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Abstract. Based on the random vibration theory, a response spectrum method is developed for seismic
response analysis of linear, multi-degree-of-freedom structures under multi-support excitations is
developed. Various response quantities, including the mean and variance of the peak response, the
response mean frequency, are obtained from proposed combination rules in terms of the mean response
spectrum. This method makes it possible to apply the response spectrum to the seismic reliability analysis
of structures subjected to multi-support excitations. Considering that the tedious numerical integration is
required to compute the spectral parameters and correlation coefficients in above combination rules, this
paper further offers simplified procedures for their computation, which enhance dramatically the
computational efficiency of the suggested method. The proposed procedure is demonstrated for tow
numerical examples: (1) two-span continuous beam; (2) two-tower cabled-stayed bridge by using Monte
Carlo simulation (MC). For this purpose, this paper also presents an approach to simulation of ground
motions, which can take into account both mean and variation properties of response spectrum. Computed
results based on the response spectrum method are in good agreement with Monte Carlo simulation
results. And compared with the MSRS method, a well-developed multi-support response spectrum method,
the proposed method has an incomparable computational efficiency.

Key words: multi-support excitation; response spectrum method; random vibration; seismic reliability
analysis.

1. Introduction

Except the temporal variability, the spatial variability is the other important aspect of ground

motions. This spatial variability is primarily the consequence of three effects: the wave passage

effect, the ground motion ‘incoherence’ effect and the local-soil condition effect (Der Kiureghian

and Neuenhofer 1992). Because of its obvious effects on large, multi-support structures, the spatial

variability of earthquake ground motion has drawn much attention of researchers.
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Presently, dynamic analysis with spatially varying input excitations is performed mainly by time

history approach, spectral analysis approach, and response spectrum method. Using the time history

approach, many realistic models of bridges have usually been analyzed for the defined support

excitations (Dusseau and Wen 1989, Dumanoglu and Severn 1990, Hyun et al. 1992, Nazmy and

Abdel-Ghaffar 1992, Nazmy and Konidaris 1994, Price and Eberhard 1998, Zanardo et al. 2002).

These studies generally concluded that the differential support motions induce response different

from those of uniform motions and should be incorporated in the dynamic analysis of these bridges.

Appealing for its statistical nature, spectral analysis approach has been performed for studying the

effect of spatially varying ground motions in the last two decades (Abdel-Ghaffar and Rubin 1982,

Zerva 1990, Hao 1994, Harichandran et al. 1996, Lin et al. 1997, Allam and Datta 1999, Alkhaleefi

and Ali 2002). These studies also underline the significance of the spatial variability of ground

motions. Besides, some researchers (Soyluk and Dumanogu 2000, Soyluk et al. 2004) attempted to

compare the responses of a cable-stayed bridge computed by these tow approaches. 

For the engineering community, however, response spectrum method has a great advantage over

the above two approaches. The main reason is that most seismic design codes and specifications

specify the earthquake motion in terms of the response spectrum. Several attempts have been made

to develop a response spectrum method for multiply supported structures. For example, Berrah and

Kausel (1992, 1993) suggested a modified response spectrum method, on account of the spatially

variability effect by adjusting the spectrum at each support and the existing modal cross-correlation

coefficients through two correction factors. Der Kiureghian and Neuenhofer (1992) proposed a

multi-support response spectrum (MSRS) method using the fundamental principles of random

vibration theory. The method can properly account for the effects of correlation between the support

motions as well as between the modes of vibration of the structure. Another methodology, discussed

by Heredia-Zavoni and Vanmarcke (1994), is characteristic in the analysis of the dynamic

component of the response. Instead of cross-modal terms, the method just needs to compute spectral

moments, which are independent of the dynamic properties of a given multi-support structural

system. This seems more advantageous in computation and application.

Nevertheless, the existing methodologies are common in at least two disadvantages as below: (a)

complex integrals are needed in the process of calculating the correlation coefficients or the spectral

parameters, which is quite unappealing for engineering purposes; (b) They can only compute the

mean of the peak response, but are unable to compute its standard deviation, so that the seismic

reliability analysis cannot be performed reasonably. In this view, based on the random vibration

theory, this paper presents a response spectrum method for seismic response analysis of linear

systems under multi-support excitations. Various response quantities, including the mean-square of

the response, the mean and variance of the peak response, and the response mean frequency are

obtained in terms of the ordinates of the mean response spectrum. Meanwhile, procedures are

presented to simplify the analysis of the frequency integrals of spectral parameters and cross-

correlation coefficient, so that the tedious numerical integrations are not required. 

The proposed procedure is demonstrated for tow numerical examples: (1) two-span continuous

beam; (2) two-tower cabled-stayed bridge by using Monte Carlo simulation (MC). Since the

reasonable input excitations is a key problem for the MC simulation, this paper also presents an

approach to simulation of ground motions, which can take into account both mean and variation

properties of response spectrum. It is indicated that computed results based on the response spectrum

method proposed are in close agreement with results obtained from MC simulation. And compared

with the MSRS method, the proposed method reduces the computational time dramatically.
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2. Response spectrum analysis of structures under multi-support excitations

2.1 Equation of motion

The equation of motion for a discretized, n-degree-of-freedom linear system subjected to m

support motions can be written in the matrix form as (Clough and Penzien 1975):

(1)

where  is the n-vector of displacement of the unconstrained degrees of freedom;

 is the m-vector of prescribed support displacements; M, C and K are the n × n

mass, damping and stiffness matrices associated with the unconstrained degrees of freedom,

respectively; Mg, Cg and Kg are the m × m matrices associated with the support degrees of freedom;

Mc, Cc and Kc are the n × m coupling matrices associated with both sets of degrees of freedom; and

F is the m-vector of the reacting forces at the support degrees of freedom.

2.2 Modal spectral analysis

From the solution to Eq. (1) in Der Kiureghian and Neuenhofer (1992), the power spectral density

of z(t) can be written in the form:

(2)

where Sxy(iω) denotes the cross-PSD of process x and y,  represents

the frequency response function of mode i, and ak and bki denote the effective influence factors and

effective modal participation factors. Both of these factors are a function of the structural properties.

Let  denote the cross-spectral density between the dynamic components, namely the third

term on the right-hand side of Eq. (2), then it can be further expressed as (Heredia-Zavoni and

Vanmarcke 1994) 

(3)

in which the coefficients αkli, βkli, θkli and φkli depend on the mass, stiffness and damping properties
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(4)

(5)

in which ;  is the root-mean-square of the

normalized modal response ski(t); the spectral parameters Γ0, kli, Γ2, kli, Λ1, kli, Λ3, kli and Λ5, kli are

defined as:

(6)

(7)

in which  and  are the real and imaginary parts of . Vanmarcke (1972)

showed that for single degree of freedom systems subjected to ideal white-noise excitations as

expressed by

 (8)

and therefore the terms associated with βkli in Eq. (4) are expected to be very small when the

system has a small damping ratio (ζi < 0.1). As a result, neglecting these terms will lose little

accuracy, then Eq. (4), Eq. (5) become:

(9)

(10)

The total response covariance, , is now obtained from Eqs. (3) and (9):

(11)

Structures such as long-span bridges, which are affected significantly by multi-support excitations,

are often of flexible systems. For these flexible structures, the contribution of the cross-correlation
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hand side of Eq. (11), to the total response is very small (Hao 1993, Nakamura et al. 1993, Loh and

σ z
d 2

αkli βkli 1
ωi

2
γ 2 kli,–

γ0 kli,

-------------------–⎝ ⎠
⎛ ⎞

+ Γ0 kli, θkli

Λ1 kli,

ωi

------------⎝ ⎠
⎛ ⎞

– φkli

Λ3 kli,

ωi

3
------------⎝ ⎠

⎛ ⎞
–

⎩ ⎭
⎨ ⎬
⎧ ⎫

σs
ki
σs

l i

i 1=

n

∑
l 1=

m

∑
k 1=

m

∑=

σ z·
d 2

ωi

2
αkli βkli 1

ωi

2
γ0 kli,

γ2 kli,

-----------------–⎝ ⎠
⎛ ⎞

+
Γ2 kli,

ωi

2
------------⎝ ⎠

⎛ ⎞ θkli

Λ3 kli,

ωi

3
------------⎝ ⎠

⎛ ⎞
– φkli

Λ5 kli,

ωi

5
------------⎝ ⎠

⎛ ⎞
–

⎩ ⎭
⎨ ⎬
⎧ ⎫

σs
ki
σs

li

i 1=

n

∑
l 1=

m

∑
k 1=

m

∑=

γN kli, ω
N

Hi ω( ) 2
Ru··ku

··
l
ω( )dω N 2– 0 2, ,=( )

∞–

+∞

∫= σs
ki

ΓN kli,

1

σs
ki
σs

li

--------------- ω
N

Hi ω( ) 2
Ru··

k
u··
l
ω( )dω N

∞–

+∞

∫ 0 2,= =

ΛN kli,

1

σs
ki
σs

l i

--------------- ω
N

Hi ω( ) 2
Qu··

k
u··
l
ω( )dω N

∞–

+∞

∫ 1 3 5, ,= =

Ru··
k
u··
l
ω( ) Qu··

k
u··
l
ω( ) Su··

k
u··
l

iω( )

1
ωi

2
γ 2 kli,–

γ0 kli,

-------------------–⎝ ⎠
⎛ ⎞ 4ζ i

2≈ and 1
ωi

2
γ0 kli,

γ2 kli,

-----------------–⎝ ⎠
⎛ ⎞ 0=

σz

d
2

αkliΓ0 kli, θkli

Λ1 kli,

ωi

------------⎝ ⎠
⎛ ⎞

– φkli

Λ3 kli,

ωi

3
------------⎝ ⎠

⎛ ⎞
– σs

ki
σs

l i

i 1=

n

∑
l 1=

m

∑
k 1=

m

∑=

σz·
d
2

ωi

2
αkli

Γ2 kli,

ωi

2
------------⎝ ⎠

⎛ ⎞ θkli

Λ3 kli,

ωi

3
------------⎝ ⎠

⎛ ⎞
– φkli

Λ5 kli,

ωi

5
------------⎝ ⎠

⎛ ⎞
– σs

ki
σs

l i

i 1=

n

∑
l 1=

m

∑
k 1=

m

∑=

σz

2

σ zz

2
akalρu

k
u
l
σu

k
σu

l
2 akbliρu

k
s
l i
σu

k
σs

l i

i 1=

n

∑
l 1=

m

∑
k 1=

m

∑+

l 1=

m

∑
k 1=

m

∑=

 αkliΓ0 kli, θkli

Λ1 kli,

ωi

------------⎝ ⎠
⎛ ⎞

– φkli

Λ3 kli,

ωi

3
------------⎝ ⎠

⎛ ⎞
– σs

ki
σs

l i

i 1=

n

∑
l 1=

m

∑
k 1=

m

∑+



A response spectrum method for seismic response analysis of structures 259

Ku 1995, and Harichandran et al. 1996). Thus, it is reasonably considered that this cross-correlation

component can be neglected without inducing any significant error. And then, Eq. (11) can be

reduced further to:

(12)

where  denotes the cross-correlation coefficient between the two support displacements, and 

(13)

2.3 Development of the response spectrum method

Based on the random vibration theory, the mean and standard deviation of the peak response zmax

have the relations with σzz as follows:

(14)

in which pz, qz are the mean and variance peak factors respectively, and can be obtained by

(Davenport 1964):

(15)

(16)

in which ν is the mean zero-crossing rate of the response process; Td is defined as the period

between the first and last crossings of 50% of the maximum absolute acceleration. Similarly, from

Eq. (14)  and , where uk, max denotes the mean value of the peak

displacement at the k-th support;  denotes the mean response spectrum for  and

 (written as Dki hereafter for convenience);  are the mean peak factors of the

corresponding process. Using these relations, substituting Eq. (14) into Eq. (12) and considering that

 are near a unity (Der Kiureghian 1980), we obtain:
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Eq. (16), it needs to give out the response mean frequency  related to z(t). Since pz, qz are not too

sensitive to  (Harichandran 1999) and for the total response z(t), the effect of the dynamic

component is dominant, then  can be approximated as:

(19)

3. Reduction of the computational effort

As they stand, Eq. (6), Eq. (7) and Eq. (13) are not appealing for engineering purposes since the

numerical integrations are required. Good approximate methods, however, can be developed to

overcome these difficulties as follows.

3.1 Description of ground motions

In general, the spatial variability of earthquake ground motions is characterized by the cross

power spectral density (PSD) of ground accelerations. The cross-PSD between the ground

accelerations at support k and l can be expressed as 
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in which  denotes the coherence function, and  is the auto-PSD at support k. 
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conditions specified in the Chinese design code for transportation engineering are taken, and the

modification of their expressions has been made to fit them to analyze structures whose

fundamental period is over 5s (Wang and Fan 1998). Fig. 1 shows these modified spectra, which are

normalized, and their corresponding PSD functions when the peak ground acceleration

 and ωf = 1.608, 0.998, 0.698, 0.509 rad/s for four site conditions, respectively. 

3.2 Simplified procedure for spectral parameters

The simplified analysis of integrals of spectral parameters in Eq. (6) and Eq. (7) presupposes that

 can be approximated by a white noise process, that is . This assumption is

feasible mainly due to two points: first, auto-PSD functions transformed from given response

spectra (see Fig. 1) are broad-banded; second, the spectral parameters in Eq. (6) and Eq. (7) are
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on the specific forms of these functions. As a consequence, substituting Eq. (21) and 
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(25)

with  being Dirac’s delta function. With this simplification, Γ0, kli can be evaluated

analytically after some algebra, then

(26)

Since ζi is small, generally ζi < 0.1, the above equation can be further reduced as shown below with

little accuracy lost, 
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close agreement with results from the direct integration. Fig. 4 shows these two sets of results when

= 0.419, = −0.074.

This simplification procedure is the same with spectral parameters 

. For explicitness, the approximate equations of these five spectral parameters are

listed below, namely

(29)

(30)

in which  and  are defined as the modification coefficients, whose values are

given in Table 1. In the above analysis, the damping ratio ζi is 0.05, but for flexible structures, such

as a long-span bridge, ζi is generally taken as 0.02 or 0.03, so the modification coefficients for the

damping ratios 0.02 and 0.03 are also listed in Table 1. From the table, it is found that for the same

ζi these five spectral parameters have the same modification coefficients α. In Fig. 5,  and

 values from the direct integration are compared with those from Eq. (29) or

Eq. (30), respectively. It is clear from this figure that they agree very well with each other.
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Fig. 3 Comparison of Γ0, kli values by using numerical
integration and Eq. (27)

Fig. 4 Comparison of Γ0, kli values by using numerical
integration and Eq. (28)

Table 1 Values of the modification coefficients

ζi

Γ0, kli

2% 0.260 0.000 0.260 0.000 0.260 0.000 0.260 0.060 0.260 0.100

3% 0.325 -0.045 0.325 0.000 0.325 0.000 0.325 0.045 0.325 0.100

5% 0.419 -0.074 0.419 0.060 0.419 0.000 0.419 0.074 0.419 0.165
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3.3 Simplified procedure for 

Considering that the site conditions underneath the supports of the structure are the same and

substituting Eq. (21) into Eq. (13), then we can obtain:

(31)

At this time, the white noise approximation makes the above integral have infinite value at ω = 0

(because ). Now  takes values from the Eq. (22) and =

. Fig. 6 shows plots of the cross-correlation coefficient for four types of soil conditions

specified in the Chinese design code for transportation engineering. It is concluded that  is a

monotone decreasing function of τ , decreasing sharply when τ  is small (τ < 2.0 sec) and then

gently. According to this feature,  can be approximated easily by regression analysis in the

following form:
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Fig. 6  for sites with four types of soil conditionsρu
k
u

l

Table 2 Values of k1, k2 and τ1

Soil condition τ1 k1 k2

1 0.60 0.66 0.65

2 1.20 0.40 0.60

3 1.90 0.28 0.55

4 2.30 0.22 0.45

Fig. 7 Comparison of  values by using numerical integration and Eq. (32)ρu
k
u

l
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(32)

where k1, k2 and τ1 have different values for different types of soil conditions (Table 2). Fig. 7

shows the comparison between  values for four types of soil conditions through numerical

integration and those from Eq. (32). It can be seen from this figure that two sets of results match

very well.

4. Multi-support ground motion simulation considering variability of response spectra

In order to use Monte Carlo simulation to demonstrate the proposed procedure reasonably, a

prerequisite is that response spectra associated with the input excitations should be the random ones.

This means that the stochastic process characteristic should be reflected. Their specified mean is the

mean response spectrum in code for design. On the other hand, the coefficient of variation of the

response spectrum could be derived from the random vibration theory. Let y(t) denote the response

of the single DOF system, and ym denote the peak responses, then from the Eq. (14), Eq. (15) and

Eq. (16) (it needs to change the subscript z into y in this case), the c.o.v.  can be expressed as:

(33)

To satisfy the above prerequisite, an approach is proposed to simulation of ground motions, which

can take into accounts both mean and variation properties of response spectrum. It has the following

basic idea: first, we randomly generate an ensemble of response spectra and make their mean and

coefficient of variation close to the specified results; then taking these random spectra as target

spectrum in turn, we use the method for multi-support ground motion simulation (e.g. Tseng et al.

1993) to synthesize the corresponding ground motions, which are compatible with these random

spectra respectively. From this point, the key to this approach is how to generate these random

spectra. For this purpose, the probabilistic distribution of the response spectrum should be first

given out. On disregarding the dependence between the crossings of the response process, the

distribution of the peak absolute response has the following form:

(34)

Correspondingly, the mean and standard deviation have the relations like Eq. (14), Eq. (15) and

Eq. (16), but it needs to change the subscript z into y in this case. 

By solving the inverse function of Eq. (34), we obtain

(35)

And substituting the relation  [from Eq. (14)] into the above equation,

(36)
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According to Eq. (36), random response spectra can be determined as below: first prescribe some

natural periods, and generate the random number ςi corresponding to these periods respectively, and

make these random numbers belong to different streams (namely, make them independent), and let

ςi equal to Fy(ym) one by one, and then obtain the corresponding ym from Eq. (36), finally connect

these sampled ym in succession so as to generate a random spectrum. Theoretically, an ensemble of

random spectra, given by the above procedure, should have the mean and coefficient of variation

equal to the specified  and .

Fig. 8 shows the comparison between the statistical mean and coefficient of variation of 2000

random spectra and the specified ones, in which  is the standard response spectrum (mean

response spectrum) relative to  and the soil site of type 2;  is given by Eq. (33),

Td is 25s and ν = ωi /π. It is clear from this figure that the statistical mean of 2000 random spectra

is in a very close agreement with the specified one, but the statistical coefficient of variation is

clearly lower than the given results. This indicates that the variance of random variable with the

distribution shown as Eq. (34) has great error with that computed approximately by Eq. (33), that is,

the variance peak factor given by Davenport (1964) could bring a significant error. In this sense, the

Eq. (16) should be modified so as to reduce the error between the statistical c.o.v. and the specified

one. Introducing a modification coefficient β into Eq. (16), then:

 (37)

Correspondingly, Eq. (33) becomes:

(38)

With the regression analyses for the three cases of Td = 15s, 20 and 25s, it is found that the

statistical coefficients of variation match the computed ones very well when β equals 0.893, 0.900

and 0.908, respectively. For convenience, we assume that β = 0.900. Fig. 9 shows the comparison

between the statistical c.o.v of 2000 generated random spectra and the specified ones after

modification. It is clear that after modification they become close to a great extent. 
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Fig. 8 Comparison between the statistical mean and c.o.v. of 2000 random spectra and the specified ones



268 Jian-hua Li and Jie Li 

5. Numerical example

The proposed procedure is demonstrated for two numerical examples: (1) two-span continuous

beam; (2) two-tower cabled-stayed bridge by using Monte Carlo simulation (MC). In the Monte

Carlo simulations, the multi-support ground motions used here are obtained by using the simulation

method mentioned above. Meanwhile, it is also compared with the multiple-support response

spectrum (MSRS) by Der Kiureghian and Neuenhofer (1992). The mean response spectrum in the

analysis is the standard one, relative to  and the soil site of type 2, prescribed in

Chinese design code for transportation engineering. 

5.1 Two-span continuous beam

Consider a two-span continuous beam, which has been discussed in Der Kiureghian and

Neuenhofer (1992), with uniform mass and stiffness properties and simple supports as shown in

Fig. 10. In the study, EI/m = 2.53 × 106 m4/s2, where EI denotes the flexural rigidity and m denotes

the mass per unit length of the beam, in order that its fundamental frequency is 1 Hz. 200 sets of

vertical multi-support ground motions are used, with a duration of 20s and νs = 500 m/s.

Comparisons of the maximum displacement, moment along the two-span beam analyzed by the

proposed method, MSRS and MC simulation are shown in Fig. 11 and Fig. 12, respectively. From

both figures, it can be observed that the mean and standard deviation of the peak response from

u··k max, 0.2g=

Fig. 9 Comparison between the statistical c.o.v. of 2000 random spectra and the specified ones after
modification

Fig. 10 Two-span continuous beam
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Eq. (17) and Eq. (18) are in close agreement with simulation results. The results from the proposed

method and MSRS also match well. However, the proposed method makes it possible a dramatic

reduction of the computational time. For example, for every displacement response, moment

response, MSRS averagely takes 37.3s, 103.7s (not including time consumed for modal analysis),

respectively, but the proposed method just takes less than 1s.

5.2 Two-tower cable-stayed bridge

As shown in Fig. 13, a two-tower cable-stayed bridge has 6 support locations, two towers as high

Fig. 11 Comparison of responses of maximum displacement

Fig. 12 Comparison of responses of maximum moment
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as 172.10 m and a span of 928 m. Since only its longitudinal response is evaluated, the 2D finite-

element model is developed for the analysis. The model has 316 elements connecting 201 nodes

(including 6 nodes at the supports) with a total 585 active degrees of freedom. Allowing for the

unavailability of response spectra for damping values other than 5%, and extra errors arising if these

spectra are modified from the response spectrum for damping value 5%, a damping ratio of 0.05 is

used for all modes. The first five modes are 0.215, 0.352, 0.474, 0.675 and 0.804 Hz, respectively.

The seismic inputs are longitudinal from the left to the right, with a duration of 25s and νs = 500 m/s.

They have the total number of 1200, divided into 200 sets (a set including 6 inputs at 6 supports).

Fig. 13 Two-tower cable-stayed bridge

Table 3 Summary of results for cable-stayed bridge

Response
MC MSRS Eq. (17)

MSRS/
MC

Eq. (17)/
MC

MC Eq. (18)
Eq. (18)/

MC

Longitudinal displacement at 
mid-span of bridge deck (cm)

6.689 5.893 7.196 0.88 1.08 1.596 1.798 1.13

Vertical displacement at
mid-span of bridge deck (cm)

5.000 4.614 4.331 0.92 0.87 0.793 0.797 1.01

Moment at mid-span of
 bridge deck (106×Nm)

9.730 9.462 9.321 0.97 0.96 1.575 1.581 1.00

Longitudinal displacement at 
the top of left tower (cm)

8.096 6.711 8.054 0.83 0.99 1.632 1.563 0.96

Longitudinal displacement at 
the top of right tower (cm)

7.731 6.574 7.925 0.85 1.03 1.608 1.535 0.95

Moment at the bottom of
 right tower (108×Nm)

10.390 9.469 9.761 0.91 0.94 1.305 1.255 0.96

Moment at the bottom of
 pier 3 (108×Nm)

3.632 3.447 3.421 0.95 0.94 0.496 0.455 0.92

Moment at the bottom of
 pier 4 (108×Nm)

4.894 4.602 4.527 0.94 0.93 0.617 0.604 0.98

Shear at the bottom of
 right tower (107×N)

57.310 52.240 53.850 0.91 0.94 7.200 6.927 0.96

Shear at the bottom of
 pier 3 (107×N)

16.960 16.100 15.980 0.95 0.94 2.320 2.128 0.92

Shear at the bottom of
 pier 4 (107×N)

22.860 21.500 21.150 0.94 0.93 2.885 2.822 0.98

μz
max

σz
max
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Table 3 shows the comparison between the means and standard deviations of peak responses

obtained using the proposed method, MSRS and MC simulation. From this table, we can reach the

similar conclusion as in the first example, that is, the proposed method can provide enough

accuracy. Furthermore, for analyzing the large-sized structure like this cable-stayed bridge, the

proposed method has shown more obvious computational efficiency. For example, for every

displacement response, moment response and shear response, MSRS averagely takes 460.3s, 872.5s,

726.7s (not including time consumed for modal analysis), respectively, but the proposed method just

takes less than 1s.

6. Conclusions

From the results in this study, the following main conclusions can be derived:

(1) A response spectrum method is developed for seismic response analysis of linear, multi-

degree-of-freedom systems subjected to multi-support excitations. Modal combination rules are

derived for the mean and standard deviation of the peak response and the mean frequency of

the response. With these response quantities, the reliability analysis of multi-support structures

based on response spectrum theory becomes possible.

(2) Simplified procedures for computation of spectral parameters  (N = 0, 2), 

(N = 1, 3, 5) and the cross-correlation coefficient  are proposed to avoid the tedious

numerical integration. After comparisons, it is found that the results based on the simplified

procedures closely agree with those from numerical integration. 

(3) In order to validate the proposed method, the Monte Carlo simulation technique is adopted.

For this purpose, this paper also presents an approach to simulation of ground motions, which

can takes into account both mean and variation properties of response spectra.

(4) Two example structures, one two-span continuous beam and one two-tower cable-stayed

bridge, are considered to demonstrate the proposed response spectrum method. As shown, the

results based on the proposed method are in close agreement with Monte Carlo simulation

results. And compared to the MSRS, the proposed method can reduce the computational time

dramatically. These indicate that the multi-support response spectrum developed in this paper

can provide enough accuracy and efficiency for the engineering applications. 
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