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Abstract. The Element-free Galerkin Method has become a very popular tool for the simulation of
mechanical problems with moving boundaries. The internally applied Moving Least Squares interpolation
uses in general Gaussian or cubic weighting functions and has compact support. Due to the approximative
character of this interpolation the obtained shape functions do not fulfill the interpolation conditions,
which causes additional numerical effort for the application of the boundary conditions. In this paper a
new weighting function is presented, which was designed for meshless shape functions to fulfill these
essential conditions with very high accuracy without any additional effort. Furthermore this interpolation
gives much more stable results for varying size of the influence radius and for strongly distorted nodal
arrangements than existing weighting function types. 
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1. Introduction 

In the recent years meshless methods (Belytschko et al. 1996) have been developed for

mechanical problems with growth of surfaces, such as in crack propagation. By using meshless

methods for these purposes no complex mesh generators are necessary and a state variable transfer,

if it is required, is straightforward due to the mainly continuous stress functions. One of the most

common meshless methods is the Element-free Galerkin Method (EFG) (Belytschko et al. 1994),

which uses the Moving Least Squares (MLS) procedure (Lancaster and Salkauskas 1981) for the

interpolation of the displacement function. An adaptive coupling (Karutz 2000) of meshless zones

with traditional finite elements seems to be necessary to obtain an efficient algorithm, because of

the larger numerical effort of the meshless methods to determine the shape function values. Due to

the approximative character of the MLS interpolation using standard weighting functions the

interpolation condition and the essential boundary conditions are not fulfilled automatically.

Therefore a direct coupling with finite elements is not straightforward. Different methods have been

developed to overcome this problem, such as the application of Lagrange multipliers (Belytschko

et al. 1994), the introduction of a penalty term (Häussler-Combe 2001) or the usage of special
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boundary components (Belytschko et al. 1995, Karutz 2000). By using Lagrange multipliers, the

system of equations, which has to be solved, becomes larger and special solvers are required due to

the singularity of the coefficient matrix. The penalty solution can force fulfillment of the boundary

conditions only approximately and the correct choice of the penalty term is difficult. The

formulation of boundary components fulfills the boundary conditions but is very un-practical for the

adaptive coupling with finite elements. While all three methods, which require additional numerical

effort, fulfill the boundary conditions with a sufficient accuracy, the interpolation conditions for the

internal nodes are not satisfied. For the application of the MLS interpolation in the Moving Least

Squares Differential Quadrature Method (Liew et al. 2003a) the boundary conditions are considered

directly by means of additional equations (Liew et al. 2003b, 2004). This is similar to the

application of Lagrange multiplier in the Element-free Galerkin Method, but with less additional

effort. Nevertheless the interpolation condition is again not fulfilled at every node, which may lead

to a strong dependence of the calculated displacement and stress values on the specified influence

radius of the weighting function. 

For all of these reasons the authors designed a new regularized weighting function which fulfills

the interpolation and boundary conditions automatically with very high accuracy. This leads to an

easy application within a Galerkin approach similar to the finite element interpolation or the Natural

Neighbor Interpolation (Sukumar et al. 1998). The numerical effort for the computation of the

weighting function values is similar than for standard MLS weighting functions and furthermore no

additional effort is necessary to apply geometrical boundary conditions. Thus one of the main

problems for the application of the MLS interpolation in a Galerkin scheme is solved with this new

weighting type. The properties of the meshless shape functions obtained with this regularized

weighting function are almost independent of the influence radius size. This leads to very stable

results which will be shown for several numerical examples. 

For the computation of the system matrices and vectors within a Galerkin method the integration

over the domain is necessary. In general this integration is carried out by using background cells

(Belytschko et al. 1996). Due to the fact, that the integration cells do not coincide with the

influence domain of the nodes, this integration is not exact and a large number of integration points

is necessary to represent the displacement field with sufficient accuracy. Another integration

approach is a nodal integration scheme based on an assumed strain method. This method was

proposed by (Chen et al. 2001) for the Element-free Galerkin Method and can reproduce a linear

displacement field exactly. The method uses a Voronoi diagram for defining integration cells,

whereby a representative strain at each node is determined by observing the integration constraints

for a constant stress state. In (Unger et al. 2004) it was shown, that this method fails for systems

with load or geometry induced singularity points, like crack tips, which can be observed from an

artificial oscillation of the displacements. Because of these reasons the authors decided to use

triangular background cells spanned by three nodes for the numerical integration (Most and Bucher

2003, Most et al. 2004b). These cells are computed with the Delaunay triangulator “Triangle”

(Shewchuk 1996). The integration over boundary lines does not cause any problems, due to the fact,

that the boundary segments coincide with the triangle edges. 

2. Moving Least Squares interpolation 

If an arbitrary function u is interpolated by using a polynomial the following formulation can be
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obtained at a point x 

 

(1)

where p(x) is the base vector and a contains the coefficients of the polynomial. These coefficients

are constant in the interpolation domain and can be determined directly for some special cases if the

number of supporting points m used for the interpolation is equivalent to the number of coefficients

n. This principle is applied for example in the Finite Element Method, where an element-wise

interpolation is realized. There the coefficients are simply given as 

(2)

where  contains the values of the interpolated function u at the supporting points 

 = (u1 … um) (3)

and P consists of the evaluations of the base polynomial at the supporting points 

 

 (4)

Within the “Moving Least Squares” (MLS) interpolation method (Lancaster and Salkauskas 1981)

the number of supporting points m exceeds the number of coefficients n, which leads to an

overdetermined system of equations. This kind of optimization problem can be solved by using a

least squares approach 

P  = PP
T
a(x) (5)

with changing (“moving”) coefficients a(x). For the accuracy and efficency of a numerical method

with internal interpolation of global variables the compact support of the interpolation is essential.

This was introduced for the MLS-interpolation by a distance depending weighting function 

 

(6)

where d is the distance between the interpolation point and the considered supporting point

 (7)

u x( ) 1  x  y  xy   x
2
  y

2
  …( )

a1

 

an

p
T

x( )a= =
…

a P
T

1–

ũ=
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and D is the influence radius, which is introduced as a numerical parameter. As weighting function

w all types of functions can be used, which vanish beyond a certain distance equivalent to D and

which are positive in the influence domain of a supporting point. 

Eq. (5) is expanded to the following formulation 

B(x)  = A(x)Ta(x) (8)

where A(x) and B(x) are given as 

A(x) = PW(x)PT

(9)
B(x) = PW(x) 

and the diagonal matrix W(x) can be determined as follows 

W(x) = diag(w(d1), …, w(dm)) (10)

where w(d1), …, w(dm) are the weighting function values belonging to the supporting points. 

The interpolated value of the function u at x can be obtained by introducing the MLS shape

functions 

u(x) = Φ
MLS

(x) , Φ
MLS

(x) = pT(x)A(x)
−1

B(x) (11)

In contrast to the Finite Element Method the MLS interpolation does not pass through the nodal

values. This is due to the applied least squares approach. This implies that the interpolation

condition is not fulfilled 

 (12)

The properties of the MLS interpolation depend mainly on the base polynomial and on the

weighting function. This means that functions of polynomial type can be reproduced exactly if the

base polynomial has the same order as the interpolated function. Thus the so-called linear

completeness, which is necessary for the convergence of a Galerkin method, can be obtained by

using a linear base polynomial. The continuity of the MLS interpolation is only influenced by the

continuity of the weighting function, if the weighting function has C k continuity the interpolation

has C k continuity as well. 

If the MLS interpolation is applied in a Galerkin approach the interpolated functions are in

general the displacements in one, two or three dimensions. For a standard solution procedure the

first derivatives of the displacements, the strains, have to be computed. From Eq. (11) the

derivatives can be obtained as 

(13)
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(14)

Higher order derivatives can be computed in closed form as well. The second derivatives, which

might be necessary for adaptive algorithms by using strain gradients, are given as 

(15)

   

with

(16)

3. Weighting functions 

3.1 Common function types 

Different types of weighting functions can be found in the literature. One of the most common is

the Gaussian weighting function of exponential type, which is given as follows (Häussler-Combe

2001) 

(17)

The shape parameter α is taken in general as 0.4 (Karutz 2000). In Fig. 1 the Gaussian weighting
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(18)

which leads to the following values of the derivatives at the boundary of the influence domain 

(19)

Eq. (19) points out, that C1 and C 2 continuity can only be reached approximately by using the

exponential weighting function type. In Fig. 2 a MLS shape function and its first derivative with

respect to x obtained from the Gaussian weighting function is shown for a regular set of nodes. 
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Fig. 1 Gaussian and cubic weighting functions

Fig. 2 MLS shape function and first derivative for a regular set of nodes using the Gaussian weighting
function
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Another standard weighting function is based on a cubic polynomial (Karutz 2000) 

(20)

and is displayed additionally in Fig. 1. 

The derivatives of the cubic weighting function can be determined easily as 

(21)

which results in the values on the influence boundary given in Eq. (22) 

(22)

This equation clarifies, that the application of a cubic weighting function leads to an exact C1

continuous MLS interpolation function. 

In Fig. 3 a single nodal shape function of the middle node of a regular set of nodes in 1D is

shown for increasing influence radius D. As weighting function the above described Gaussian type

and a linear base polynomial are used. The figure indicates that with increasing influence radius the

shape function error at each support point increases dramatically. This is the main problem for the

application of a common weighting function within the MLS interpolation. 
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Fig. 3 Nodal shape function of MLS interpolation with Gaussian weighting function and linear base
polynomial for regular and irregular sets of nodes
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design a new weighting function which allows the fulfillment of the MLS interpolation condition

with very high accuracy 

(23)

This can only be reached if Eq. (24) is valid 

(24)

The weighting function value of a node i at an interpolation point x is introduced by the following

regularized formulation 

(25)

with 

(26)

The variable m belongs to the number of supporting points influencing x and the regularization

parameter has to be chosen very small to fulfill Eq. (24) with high accuracy, but it has to be larger

than the square root of the machine precision to avoid numerical problems. This limit results from

Eq. (26). It is recommended by the authors to use the value 
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supporting points can be approximated by assuming 

(28)

as 

(29)

where dmin specifies the minimal distance between two nodes. 

In Fig. 5 the single nodal shape function by using the regularized weighting function type is

shown for different values of the influence radius D. 

Fig. 5 and Eq. (29) clearly point out that the interpolation condition is fulfilled with very high

accuracy even for irregular sets of nodes with grading node density. In clear contrast to the shape

function obtained with the exponential weighting function the influence radius D influences the

regularized shape function characteristics marginally if a certain value of D is reached. 

In order to reduce the numerical effort for the shape function computation the following
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formulation in Eq. (26) can be used as weighting function by obtaining exactly the same shape

function values. The calculation of the first and second derivatives becomes much easier as well 

(31)

The values on the influence boundary can be approximated as 

(32) 

Eq. (32) points out, that the derivatives of the regularized weighting function vanish on the

boundary of the influence domain, which clarifies the fact, that the application of the presented

weighting type leads to an interpolation which show C1 and C2 continuity approximately. In Fig. 6 a

MLS shape function with corresponding first derivative with respect to x by using the regularized

weighting function is shown for a regular set of nodes. 
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Fig. 6 MLS shape function and first derivative for a regular set of nodes using the regularized weighting
function
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node A is analyzed for a varying influence radius D using the regular nodal set. The regularization

term is assumed to be ε = 10−5 and the Gaussian shape parameter is taken with α = 0.3295. In Table 1

the obtained maximum error is given for both investigated weighting types. It can be seen that with

increasing influence radius the error using the Gaussian weighting function increases but the error

from the regularized type remains very small. This means that Eq. (23) is fulfilled with extremely

high accuracy if the regularized weighting function is used. 

The influence of the minimum nodal distance on the interpolation accuracy is investigated on the

irregular set of nodes shown in Fig. 7 by changing the distance between node A and B. The

influence radius is kept constant with D = 0.5 m. In Table 2 the obtained interpolation errors are

shown. The table clearly indicates that the interpolation error by using the regularized weighting

function is very small even if the nodal arrangement is strongly irregular. Additionally the

maximum weighting function error at the supporting points and the approximated values by using

Fig. 7 Investigated regular and irregular set of nodes

Table 1 Maximum numerical error at the nodes as a function of the influence radius

D

0.3 m   0.6% 1.32 · 10−4%

0.4 m  10.1% 1.71 · 10−5%

0.5 m  30.5% 7.10 · 10−6%

0.6 m  49.5% 1.11 · 10−5%

1.0 m  81.5% 1.47 · 10−5%

Φi G,

MLS
xj( ) δij– max Φi R,

MLS
xj( ) δij– max

Table 2  Maximum numerical error as a function of the minimum nodal distance

dAB/D
Numerical Approximation

0.4 36.8% 1.19 · 10−5% 3.81 · 10−9 3.81 · 10−9

0.2 47.7% 2.34 · 10−6% 6.24 · 10−8 6.24 · 10−8

0.1 55.2% 1.02 · 10−5% 9.97 · 10−7 1.00 · 10−6

0.01 59.0% 1.05 · 10−3% 8.26 · 10−3 1.00 · 10−2 

0.001 59.0 % 1.05 · 10−1% 8.26 · 10−1  -

Φi G,

MLS
xj( ) δij– max Φi R,

MLS
xj( ) δij– max

wi R, xj( ) δij– max
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Eq. (29) are shown in the table. It can be seen, that the approximated values agree very well with

the numerical values. For dAB /D = 0.001 the assumption in Eq. (28) is not valid and the

approximation in Eq. (29) can not be used. 

4.2 Cantilever under higher order displacement fields 

Within this example the accuracy of the regularized weighting function embedded in a Galerkin

method is investigated for higher order displacement fields as a function of increasing distortion of

the nodal arrangement. In Fig. 8 the system with geometrical properties and boundary conditions is

shown. Two different load cases have been investigated, first a moment load at the beam end

represented by the load pair F1, which leads to a quadratic displacement field, and second a single

vertical load F2 at the beam end, which results in a cubic displacement field. For comparison the

investigated beam was discretized with four-node (Q4) and nine-node (Q9) iso-parametric finite

elements. In Fig. 8 the Q9 discretization is shown exemplarily. For both investigated load cases the

material was assumed to be linear elastic. The material properties are 3000 N/m2 for the Young’s

modulus and ν = 0.0 for the Poisson’s ratio and the thickness was defined to be 0.1 m. For the

system matrix computation Delaunay triangle background cells are used, which are spanned by

three nodes. These triangles are computed automatically with the “Triangle” package (Shewchuk

1996), whereby a constrained Delaunay triangulation of a planar straight line graph (Fortune 1995)

is assembled by defining the domain boundary as a number of segments with two nodes as

endpoints. The numerical integration is carried out via a Gauss quadrature over 25 integration points

per triangular background cell. This relatively high number of integration points are used to reduce

the numerical errors from the integration procedure. The application of the boundary conditions by

using the Gaussian weighting function was done via a weighting function blending (Most et al.

2004a), which is based on the blending technique in transition elements (Belytschko et al. 1995). 

In Fig. 9 the obtained maximum nodal displacement errors for the first load case are shown as a

function of increasing distortion a. By using the Q9 finite elements the analytical solution was

obtained exactly for every distorted system. The meshless calculations with the quadratic base

polynomial led to a very good agreement for the undistorted structure. The remaining deviations

from the analytical solution are a result of the integration error. With increasing distortion the usage

of the Gaussian weighting function results in an increasing error, whereby the application of the

regularized type gives very good results even for stronger distortions. For the calculations using the

bilinear base polynomial the same trend was observed, there the results from the regularized

weighting function are slightly better than those obtained with the Q4 finite elements with bilinear

Fig. 8 Investigated distorted cantilever with Q9 mesh
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Fig. 9 Maximum nodal errors for a quadratic displacement field under increasing distortion obtained by using
Gaussian (G) and regularized (R) weighting functions and bilinear and quadratic base polynomials

Fig. 10 Maximum nodal error for a quadratic displacement field for both weighting types depending on the
influence radius D

Fig. 11 Maximum nodal error for a cubic displacement field by increasing distortion
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shape functions. The meshless simulations were carried out by taking D = 2.5 m for the bilinear

base polynomial and D = 3.0 m for the quadratic polynomial. In Fig. 10 the influence of D on the

displacement error is shown. The figure indicates, as already shown in the previous examples, that

the results obtained with the regularized weighting type are almost independent of the influence

radius size in strong contrast to those from the Gaussian weighting function. 

In Fig. 11 the calculated displacement errors for the second load case are shown. The same trend

as for the first load case was observed: the regularized weighting function leads to results which are

almost independent of the distortion, whereby the Gaussian weighting types could not give

sufficient results for strong distortions. The results obtained with the regularized function are

slightly better than the finite element solutions with corresponding polynomial order. 

4.3 Calculation of Mode-I stress intensity factors by Virtual Crack Extension 

This example was chosen to investigate the convergence of the developed weighting function

interpolation for a Mode-I problem from linear elastic fracture mechanics. For this purpose a

quadrilateral panel with a horizontal central crack as shown in Fig. 12 was analyzed by calculating

the Mode-I stress intensity factor by using the Virtual Crack Extension technique as presented in

(Yang et al. 2001). As shown in Fig. 12 a uniform vertical stress was applied with σ = 1.0 · 106 N/m2.

The material properties were taken as E = 2.0 · 1011 N/m2 for the Young’s modulus and ν = 0.3 for

the Poisson’s ratio. The thickness was assumed with t = 1.0 m and plane strain condition was

implied. For the numerical analysis different nodal discretizations were investigated and only one

half of the plate was modeled by considering the symmetry of the system. In Fig. 12 the resulting

nodal setup with boundary conditions is shown additionally for the coarsest grid of 5 ×
 
9. 

The analytical solution for this problem is given in (Tada et al. 1993) as KI = 4.72 · 106 N/ . In

Fig. 13 the obtained numerical errors for the FEM and MLS calculations from the analytical

solution are shown. For the FEM calculations four-node (Q4) quadrilateral 2D-solid elements with

regular node distribution have been taken. The MLS calculations were carried out by using the

m

Fig. 12 Mode-I fracture: square plate with horizontal crack and nodal discretization
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Gaussian and the new regularized weighting function with a regular nodal grid and an unique

influence radius D = 2dmin, where dmin is the minimal nodal distance. The boundary conditions for

the Gaussian weighting function are applied again by using the weighting function blending

technique (Most et al. 2004a). The numerical integration was done again using Delaunay triangles

spanned by three nodes each having 25 Gauss integration points. The virtual crack extension length

was assumed with Δa = 10−4 dmin. The results for the Q4 elements show excellent agreement with

these obtained by (Yang et al. 2001) (5 × 9 nodes: −18.6%, 9 × 17 nodes: −11.2%). The numerical

prediction of KI using the regularized weighting function gives similar results as with finite

elements. If the Gaussian weighting function is used, the convergence is much less than with the

regularized weighting function or with finite elements. This shows analogous to the previous

example the more robust character of the new weighting function. 

All of the presented results for this example were carried out with the standard interpolation

functions. Better results for this problem with crack tip singularity can be obtained for finite

elements with special eight-node crack tip elements (Barsoum 1974) and for the MLS interpolation

by using an enriched based polynomial according to (Fleming 1997) 

(33)

where r and θ are the polar coordinates with respect to the crack tip. For the sake of comparability

of the finite element and the MLS calculations these extensions were not applied and only the

standard interpolation functions were used in this paper. 

5. Conclusions

In this paper a new regularized weighting function for the Moving Least Squares interpolation is

presented. In contrast to common weighting function types, this new formulation enables the

fulfillment of the interpolation condition with very high accuracy. Thus the essential boundary

conditions are fulfilled automatically and no additional numerical effort is necessary for the

p
T

x( ) 1  x  y  xy  r cos
θ

2
---   r sin

θ

2
---   r sin

θ

2
---sinθ  r cos

θ

2
---sinθ⎝ ⎠

⎛ ⎞
=

Fig. 13 Numerical error for the Mode-I stress intensity factor obtained by using Gaussian (G) and regularized
(R) weighting functions with bilinear base polynomials
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application in a Galerkin method. Furthermore the results obtained with the new weighting function

are very stable with respect to the modification of the influence radius. Huge distortions of the

nodal arrangement does not influence the results significantly. Thus the new interpolation can be

applied directly for irregular sets of nodes. 

Due to the almost vanishing derivatives of the weighting function on the influence domain

boundaries, the obtained interpolation shows approximative C1 and C 2 continuity, which enables an

efficient application for response surface methods or data interpolation procedures. 

The main problem for the application of the MLS interpolation is solved with this new weighting

function type, which makes the MLS interpolation more attractive especially within a Galerkin

method. This will be clear by pointing out, that the choice of the base polynomial is arbitrary, thus

the accuracy can be increased by choosing higher order polynomials. 
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Appendix A: Interpolation error of regularized weighting function 

Eq. (25) and Eq. (26) lead to the following formulation 

(34)

If we assume 

(35)
 

we can approximate 

(36)

by considering the fact, that the distance di for the support point itself is equal to zero. Under consideration of 

(37)

where dmin specifies the minimum distance between two arbitrary nodes, and of Eq. (36) we obtain for the
maximum error of the weighting function 

(38)

Using the simpler formulation from Eq. (26) we obtain under considering Eq. (36) and Eq. (37) the same
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expression as given in Eq. (38) 
 

(39)

Appendix B: Values of the first and second derivatives of the regularized weighting

function on the boundary of the influence domain 

The value of the first derivative of the weighting function on the influence boundary (d = D) reads 

(40) 

By assuming

(41) 

we obtain

(42)

For the second derivative we obtain analogically
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and

(44) 
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