si j nd∫∑ Si j

k
zk 1+

zk–( )
k 1=

n

∑= =

Bij Si jn nd∫∑
1

2
--- Si j

k
zk 1+

2
zk

2
–( )

k 1=

n

∑= =

Dij Si jn
2

nd∫∑
1

3
--- Si j

k
zk 1+

3
zk

3
–( )

k 1=

n

∑= =

wc′

us″–

vs″–

φ″

φ ′⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

E[ ] 1–

P

My

Mx

W
ω

T⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

wc′ us″ vz″ φ″ φ ′, , , ,

E12 E21 E13 E31 0= = = =

x* X * Xc–( )=
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Then E12 may be written as

(53)

The X coordinate of ‘C’ may be written as

(54)

where

Similarly Y coordinate of ‘C’ may be written as

(55)

If we take x, y axes as principal axes passing through ‘C’ (mechanical centroid) at an angle of η

with respect to x axis such that

(56)

then E22 and E33 calculated with respect to the principal axes become Principal mechanical moments

of Inertia and E23 = 0.

7. Mechanical shear centre

E24 and E34 are made zero if the pole ‘S’ is selected at mechanical shear centre and x and y-axes

passing through mechanical centroid.

The mechanical property E24 may be written as

(57)

where  is the sectorial coordinate or warping coordinate with ‘S’ as the pole and ‘O’ as the origin

of the contour and is defined as (see Fig. 7)

(58)

where  is the warping coordinate with ‘C’ as the pole and ‘O’ as the origin for the contour and

‘q’ is written as

(59)

E12 A11X* B11cosβ+( ) sd∫ Xc A11 sd∫– 0= =

Xc
E12

E11

-------=

Yc
E13

E11

-------=

tan2η
2E23

E22 E33–( )
--------------------------=

E24 A11ωx* B11qx*
– B11ωcosβ D11qcosβ–+( ) sd∫=

ω

ω ωc exy
*

– eyx
*

+=

ωc

q qc exsinβ eycosβ–+=

Fig. 7 Multi-cellular box girder
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Hence E24 is written as

(60)

Similarly E34 is written as

(61)

Solving Eqs. (60) and (61), we get

(62)

where

(63a)

(63b)

and

(64a)

(64b)

By making mechanical shear centre as the pole, E24 and E34 are made zero. E14 may be made zero

by selecting ‘O’ as mechanical sectorial centroid as

(65)

where  is the normalized coordinate along the centre line of the contour. If it is not taken at

sectorial centroid (say at any other point ‘M’)

(66a)

(66b)

Then E14 becomes

(67)

E24 E24

c
exE23

c
– eyE22

c
0=+=

E34 E34

c
exE33

c
– eyE23

c
0=+=
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E 34

c

E 33

c
--------= ; ey

E 24
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E 22

c
--------–=

E 22

c
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1
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c
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c
---------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞
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E 33
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1
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---------------–
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=
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c E34

c
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c
-------E23
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–=

E 34

c
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c E24

c
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c
-------E23

c
–=

E14 A11ω B11q–( ) sd∫ 0= =

ω

ω ωM ωOM–=

q qM qOM–=

E14 A11 ωM ωOM–( ) B11 qM qOM–( )–( ) sd∫=
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Neglecting higher order term ( ), we can obtain

(68)

Then normalized warping coordinate may be written as

(69)

 enables one to calculate the sectorial centroid ‘O’ if any arbitrary point ‘M ’ is known. Ej5…j

= 1, 4 are very small compared to other coefficients of E matrix and hence for all practical purposes

if one selects ‘C’ as mechanical centroid, ‘S’ as mechanical shear centre and ‘O’ as mechanical

sectorial centroid, the matrix [E] given in Eq. (47) is diagonal.

The normalised warping coordinate for open section is

(70a)

and for closed section

(70b)

Hence in general, the modified normalized warping coordinate for open and closed section may be

written as

(71)

where δc is a tracer having a value of 0 or 1, depending on whether the cross section is open or

closed.

From Eq. (21), ψ can be written as

(72)

where  is defined as the effective inplane shear stiffness. The stiffness is defined as Nsz /hγsz

when the laminate is subjected to Nsz alone. But Nsz may be approximately be taken as

(73)

or 

(74)

(75)

B11qOM sd∫

ωOM

E14

M

E11

-------=

ω ωM ωOM–=

ωOM

ω ω*
=

ω ω* ψ sd∫+=

ω ω* δc ψ sd∫+=

ψ
1

hGsz

-----------
r* sd∫°

sd

hGsz

-----------∫°

--------------=

Gsz

Nsz A66γsz=

Gsz
Nsz

hγsz

---------
A66

h
-------= =

Gszh A66=
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Hence

(76)

Denoting ξ as

(77a)

(77b)

In the expressions for Ei5 (i = 1..5) the coefficients of δc must be calculated for each cell in a multi-

cellular closed section. For example to calculate the coefficient of δc in E55 in Eq. (48)

(78)

To find ψ from Eq. (77a) 

(79a)

(79b)

For multi-cellular section, the indeterminate shear flow  must be calculated by solving

simultaneous equations.

Consider a three cell box section as shown in Fig. 7 to fine E55 the following procedure is

adopted.

Find 

(80)

For common leg between cell i and j 

(81)

It can be seen that 

(82)

ψ
1

A66

-------
r* sd∫°

sd

A66

-------∫°

------------=

ξ
r* sd∫°

sd

A66

-------∫°

------------=
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-------=

A66ψ
2

sd∫°
r* sd∫° r* sd∫°
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-------------------------- ξ r* sd∫°( )= =
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=

ψ
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-------=

N sz

bi i
sd

A66

-------
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∫°=

bi j
sd

A66

-------
common  member  for  i j –

∫°–=

r* sd
cell i
∫° 2 Area of cell i 2Ai=×=



608 S. Rajasekaran

Hence ξ for each cell may be calculated from 

(83)

Then

(84)

8. Calculation of A, B, D matrices of lamina 

A lamina may be composed of ‘n’ plies and the total thickness is given by (see Fig. 4)

(85)

and

(86)

In this paper, laminate consisting of symmetric, anti-symmetric and un-symmetric lamina has been

used as shown in Fig. 8. For symmetric and anti-symmetric laminate it is enough if material, fibre

orientation and thickness of laminates are specified for one half and other half is assumed as below.

ξ1

ξ2

ξ3⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ b11  b12  b13

b21  b22  b23

b31  b32  b33

1–
2A1

2A2

2A3⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

A66ψ
2

sd∫° 2A1  2A2  2A3〈 〉

ξ1

ξ2

ξ3⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

h tk
k 1=

n

∑=

h1

h

2
--- for bottom surface–=

h2

h

2
--- for top surface=

Fig. 8 Different types of laminates
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8.1 Symmetric laminate

Fibre orientation in bottom half = Fibre orientation in top half

Thickness of laminates in bottom half = Thickness of laminates in top half

Material in bottom half = Material in top half

8.2 Anti-symmetric laminate

Fibre orientation in bottom half = Fibre orientation in top half

Thickness of laminates in bottom half = Thickness of laminates in top half

Material in bottom half = Material in top half

8.3 Unsymmetric laminate

Fibre orientation, thickness and material of each laminate are different from the other. The axial,

coupled and bending stiffness matrices are calculated as given in Eq. (50).

9. Numerical evaluation of mechanical properties

The closed form integration for the computation of mechanical properties of any thin-walled open

or closed composite cross section of a beam is difficult. Hence numerical integration using Gaussian

quadrature is used.

Consider a cross section of a thin-walled beam as shown in Fig. 9 consisting of four elements and

five nodes. Any one typical element is considered. Integration over the thickness direction has been

carried out to find the axial, coupled and bending stiffnesses. Now integration has to be carried out

along the length of the contour of the section. Consider the integral

Fig. 9 Cross section of thin-walled beam
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(87)

To perform the numerical integration, ‘s’ is written in terms of non-dimensional coordinate ‘ς ’ as

(88)

Coordinate X may be written in terms of coordinates at the ends, using the shape functions as

(89)

Similarly  are given at any point ς.

Applying three point Gaussian quadrature 

(90)

where

ς1 = −0.77459; ς2 = 0.0;  ς3 = 0.77459

 
    (91)

Consider f (s) is of the form “ABC ”. For calculation of mechanical properties of the section of

curved beams C = (1 − y/R) and for straight beams C = 1 .

To find the integral 

(92)

Using the above procedure, all the mechanical properties given in Eq. (48) can be calculated. For

straight beam R can be assumed as a high value.

10. Computer program

A computer program “FUNGEN.FOR” and “CLPROP.FOR” are developed in FORTRAN to find

the mechanical properties of composite thin-walled beam of open or closed cross section. Before

applying this program to composite beam examples, simple numerical examples of thin-walled

sections of isotropic material are solved and compared with the available results

11. Numerical examples

Example 1. It is required to find the properties of thin-walled open mono-symmetric section as
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shown in Fig. 10(a). For isotropic sections Q11 = Q22 = Q66 = 1 and all other elements of Q matrix

are zero. We arrive at St-Venant constant E55 = 23.33 and the sectorial moment of inertia as

E44 = Iω = 11.148 × 104. Centre of gravity C(0,15) and shear centre S(−2.788, 15) as shown in

Fig. 10(a). Normalized warping coordinate diagram is shown in Fig. 10(b) and these values agree

with the values calculated by different method. Since it is mono-symmetric section, shear centre lies

on axis of symmetry, i.e., x axis.

Example 2. It is required to find the properties of unsymmetrical thin-walled open section as

shown in Fig. 11(a). We arrive at St-Venant constant E55 = 519.94 (520[9]) and the sectorial

moment of inertia as E44 = Iω = 3912669(3914000[9]). Centre of gravity C(1.67,26.67) and shear

centre S(−5.63,33.87) as shown in Fig. 11(a). Normalized warping coordinate diagram is shown in

Fig. 11(b) and the properties agree with the published results of Murray (1984).

Example 3. Consider a crane girder (single cell) as shown in Fig. 12(a). We get the following

properties as

Centroid = C(139.8,253.4)

Shear Centre = S(99.45,273.18)

E55 = 275309200 (275020000)[9]

E44 = Iω = 43.49199 × 109 (43.65×109[9])

Fig. 10(a) Monosymmetric section Fig. 10(b) Normalized warping coordinate

Fig. 11(a) Unsymmetric section Fig. 11(b) Normalized warping
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Normalized warping coordinate diagram is shown in Fig. 12(b) and the properties agree with the

published results of Murray (1984).

Example 4. Consider a girder whose cross section is a three-cell box girder (see Murray 1984).

Since the cross section is symmetric with respect to both x and y axes, the joint 1 is taken at any

one of the point of symmetry as shown in Fig. 13. Hence joint 1 is assumed at the mid point of the

top beam of middle cell so that the normalized warping is zero at that point. Simultaneous equations

are solved to determine ξ and hence all the properties. The following properties are obtained as

E55 = 8767(8727)

E44 = Iω = 7437(7438)

C and S coincide as shown in Fig. 13. The bracketed values are from Murray (1984).

Example 5. Consider a thin-walled box girder with two cells (Connor 1976) as shown in

Fig. 14(a). It is mono-symmetric with respect to x axis. The positions of Centre of gravity and shear

centre viz:- C(15.56,5); S(16.11,5) agree with Connor (1976). The normalized warping diagram is

shown in Fig. 14(b). If the section is unsymmetric, the sectorial centroid must be chosen randomly

and should be found out by trial and error.

Fig. 12(a) Closed section Fig. 12(b) Normalized warping

Fig. 13 Normalized warping
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Example 6. Consider a thin-walled box girder whose profile is shown in Fig. 15(a). This is a

combination of open and closed sections. Three members 6-4, 3-8, 9-11 of very small thickness are

introduced and the given section is analysed as a box section with five cells. The positions of

Centroid and Shear Centre viz:- C(0,1.790) and S(0,2.03). The results agree with Murray (1984).

The normalized diagram is as shown in Fig. 15(b).

Example 7. Consider a three cell box girder as shown in Fig. 16(a). The positions of centroid

and shear centre are obtained as C(10,10.45) and S(10,10) and the normalized diagram is shown in

Fig. 16(b).

Example 8. A thin-walled composite beam with an open cross section (a channel (Lee 2000)) is

considered (see Fig. 17) in order to investigate the effects of anisotropy and laminate stacking

sequence on the location of centre of gravity and shear centre. The following engineering constants

of the composite beam are used.

Fig. 14(a) Twin cell box girder (t = 1) Fig. 14(b) Normalized warping

Fig. 15(a) Combination of open and closed section

Fig. 15(b) Normalized warping
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(93)

where L and T denote fibre directions and are perpendicular to fibre directions respectively. The

geometry of the cross section is as follows.

(94)

Hence the channel is mono-symmetric and hence the mechanical centre of gravity and mechanical

shear centre will lie on x-axis. The fibre angle varies in two ways such as firstly angle ply laminate

(±θ ) in the flanges and unidirectional fibre orientation in the web, secondly angle ply laminate (±θ)

in the web and unidirectional fibre orientation in the flanges. The location of centre of gravity ‘C’

and shear centre ‘S’ are illustrated in Fig. 18 with respect to fibre angle change. The classical

isotropic solution corresponds to the case of fibre angle θ = 0. When the mechanical centre of

gravity moves towards centre and the mechanical shear centre moves away. The distance between

mechanical shear centre and mechanical centre of gravity increases. As the fibre angle changes in

the flanges, both mechanicanical centre of gravity and mechanical shear centre approach web

contrary to the previous case. This example proves that the positions of mechanical centroid and

mechanical shear centre are significantly affected by the laminate sequence.

EL

ET

------ 40;
GL

ET

------ 0.6; γLT 0.25== =

t1 t2 t3 t= = =

b1

t
-----

b2

t
----- 20;

b3

t
----- 40== =

Fig. 16 3-Cell box girder

Fig. 17 Composite channel section
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Example 9. A thin-walled composite beam with the combination of closed and open section is

shown in Fig. 19 with (b1/t = 20; b2/t = 30; b3/t = 40; b4/t = 10). Similar to example 8 fibre angle

varies in two ways. The locations of mechanical centroid and mechanical shear centre are shown in

Fig. 20 with respect to fibre angle change. The mechanical centroid distance is more or less

constant with yc /b1 = 0.6 whereas e/b1 is at minimum at 0.4 with the fibre angle in the flange at 45

degrees (+ or – 45 degrees) and maximum at e/b1 = 0.55 when the web angle is kept at 45 degrees

(+ or –45 degrees).

Example 10. The object of this example is to design E33 (in the case of composite section) with

maximum bending stiffness, which would be required, if the beam is to experience predominantly

transverse loading. Already Savic et al. (2001) have solved the optimization problem of composite

beams. An example of composite beam with dimensions 50.8 × 50.8 mm and double geometrical

symmetry is considered in this study with material system of intermediate modulus graphite epoxy

with ELL = 158 Gpa; ETT = 7.8 Gpa, GLT = 4.75 MPa and γLT = 0.33 with ply thickness of 0.127 mm

as shown in Fig. 21. The number of plies in each wall has been fixed and set to four and hence

total thickness of flange and web laminate is 0.508 mm. The following convention for describing

the laminate stacking sequence for an I section is adopted. The stacking sequence of the bottom

flange is denoted first following the web and top flange. Always they are denoted from bottom to

top for each flange and in the web from left to right. Fig. 22 shows the variation of E33 (bending

Fig. 18 Variation of positions of mechanical centroid and shear centre with respect to fibre orientations
(Example 8)

Fig. 19 Composite box girder
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Fig. 21 Composite I beam. [θ2/θ1/90/0]T -top flange, [0/90]s-web, [0/90/θ1/θ2]-bot flange

Fig. 20 Variation of positions of mechanical centroid and shear centre with respect to fibre orientations
(Example 9)

Fig. 22 Variation of E33/1010 for Example 10
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stiffness) (see Table 1) with respect to the orientation of θ1 and θ2 and it is seen E33 is maximum

when the two angles are zero.

Example 11. The object of this example is to design a thin-walled box girder for maximum

torsional stiffness which will be required if the beam is to experience predominant torsional bending

loads. Again the box section of 101.6 × 50.8 mm is considered as shown in Fig. 23. In this study,

material system of High performance Graphite/epoxy is considered with properties of ELL = 470 Gpa;

ETT = 6.2 Gpa, GLT = 5.58 MPa and γLT = 0.31, ply thickness = 0.127 mm. The number of plies in

extreme webs is two and for all other flanges and web it is four. The following laminate sequence is

adopted.

Top flange = [θ1/θ2]AS

Bottom flange = [−θ1/−θ2]AS

Extreme webs = [θ1/θ2]T

Middle web = [θ1/θ2]SY

Fig. 24 shows the variation of mechanical St.Venant constant E55 with respect to both the angles and

it is seen that E55 is maximum = 10.49 × 1015 when both the angles are equal to 45 degrees. The

values of E44 and E55 are given in Table 2.

Fig. 25 shows the variation of mechanical sectorial moment of Inertia E44 with respect to both

the angles and it is seen that E44 is maximum when θ = 0; θ2 = 30o to give value of E44 as

1.94 × 1010. 

Table 1 (E33/1010) for the composite beam (Example 10)

θ2/θ1 0 15 30 45 60 75 90

0 0.449 0.4336 0.395 0.3569 0.332 0.3247 0.3237

15 0.436 0.4178 0.3799 0.3411 0.3171 0.3089 0.307

30 0.395 0.379 0.3421 0.303 0.2792 0.271 0.27

45 0.3569 0.3411 0.303 0.264 0.24 0.232 0.2352

60 0.3329 0.3171 0.2792 0.24 0.216 0.208 0.2072

75 0.3247 0.3081 0.271 0.232 0.208 0.2 0.199

90 0.3237 0.307 0.270 0.2312 0.2072 0.199 0.198

Fig. 23 Twin cell box girder
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Table 2 (E55/1015)/(E44/1011) for the composite beam (Example 11)

θ2/θ1 0 15 30 45 60 75 90

0
0.495
33.6

2.41
1.6

6.17
0.2

8.05
0.095

6.17
0.13

2.41
0.8

0.495
15.2

15
0.65
161

2.996
29.4

6.94
5.3

8.85
2.53

6.94
3.2

2.996
13.5

0.65
67.7

30
0.702
194

3.53
73

7.99
19.3

10.04
9.3

7.99
10.0

3.53
26.3

0.702
62.9

45
0.711
171

3.67
74.2

8.37
20.8

10.49
9

8.37
7.8

3.67
15.9

0.711
31.9

60
0.702
141

3.53
51.6

7.99
11.9

10.04
4.2

7.99
2.7

3.53
4.6

0.702
10.3

75
0.65
96.2

2.996
16.6

6.94
2.4

8.85
0.74

6.94
0.4

2.99
0.65

0.605
2.73

90
0.495
18.9

2.41
0.86

6.17
0.05

8.55
0.024

6.17
0.013

2.41
0.029

0.495
0.44

Fig. 25 Variation of E44/1011 for Example 11

Fig. 24 Variation of E55/1015 for Example 11
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12. Conclusions

A rigorous definition of mechanical centre of gravity, mechanical shear centre and mechanical

sectorial centroid and other mechanical properties for a thin-walled composite beam with open/(or/

and) closed section. The method is applicable to any arbitrary laminate stacking sequence such as

symmetric/anti-symmetric/un-symmetric and generic cross sectional shape. The program “FUNGEN”

calculates the axial, bending and coupled matrices and the program “CLPROP” computes the

sectional properties. First of all the program is applied to isotropic section and the properties are

compared with published results. It is shown that the locations of mechnical centre of gravity and

mechanical shear centre are generally dependent on fibre angle changes in the flanges and webs.

Two different examples are presented to illustrate the optimization process. In the first case, the

objective is to maximize the beam bending stiffness for a composite I section and in the second

case, the objective is to maximize beam St-Venant Torsional stiffness and warping stiffness for a

composite thin walled closed section. In the first case, intermediate modulus/graphite epoxy system

and in the second case high performance/graphite epoxy are considered. More general types of

optimization of cross sections with constraints using Evolution Strategies will be discussed in

another paper.
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