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Abstract. A new generalized Bernoulli/Timoshenko beam-column element on a two-parameter elastic
foundation is presented herein. This element is based on the exact solution of the differential equation
which describes the deflection of the axially loaded beam resting on a two-parameter elastic foundation,
and can take into account shear deformations, semi – rigid connections, and rigid offsets. The equations
of equilibrium are formulated for the deformed configuration, so as to account for axial force effects.
Apart from the stiffness matrix, load vectors for uniform load and non-uniform temperature variation are
also formulated. The efficiency and usefulness of the new element in reinforced concrete or steel
structures analysis is demonstrated by two examples.
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1. Introduction

The problem of a beam resting on a flexible medium and subjected not only to transverse, but

also to axial loading, is often encountered in the design of structural members of buildings, aircrafts,

ships, machines and other structures. Particularly important are the effects of the axial forces in

slender members and structures, in which the effect of deformations on the structural response

cannot be ignored (beam-column effects). To investigate this behaviour rigorously, the governing

equilibrium equations must be formulated with respect to the deformed geometry of the structure.

The resulting geometrically non-linear analysis is referred to as “second-order analysis”, in contrast

to ordinary, linear “first order” analysis which neglects the effects of deformations on equilibrium.

Second-order analysis is always necessary for stability considerations of structures. For practical

purposes, sophisticated models and sufficiently accurate and simple solutions are required.

The problem of an axially loaded elastic member resting on an elastic foundation has been an

important tool for modelling, especially in the design of building structures, where the

superstructure-foundation-soil interaction has to be taken into account. In this area, extensive

research has been reported in the literature. In order to model soil behaviour, several approaches

have been developed in the past. In the majority of the proposed solutions, the foundation-
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supporting soil is represented on the basis of the well-known Winkler-hypothesis, which assumes

the soil to be made up of continuously distributed non-interconnected discrete springs (Winkler

1867). Thanks to its simplicity, the Winkler model has been extensively used to solve many soil-

foundation interaction problems and has given satisfactory results in many practical cases. However,

it is a rather crude approximation of the true mechanical behaviour of the ground material. Its

discontinuous nature gave rise to the development of various forms of two-parameter elastic

foundation models (Filonenko and Borodich 1940, Pasternak 1954, Vlasov and Leontiev 1966), in

which continuity, i.e., the coupling effect between the discrete Winkler springs, is introduced by

assuming the springs to be connected by a shear layer, a membrane or a beam. The two-parameter

models describe the soil behaviour more accurately, and yet remain simple enough for practical

purposes.

On the other hand, most reported solutions for beam-columns on elastic foundations are based on

the classical Bernoulli (Bernoulli-Euler or Kirchoff) theory, thus neglecting the effect of transverse

shear deformations (e.g., Zhaohua and Cook 1983, Ting and Mockry 1984). In order to take these

deformations into account, analytical solutions for a Timoshenko beam-column resting on an elastic

two-parameter foundation have been proposed for the dynamic problem (Wang and Gagnon 1978),

and for the first order (linear) analysis (e.g., Shirima and Giger 1992, Onu 2000).

Another problem encountered in daily practice refers to the modelling of rigid joints or, more

generally, to structural elements that can be assumed to behave as rigid bodies. Especially in the

design and analysis of reinforced concrete foundations, massive footings are usually modelled by

conventional beam elements with very large values as regards to their moments of inertia. In order

to simulate the elastic soil under the footings, these are modelled by a number of rigid beam

elements supported elastically at their nodes by discrete Winkler springs or, alternatively, by a rigid

beam supported at its middle by a translational and a rotational elastic spring. These simple

techniques may yield acceptable results in the case of the Winkler model. However, if a two-

parameter soil model is employed, application of such techniques proves rather impractical. On the

other hand, if axial force effects are neglected, exact solutions for Bernoulli/Timoshenko beam

elements with rigid offsets at their ends and two-parameter elastic support throughout their length

are available (Morfidis and Avramidis 2002).

An additional problem encountered in the design and analysis of steel structures relates to the

modelling of flexible joint connections. A first approximation to this problem is the use of beam

elements with rotational elastic springs at their ends (Matheu and Suarez 1996, Aristizabal-Ochoa

1997). Moreover, if the rigidity of the joints has to be taken into account, then a finite beam-column

element with rigid offsets is necessary. The connection between the rigid offsets and the median

segment of the element is achieved by rotational springs of appropriate stiffness. Such semi-rigid

connections may be used for elastically supported beam-columns.

The objective of this paper is to exhaustively address all topics described above by means of a

generalized finite beam-column element. This element is based on the exact analytical solution of

the differential equation, which describes the problem of an axially loaded member resting on an

two-parameter elastic foundation, and featuring rigid offsets at its ends. The connection of rigid

offsets to the interior element is achieved by means of rotational springs. The stiffness matrix is

formed in a general way, which permits use of either the Bernoulli or the Timoshenko beam. The

proposed new element is considered as generalized because of its ability to degenerate to various

simpler elements: it is possible to separately ignore the rigid offsets (left or right or both), the semi-

rigid connections (left or right or both) and even the elastic support. This is accomplished by
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zeroing certain coefficients in the expressions of the stiffness matrix, or by forming their limit

values. These abilities render the generalized element very useful in structural analysis computer

programs where, with the aid of appropriate “switches”, it is possible to produce the desired

element type each time. In addition to the stiffness matrix, equivalent element nodal load vectors for

a trapezoidal load with adjustable form parameters and for a linear temperature variation are given.

The usefulness of the new beam-column element in the modeling and analysis of reinforced

concrete and steel structures is demonstrated by two numerical examples and with comparisons to

other, simpler solutions.

2. Stiffness matrix derivation

The new generalized beam element is shown in Fig. 1(a). It consists of two rigid segments

between nodes 1, 2 and 3, 4 respectively (rigid offsets) and the flexible median segment between

nodes 2 and 3, which is a Timoshenko beam element. For the connection of the median segment to

the rigid offsets, rotational springs are used. The element rests on a two-parameter elastic foundation

and is loaded by a static axial force. When laying out the differential equations of the element, its

deformed shape is taken into account.

The derivation of the stiffness matrix [K] is accomplished in two stages:

1st. Formulation of the median segment’s stiffness matrix [Kint], based on the analytical solution

of its differential equations.

2nd. Formulation of the relations between the coefficients of the stiffness matrix [Kint] of the

median segment 2-3 and those of the stiffness matrix [K] of the generalized element 1-4.

2.1 First stage

The exact stiffness matrix of the axially loaded Timoshenko beam on a two-parameter elastic

foundation is derived by means of the analytical solution of the following differential equations:
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Fig. 1 (a) New generalized beam-column element, (b) deformed configuration of the element
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where EI is the flexural stiffness of the beam, Φ = G(A/n), ϕ is the cross-section’s rotation due to

flexure, A is the cross-section area, G is the shear modulus of elasticity, n is the shear factor, P is

the axial load, q is the lateral external load, w is the lateral deflection, kS (kN/m2) is the modulus of

the subgrade reaction, and kG (kN) is the second parameter of the elastic foundation. The general

forms of the analytical solutions of the equations mentioned above are:

(2)

The first terms of Eqs. (2) are the solutions of the homogenous form of Eqs. (1a) and (1b), while

wp, ϕp are the particular solutions corresponding to the external load q(x).

The two homogenous equations of (1a) and (1b) have the same structure, and possess six different

forms of solution depending on the values of the coefficients describing the beam and soil

properties (Fig. 2). However, it has been shown (Morfidis 2003, Avramidis and Morfidis 2004) that

only case 1 and case 3 are of practical interest with regard to analyses according to second order

theory (e.g., calculation of critical loads). The procedure for the analytical formulation of the

median segment’s stiffness matrix [Kint] for a Timoshenko beam on Winkler foundation has been

presented by Cheng and Pantelides (1988). The extension of this procedure to Timoshenko beams

on two-parameter elastic foundation, i.e., to Eqs. (1a) and (1b), and the corresponding coefficients

of [Kint] for the two typical solution cases 1 and 3) have been presented by Morfidis (2003).

In case of Euler beams, the governing equations follow from Eqs. (1a) and (1b) by setting Φ→∞.

The cross-section’s rotation due to flexure is now ϕ ≡ dw/dx, and, as a consequence, there is no

coupling between Eqs. (1a) and (1b). In fact, Eq. (1b) follows from Eq. (1a) by a simple differentiation.

Thus, a Euler beam on elastic two-parameter foundation is fully described by Eq. (1a) with Φ→∞.
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Fig. 2 Possible solution forms of Eqs. (1a) and (1b) for Timoshenko and Euler beam elements
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Again, only cases 1 and 3 are of practical interest.

The stiffness matrices [Kint] for these cases are supplied by Karamanlidis and Prakash (1989).

2.2 Second stage

In order to formulate the relation between the stiffness matrix [Kint] of the median segment and

the stiffness matrix [K] of the generalized element, the following procedure is adopted:

2.2.1 Relations between the displacements of the internal nodes (2, 3), and the end

nodes (1, 4), respectively.

On the basis of Fig. 1(b), these relations are expressed as follows:

(3)

where M2 and M3 are the bending moments at nodes 2 and 3 respectively, V2 and V3 are the shear

forces, and KRA and KRB are the flexural stiffness of the rotational springs. Eq. (3) can be expressed

in symbolic matrix form as:

(4)

2.2.2 Relations between the stresses at internal nodes 2,3 and nodes 1,4 respectively.

These relations are derived from the equilibrium conditions for the rigid offsets’ free-body

diagram (Fig. 3):
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into account the effects of shearing stresses in the soil medium as well as the shearing stresses in

the beam.

The coefficient of subgrade reaction KS with dimension kN/m3 must be distinguished from the

modulus of subgrade reaction kS with dimension kN/m2. The relationship between KS and kS is

given by kS = KSbB, where bB is the width of the foundation beam’s cross-section. The terms kGd1

and kGd2 in Eq. (5) are moments resulting from the assumptions on which the two-parameter elastic

foundation model is based, and are necessary for fulfilling the equilibrium conditions (Morfidis and

Avramidis 2002). Eq. (5) can be expressed in symbolic matrix form as:

(6)

It is worth noticing that since rigid offsets cannot be deformed, the underlying shear layer remains

inactive and does not transmit any force to them. Consequently, the only forces transmitted to the

rigid offsets are the vertical spring forces, as in the case of the Winkler model.

2.2.3 Formulation of the stiffness matrix [K] as a function of the stiffness matrix [Kint].

In this step, the classic matrix equation stating the force-deformation relationship is considered:

For the median segment: (7)

where [Kint] is the already known stiffness matrix of the median segment 2-3.

For the whole element: (8)

where [K] is the stiffness matrix of the generalized element 1-4 yet to be derived.

From Eqs. (4) and (7) we obtain:

(9)

After some algebra, Eq. (9) gives:
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Fig. 3 Relationships between the forces at the internal joints and the element end forces
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(10)

where [I] is the 4 × 4 identity matrix. By combining Eqs. (6) and (10) we obtain:

(11)

Finally, the comparison of Eqs. (8) and (11) leads to the stiffness matrix of the generalized element:

(12)

In Eq. (12) certain “switches” have been incorporated in order to enable the optional omitting of

either the elastic support or the rotational springs. Moreover, a “switch” can convert the geometric

nonlinear stiffness matrix to a geometric linear one (Morfidis and Avramidis 2002). A “switch” is a

parameter that takes the unity value if a certain effect must be taken into account or the zero value

if this effect must be neglected. If m = 0, then Eq. (12) states the geometric nonlinear stiffness

matrix of a beam element without semi-rigid connections, supported by one or two-parameter elastic

foundation. If n = 0, then Eq. (12) expresses the geometric nonlinear stiffness matrix of a beam

element without elastic support, which is applicable in the analysis of steel structures. If m = P = 0

and n = 1, then Eq. (12) states the linear stiffness matrix of a beam element with one or two-

parameter elastic support, which is applicable in the analysis of reinforced concrete foundations. If

kG = P = 0 and n = 1, then Eq. (12) states the linear stiffness matrix of a beam element with one-

parameter elastic support. Finally, if m = n = P = 0, then Eq. (12) represents the well-known linear

stiffness matrix of a beam element with rigid offsets (Ghali and Neville 1989).

3. Element nodal load vectors

In this paragraph, the equivalent nodal load vectors for a trapezoidal load with adjustable form

parameters and for a linear temperature variation Δt between the top and the bottom fiber of the

beam are formed (Fig. 4).

The load vectors (as well as the stiffness matrices) are based on the exact solution of the

governing differential equations of the problem and are derived in two steps. First, the load vectors

[P(int)] for the median segment of the element with rotational springs at its ends are formed. Then,

the stresses are transmitted through the rigid offsets to the end nodes of the whole element to form
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Fig. 4 (a) Transverse trapezoidal load, (b) linear temperature variation Δt, (c) general form of internal load
vector
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the equivalent element load vectors. For both load cases, the load vectors for the Bernoulli beam

element result from the load vectors of the respective Timoshenko beam element by forming the

limit value of the latter, as shear rigidity Φ = AG/n approaches infinity. Results for load vectors for

the cases 1 and 3 are included in Appendix 1 and Appendix 2.

3.1 Trapezoidal load with adjustable form parameters

The nodal load vector of the Timoshenko beam element supported by a two-parameter elastic

foundation is derived by means of the analytical solution of Eqs. (1a) and (1b) and by applying the

method of initial parameters (e.g., Morfidis 2003).

3.1.1 Consideration of the rigid offsets

In order to derive the load vector of the new element, the relationships between the stresses at the

auxiliary nodes 2 and 3, and the stresses at the nodes 1 and 4 must be formulated. These

relationships are derived from the equilibrium conditions associated to the free-body diagram of the

rigid offsets. Assuming that their load is uniform and equal to qro one takes:

(13)

3.2 Non-uniform temperature variation Δt

In this case, the load vector results from Eqs. (1a) and (1b), in which the value of q is set equal to

0 (Morfidis and Avramidis 2002). Moreover, the relationship from which the bending moments are

determined is:

(α is the coefficient of thermal expansion)

3.2.1 Consideration of the rigid offsets

The consideration of the rigid offsets leads to the following equation:

(14)

4. Examples

The two examples presented below aim to test the reliability of the new element in modeling of

plane systems, as well as to indicate the simplification and reduction of computational sources

achieved with its use. In order to solve these examples, computer programs in Fortran 90/95 that

include the new element were created while, for the evaluation of the reliability of the results,

comparative solutions were attempted using the well known structural analysis program SAP2000

Nonlinear Version 7.42 (2000).
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4.1 Example 1

The first example concerns the steel frame of Fig. 5(a) that rests on the elastic soil through a

reinforced concrete foundation (foundation beam and footings).

The soil consists of a layer of loose sand 20 m in thickness, resting on a rigid base. Young’s

modulus and Poisson’s ratio of the sand are ES = 17500 kN/m2 and νS = 0.28 respectively (Bowles

1988). With regard to given frame, two categories of analyses were carried out:

A) The objective of the first category of analyses was the investigation of the reliability of the

new element in modeling of beams on elastic foundation. In a first step, the two soil parameters are

determined by an analysis using the modified Vlasov soil model, proposed by Vallabhan and Das

(1991). Their values were found to be kS = 3321.3 kN/m2 and kG = 11143.19 kN (assuming plane

stress conditions). Next, a number of analyses are carried out using the Winkler model, in which the

same value of kS is used as in the case of the modified Vlasov model, i.e., kS = 3321.3 kN/m2.

Finally, an additional analysis using the Pasternak model is performed, which was based on soil

constants resulting from an analysis using the modified Vlasov model.

Solutions based on the Winkler model were achieved both using the new element, and using four

different conventional models of the foundation beam (Fig. 5(b)). The main objective of the

Winkler-model-analyses was to prove that the new element can, in fact, yield results that may only

be attained using a large number of simple (classical) beam elements in case of conventional

modeling. In addition, conventional modeling of continuous support requires additional calculations

in order to determine the stiffnesses of the discrete springs required.

A careful study of Fig. 6 leads to the following conclusions:

• The model with N = 3 simple elements fails to approximate the “exact” values of the stresses, as

it displays deviations of the order of 25% for bending moments and 40% for shear forces.

• The model with N = 6 simple elements, although better in comparison with the previous one,

still exhibits considerable deviations, especially for the shear forces (20%). However, divergences

are relatively small when it comes to bending moments (below 10%).

• The model with N = 12 simple elements gives far better results in comparison with the previous

one, the deviations remaining below 15%.

Fig. 5 (a) Steel frame with R/C foundation beam and footings on elastic soil, (b) four conventional
discretization models of increasing mesh density
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• The model with N = 20 elements consists of the minimum number of elements necessary for an

absolutely satisfactory approximation of all stress values. In this particular case, the deviations

do not exceed 7%.

At this point it is worth mentioning, that structural models consisting of cubic finite elements of

the kind developed by Miyanara and Ergatoudis (1976) may come very close to the exact solution

using only a small number of elements. However, the stiffness matrices of such elements are based

on approximate interpolation functions rather then the exact solution of the underlying differential

equation, thus being inherently inferior as compared to exact stiffness matrices.

The analyses in which the two-parameter models were employed aimed at investigating the

influence of the second parameter on the stress values of the foundation beam. Apart from that, in

the case of the solution based on the Vlasov model, the influence of the soil on either side of the

frame was also taken into account by placing translational springs with constants  (Vlasov

and Leontiev 1966) at the ends of the foundation beam (nodes 5 and 6, Fig. 7(a)). Fig. 7(a)

indicates that the difference between the Winkler and Pasternak models with reference to the

maximum bending moment of the beam is of the order of 20%, whereas the respective difference

between the Winkler and Vlasov models approaches 3400%! From Fig. 7(b), it is evident that the

difference between the Winkler and Pasternak models in terms of shear forces does not exceed 10%

at any given point of the beam. The respective differences between the Winkler and Vlasov models

reach at certain points 80-90%. Therefore, the consideration of the soil on either side of the frame

substantially modifies its stress condition, since it alters the way in which it rests on the soil.

B) The objective of the second category of analyses was to provide evidence for the usefulness

and practicality of the new element in modeling of semi-rigid connections in steel structures. In the

conventional solution using the well-known structural analysis program SAP2000, the modeling of

semi-rigid connections was based on two different connection models (Fig. 8(a)).

The solutions were carried out using three different values for the rotational stiffness of the semi-

rigid connections (Council on tall buildings and urban habitat, 1993). The comparisons of rotations

and bending moments at the semi-rigid connections are illustrated in Figs. 8(a) and 8(b). 

From these diagrams, it is concluded that the conventional modeling of semi-rigid connections

(Fig. 8(a)) leads to values of stresses and displacements that are very close to those derived from

kSkG

Fig. 6 Deviations of nodal displacements (a) and stresses, (b) of the four conventional models relative to the
reference solution based on the proposed generalized element
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the analysis using the new element. However, this does not diminish the usefulness of the new

element since the deviation of results requires: (a) extensive preparatory work in order to determine

the appropriate lengths of the auxiliary elements used, as well as the geometric properties of their

sections (Fig. 8(a)), and (b) the introduction of additional auxiliary nodes and elements in the

model.

It is clear, that a more complicated frame, with more bays and stories, would demand multiple

repetitions of this conventional modeling procedure, thus dramatically increasing pre- and

postprocessing efforts. In contrast, using the proposed new element simplifies the modeling of steel

structures with semi-rigid connections to a remarkably large extent.

Fig. 7 Diagrams of bending moments and shear forces in the foundation beam for Winkler, Pasternak and
Vlasov models

Fig. 8 (a) Conventional modeling of semi-rigid connections using additional auxiliary elements, (b) deviations
of the conventional model analyses from the analyses based on the proposed generalized element
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4.2 Example 2

The second example concerns the buckling load evaluation of a foundation structure composed of

a foundation beam rigidly connected to three piles which lower ends rest on a hard bedrock (Fig. 9(a)).

The surrounding soil is considered to behave elastic in both vertical and horizontal directions. Here,

it is assumed that the superstructure (consisting of three shear walls) is very stiff and that the

possibility of instability is limited to the foundation structure. The piles transmit their vertical load

to the rigid bedrock entirely through their lower end point and not through axial friction along the

shaft. The modeling of reactions due to friction (e.g., using axially oriented springs along the pile’s

axis) is thereby rendered redundant. With these assumptions, the sufficiently realistic model shown

in Fig. 9(b) can be used, while the minimum number of conventional finite elements necessary for

numerically acceptable results is still to be specified. Here, five different variations as to the

discretization’s density are investigated (Fig. 9(b)).

Solutions were given using both the Winkler model and the two-parameter model. Concerning the

numerical values of the first parameter, i.e., the modulus of vertical subgrade reaction kS for the

foundation beam and the modulus of horizontal subgrade reaction kh for the piles, the following

assumptions were made:

a. The foundation soil consists of soft alluvial silt. Therefore, the modulus of horizontal subgrade

reaction kh may be considered as constant with depth (Terzaghi 1955). The elastic constants

used are ES = 1277 kN/m2 and νS = 0.4 (Bowles 1988).

b. For the moduli kS and kh the analytical relation proposed by Vesic (1961) is used:
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Fig. 9 Foundation structure (beam and piles), (b) five conventional discretization models of increasing mesh
density
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Thus:

Vertical Subgrade Reaction: 

Horizontal Subrade Reaction:

c. The numerical analyses were carried out for two different values of Kh: (I) Kh = KS (according

to Bowles 1988), and (II) Kh = 2KS (according to Terzaghi 1955).

Thus: (I) kS = 622.8 kN/m2, kh = 550.7 kN/m2, and (II) kS = 622.8 kN/m2, kh = 1101.4 kN/m2

In order to calculate the value of the second parameter, i.e., kG for the foundation beam and kGh

for the piles, the Vallabhan and Das model (Vallabhan and Das 1991) was employed. On the basis

of the corresponding procedure, with ES = 1277 kN/m2, νS = 0.4 and an average depth of the silt

layer equal to 10 m, the value kG = 1457.2 kN for the second parameter of the elastic foundation

comes up. This value is used for the foundation beam, while for the piles, in order to investigate the

influence of the second parameter’s value on the buckling load, three different values kGh = (1/2)kG,

kGh = kG, and kGh = 2kG are used. Thus:

(I) kG = 1457.2 kN → kGh = 728.6 kN, (II) kG = 1457.2 kN → kGh = 1457.2 kN, and 

   (III) kG = 1457.2 kN → kGh = 2914.4 kN.
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Fig. 10 (a) Deviations of the conventional finite element model buckling loads from the buckling load based
on the proposed generalized element, (b) buckling loads for different combinations of soil parameter
values
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Various series of numerical calculations based on the above assumptions have been carried out.

The outcome can be summarized as follows:

A) A first set of results refers to results produced by the “exact” solution, i.e., the one using the

proposed element, as compared to the corresponding Winkler model results based on conventional

analyses of different discretization densities (Fig. 9(b)). These comparisons were made for both

cases: kh = kS and kh = 2kS. Fig. 10(a) depicts the divergences of the conventional model buckling

load values from buckling load values provided by analyses using the proposed element. As shown

in this figure, the approximation of the exact value of the buckling load with a divergence lower

than 1% is achieved through the use of conventional models made up of at least 42 conventional

beam elements. Models consisting of 21 elements yield results with divergences of the order of 7%,

which may be deemed as acceptable. Finally, models comprising only 15 elements display

divergences of the order of 30% and should, therefore, be rejected.

B) In a second set of analyses, the new element was exclusively employed, while the elastic

subgrade was simulated using (a) the Winkler model, and (b) the two-parameter model. These

analyses aimed at specifying the fluctuation of the value of the critical buckling load, depending on

the assumptions made as to the values of the soil parameter kGh. Fig. 10(b) leads to the following

conclusions:

1. As far as solutions based on the Winkler model are concerned, the difference between the value

of the critical load in case kh = 2kS, and its value in case of kh = kS is of the order of 35%.

2. The use of the two-parameter model generally increases the values of the critical load. The

assumption concerning the correlation between kGh and kG is of significant influence. More

specifically:

• If kh = kS, the change in the value of the critical load between the assumptions kGh = (1/2)kG

and kGh = 2kG is of the order of 35%.

• If kh = 2kS, the change in the value of the critical load between the assumptions kGh = (1/2)kG

and kGh = 2kG is of the order of 25%.

3. The difference between the two-parameter model and the Winkler model ranges from 14% to

53%, if kh = kS, and from 9% to 38%, if kh = 2kS.

5. Synopsis and conclusions

In the present paper, a new generalized Bernoulli/Timoshenko beam-column element is developed,

which proves particularly useful in modelling R/C or steel structural members for many cases

arising in practice. The element consists of a flexible median segment, which is a classical Euler or

Timoshenko beam, and of two rigid segments on each end. Median segment and rigid offsets are

connected by rotational elastic springs and supported on a two-parameter elastic foundation. The

final form of the generalized element stiffness matrix, as well as of the corresponding load vectors,

contain a number of appropriate “switches” which allow for the optional activation or deactivation

of one or more of the above element features. Thus, the proposed element can be adapted to a

variety of specific situations and modelling needs. The derivation of the stiffness matrix and load

vectors is based on the exact analytical solution of the differential equations which describe an

axially loaded generalized element resting on an two-parameter elastic foundation. Among the six

possible cases of solution that arise for a Timoshenko beam and the five cases for a Euler beam,

only two cases proved to be of practical interest. For these cases, the corresponding matrices and
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vectors are developed. 

The efficiency of the proposed generalized beam-column element has been demonstrated by two

numerical examples. In both examples axial force effects have been taken into account. 

The main conclusion drawn from comparisons with analyses using conventional finite beam

elements is that the use of generalized elements minimizes the number of finite elements necessary

for achieving acceptable results. This is due to (a) the exactness of the stiffness matrix and the load

vectors which allow for the median segment to be free of meshing (buckling problems included),

and (b) the ability of the generalized element to incorporate both rigid offsets and rotational spring

connections without additional nodes, i.e., without requiring additional degrees of freedom.

A second conclusion refers to the ability of the two-parameter soil models to simulate the

influence of foundation soil on either side of foundation beams. One-parameter models lack this

ability, thus leading to significant deviations from the correct stress distribution in the foundation

structure. The presented generalized element, in its full version with active two-parameter elastic

foundation, is capable of handling with this problem even in presence of axial load effects. 

Finally, a general conclusion from buckling load investigations of elastically embedded structures

is that two-parameter soil models generally lead to greater values for the buckling load as compared

to one-parameter models. The buckling load increases not only with increasing value of the

modulus of horizontal subgrade reaction kh, which is expected, but also with increasing value of the

second soil parameter (kG for beams resting on elastic soil, and kGh for beams or piles embedded in

elastic soil). Thus, as far as buckling loads are concerned, the two-parameter soil models proved

less conservative than the one-parameter models. Further investigations are needed in order to

determine whether the two-parameter model overestimates the buckling loads of elastically

supported or/and elastically embedded structures.
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Appendix 1: Load vector coefficients for non-uniform temperature variation Δt (see

Figs. 2 and 4)
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Case 3

where:

n = sin(QL) n' = cos(QL) m = sinh(RL) m' = cosh(RL)

• Formulae for R and Q are given in Fig. 2.
• The expressions for M2 and V2 follow from the above expressions for M1 and V1 by mutual interchange of

the rotation springs’ coefficients KRA and KRB.
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Appendix 2: Load vector coefficients for trapezoidal load (see Figs. 2 and 4)

where 

The expressions for M2 and V2 follow from the above expressions for M1 and V1 by mutual interchange of the
rotation springs’ coefficients KRA and KRB.
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Case 3

  

• Formulae for R and Q are given in Fig. 2.
• Parameters Δ1, Δ2, ω1,ω2, A1 and A2 are the same as in case of non-uniform temperature variation Δt (see

Appendix 1).
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