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Abstract. An improved shear deformable thin-walled curved beam theory to overcome the drawback of
currently available beam theories is newly proposed for the spatially coupled free vibration and elastic
analysis. For this, the displacement field considering the shear deformation effects is presented by
introducing displacement parameters defined at the centroid and shear center axes. Next the elastic strain
and kinetic energies considering the shear effects due to the shear forces and the restrained warping
torsion are rigorously derived. Then the equilibrium equations are consistently derived for curved beams
with non-symmetric thin-walled sections. It should be noticed that this formulation can be easily reduced
to the warping-free beam theory by simply putting the sectional properties associated with warping to zero
for curved beams with L- or T-shaped sections. Finally in order to illustrate the validity and the accuracy
of this study, finite element solutions using the isoparametric curved beam elements are presented and
compared with those in available references and ABAQUS’s shell elements.
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1. Introduction

Generally it is well known that the vibration and elastic behavior of thin-walled curved beam

structures are very complex because the axial, flexural and torsional deformations are coupled due

to the curvature effects as well as non-symmetry of cross section. Investigation into the behavior of

thin-walled straight and curved members with open and closed cross sections has been carried out

extensively since the early works of Vlasov (1961) and Timoshenko and Gere (1961). 

Up to the present, for free in-plane vibration of curved beams, considerable research

(Raveendranath et al. 2000, Wilson and Lee 1995, Wilson et al. 1994, Gupta and Howson 1994)
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have been done considering various parameters such as boundary conditions, shear deformation,

rotary inertia, variable curvatures and variable cross sections. Several authors (Chucheepsakul and

Saetiew 2002, Piovan et al. 2000, Cortínez and Piovan 1999, Howson and Jemah 1999) have

studied the decoupled free out-of-plane vibration behavior of curved beams. Also Choi and Hong

(2001) performed the static analysis of single- and multi-span curved box girder bridges using the

modified finite strip method.

It is well known that the centroid-shear center formulation for thin-walled straight beam with non-

symmetric cross sections is established assuming that the flexural and warping-torsional

deformations are decoupled. Hence the warping-free theory for beams with non-symmetric cross

section is easily obtained by simply putting the warping moment of inertia to zero.

On the other hand, for the vibration and elastic theories of curved beams based on the centroid-

shear center formulation, most of previous research has been restricted to doubly symmetric thin-

walled sections. Furthermore it has been reported by Gendy and Saleeb (1992) that the curved beam

theory based on the centroid-shear center formulation is valid only for a cross section having doubly

symmetry or one axis of symmetry which lies in the plane of beam curvature, otherwise, coupling

terms exist. For this reason, it appears that most of thin-walled curved beam theories with non-

symmetric cross sections have been developed based on displacement parameters which are all

defined at the centroid axis (Kim and Kim 2004, Kim et al. 2002, Gendy and Saleeb 1994, 1992).

To the authors’ knowledge, Tong and Xu’s study (2002) was the only recent attempt reported on the

curved beam theory with non-symmetric cross section based on the centroid-shear center

formulation in the literature. However they did not consider the shear deformation effect and only

restricted to the static analysis of curved beam. Also the thickness-curvature effect which made the

difference larger in curved beam with large subtended angle and small radius was not considered in

their formulation.

It should be noted that in case of curved beams with non-symmetric thin-walled cross sections

such as L- or T-shaped sections, it is impossible to present the curved beam theory neglecting the

restrained warping torsion from the centroid formulation because the sectional properties associated

with warping of cross section become non-zero with respect to the centroid axis. Accordingly,

several sectional properties associated with warping should be evaluated additionally. Therefore, it is

evident that the vibration and elastic theories of shear-deformable curved beams neglecting the

restrained warping torsion need to be developed in case of these curved beams.

The aim of this study is to propose the centroid-shear center formulation for the spatially coupled

free vibration and elastic analysis of shear deformable curved beam with non-symmetric cross

sections. In this formulation, for beams with L- or T-shaped sections, one can obtain the curved

beam theory easily neglecting the restrained warping torsion by simply putting the sectional

properties associated with warping defined at the shear center to zero. Also for the curved beam

with non-symmetric closed sections, this beam theory may be reduced naturally to that with

warping deformation neglected because the values of sectional properties associated with warping at

the shear center become extremely large. The important points presented are summarized as follows

1. The displacement field for shear-deformable non-symmetric thin-walled curved beams with

constant curvature is introduced, in which the axial displacement and two flexural rotations are

defined at the centroid and the torsional rotation including the normalized warping function and

two lateral displacements are defined at the shear center, respectively.

2. Force-deformation relationships due to the normal stress considering the thickness-curvature

effect and due to the simple shear and warping-torsional shear stresses are accurately derived.
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3. The elastic strain and kinetic energies based on the centroid-shear center formulation are newly

derived for the free vibration and elastic analysis of non-symmetric curved beams having shear-

deformable thin-walled cross sections.

4. In addition, finite element (FE) procedure using the isoparametric curved beam elements is

presented for the analysis of non-symmetric curved beams. Finally numerical solutions are

presented and compared with results by available references and ABAQUS’s shell elements.

2. Shear-deformable curved beam theory

2.1 Total potential energy

To derive a general theory for the free vibration and elastic analysis of shear-deformable thin-

walled curved beams consistently, two curvilinear coordinate systems are adopted. The first

coordinate system (x1, x2, x3) is shown in Fig. 1, in which the x1 axis coincides with the curved

centroid axis having the radius of curvature R but x2, x3 axes are not necessarily principal inertia

axes, while the second coordinate system  is constituted by the shear center axis and two

orthogonal axes running parallel with the direction of x2, x3 axes (see Fig. 2). (e2, e3) denotes the

x1

s
x2

s
x3

s, ,( )

Fig. 2 Two coordinate systems, displacement parameters and stress resultants

Fig. 1 A curvilinear coordinate system for thin-walled curved beam
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position vector of the shear center and γ is the angle between x2 and the  axis.

To introduce the displacement field for the non-symmetric thin-walled cross section, seven

displacement parameters and stress resultants are used as shown in Figs. 2(a) and 2(b), respectively.

Assuming that the distorsional deformation of cross section is neglected, the longitudinal

displacement U1 and the transverse displacements U2 and U3 at the arbitrary point can be written as

follows

(1a)

(1b)

(1c)

where  are the rigid body translation and two rotations with respect to x1, x2, x3 axes;

 are the rigid body rotation and two translations with respect to  axes; f, φ are

the displacement parameter measuring warping deformation and the normalized warping function

defined at the shear center, respectively. F1 is the axial force acting at the centroid; F2 and F3 are

the shear forces acting at the shear center; M1 is the total twisting moment with respect to the shear

center axis; M2 and M3 are the bending moments with respect to x2 and x3 axes, respectively. Mφ

and MR are the bimoment and the restrained torsional moment about the shear center axis,

respectively. And the detailed definitions of these stress resultants are

(2a-h)

Now the total potential energy of thin-walled curved beam for the free vibration analysis under

stationary harmonic conditions vibrating with the circular frequency ω be expressed as

(3)

where ΠE, ΠM and Πext are the elastic strain energy, the kinetic energy and the energy due to the

external force. The detailed expressions for each term of Π are

(4a)

(4b)

(4c)

where Ue, Fe are the nodal displacement and nodal force vectors, respectively.
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On the other hand, strain-displacement relations due to the first order displacements are expressed as

(5a)

(5b)

(5c)

For the thin-walled curved beam subjected to distributed loadings, substituting linear strains (5a-c)

into Eq. (4a) and integrating over the cross sectional area, Eq. (4a) is reduced to the following

equation.

(6)

And Eq. (4c) can be expressed as

(7)

where p1, p2, p3 are the distributed forces in the direction of x1, x2, x3 axes and m1, m2, m3, mφ

denote distributed moments.

Now invoking the stationary condition of the total potential energy, equilibrium equations are

obtained as

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)
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(8g)

Also equilibrium equations can be derived by using the equilibrium conditions of forces and

moments of a small segment of curved beam as shown in Fig. 3. Detailed expressions are presented

in Appendix.

2.2 Force-deformation relations

Force-deformation relations due to the normal and shear stresses are derived. First by substituting

Eq. (5a) into Eqs. (2a), (2e), (2f), (2g) and integrating over the cross section, the following relations

are obtained.

(9a-d)

where E is the Young’s modulus and

(10a-d)

In Eq. (10), the sectional properties with respect to the centroid-shear center are defined as

e3

2

R
----F2–

e2e3

R
---------F3

e3

R
----M1 MR– Mφ

′+ + + mφ–=

F1

M2

M3

Mφ⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

E

A
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Fig. 3 Forces and moments of small segment of curved beam
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(11a-l)

where A, I2, I3 and I23 are the cross sectional area, the second moments of inertia and the product

moment of inertia about x2 and x3 axes, respectively. Iφ  is the warping moment of inertia and Iφ2, Iφ3

are always equal to zero. I222, I223, I233, Iφ22, Iφ23, Iφφ2 are the third order inertia moments to take into

account the thickness-curvature effect consistently.

For the curved beams, we can easily obtain the force-deformation relations for the shear forces,

the restrained torsional and the St. Venant torsional moments from Eq. (6) as follows 

(12a-c)

(12d)

where G is the shear modulus and J is the torsional constant and

(13a)

(13b)

(13c) 

where  and  are the effective shear areas defined by

(14a-c)

And

(15a-f)

Consequently Eqs. (9a-d) and (12a-d) constitute the force-deformation relations of shear-deformable

thin-walled curved beam. 
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Finally substitution of force-deformation relations (9a-d) and (12a-d) into Eq. (6) leads to the

elastic strain energy for the shear deformable thin-walled curved beam with non-symmetric cross

section.

 (16)

And by substituting the displacement field in Eqs. (1a-c) into Eq. (4b), the kinetic energy ΠM

including the rotary inertia based on the centroid-shear center formulation can be obtained as

(17)

where ρ is the density and

(18a-e)
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Ĩo

2e3

R
--------I2–

2e2

R
--------I23–⎝ ⎠

⎛ ⎞ω1

2
2

I2

R
---- Uxω2 Uyω1–( )+ 2

I23

R
------ Uxω3 Uzω1–( )–+ +
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kinetic energies obtained from the centroid formulation should retain the additional sectional

properties (i.e., Iφ , Iφ2, Iφ3, Iφ22, Iφ23, Iφφ2, A2r, A3r in Eqs. (16) and (17) in study by Kim and Kim

(2004) due to the restrained warping which does not become zero at the centroid. Also this

drawback is revealed in the study by Gendy and Saleeb (1994, 1992).

3. Finite element formulation

In this study, the isoparametric curved beam element having arbitrary thin-walled cross sections is

used. It is based on the elastic strain and kinetic energy expressions derived in the previous Section

and the reduced integration scheme is adopted to avoid the shear locking phenomena. Resultantly,

the coordinate and all the displacement parameters of the curved beam element can be interpolated

with respect to the nodal coordinates and displacements. Substituting the shape functions and the

cross-sectional properties into Eqs. (16) and (17) and integrating along the element length, the

equilibrium equation of thin-walled curved beam element is obtained in matrix form as

(19)

where Ke and Me are the element elastic stiffness and mass matrices in local coordinate,

respectively.
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line (the line of centroid) formulations presented by Kim and Kim (2004) considering shear

deformation effect and by Kim et al. (2002) neglecting it and the results by 300 nine-noded shell

elements (S9R5) of ABAQUS which is the commercial finite element analysis program are

presented. From Table 1, it can be found that the natural frequencies by this study are in greatly

agreement with the centroid formulation solution considering shear deformation and are in good

agreement with those by ABAQUS’s shell elements. Also it is observed that maximum difference

due to shear deformation effect is 6.3% at the tenth mode for the subtended angle 10o. 

Fig. 4 Clamped curved beam with a non-symmetric cross section

Table 1 Natural frequency of clamped curved beam with non-symmetric section, (rad./sec)

θo Method
Vibration mode

1 2 3 4 5 6 7 8 9 10

10

This study 0.9689 2.092 2.490 4.109 4.285 4.543 6.917 7.566 9.753 10.29

Kim and Kim (2004) 0.9689 2.092 2.490 4.109 4.285 4.543 6.917 7.566 9.753 10.29

Kim et al. (2002) 0.9741 2.101 2.515 4.211 4.333 4.615 7.045 7.716 9.989 10.94

ABAQUS 0.9838 2.087 2.531 4.117 4.309 4.623 7.087 7.654 10.02 10.25

90

This study 0.8446 1.982 3.646 5.497 5.840 6.409 8.231 8.727 11.34 11.72

Kim and Kim (2004) 0.8446 1.982 3.646 5.497 5.840 6.409 8.231 8.727 11.34 11.72

Kim et al. (2002) 0.8499 1.998 3.684 5.642 5.935 6.469 8.429 8.981 11.76 12.20

ABAQUS 0.8379 1.977 3.659 5.553 5.904 6.148 8.357 8.869 10.73 11.86
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4.2 Curved beam with L-shaped cross section

We concern the vibration and elastic analysis of the L-shaped curved beam clamped at both ends

as shown in Fig. 5. The purpose of this example is to show the usefulness of the proposed curved

beam theory with non-symmetric cross section neglecting warping deformation and to verify how it

predicts well the behavior of structure by comparing the present solutions with those by ABAQUS’s

shell elements and the previous research.

First, the natural frequencies analyzed using beam elements with 6 DOF per node by this study

are compared with the solutions using 300 nine-noded shell elements of ABAQUS in Table 2,

where excellent agreement is observed with less than 2.5% as maximum of difference. Next, the

lateral displacement Uy at the corner of the L-shaped cross section along the curved beam subjected

Fig. 5 Clamped curved girder with a non-symmetric L-shaped section

Table 2 Natural frequency of clamped curved beam with L-shaped section, (rad./sec)

Mode This study ABAQUS

1 5.564 5.593

2 6.013 6.164

3 10.74 11.00

4 17.17 17.22

5 18.98 19.46

6 23.57 23.92

7 28.41 28.33

8 30.11 30.59

9 34.62 34.71

10 36.02 36.13
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to out-of-plane lateral force 4.45 kN (1000lb) acting at the mid-span is evaluated and plotted in Fig. 6.

By considering the symmetry, 10 three-noded isoprametric curved beam elements with 6 DOF per

node are used. For comparison, the results using 8 HMC2 curved beam elements with 7 DOF per

node by Gendy and Saleeb (1992) based on a centroid formulation and the solutions using 24

quadrilateral shell elements developed by Saleeb et al. (1990) are presented. Investigation of Fig. 6

reveals that the solutions by this study are in good agreement with those obtained from HMC2

elements and shell elements. It should be noted that the present curved beam with non-symmetric

cross section which the warping function is zero at the shear center eliminates the total DOF of

structures for the dynamic and elastic analysis of curved structures.

5. Conclusions

An improved formulation for the spatially coupled free vibration and elastic analysis of shear-

deformable thin-walled curved beam is newly proposed. This study is a first attempt to deal with

the vibration and elastic analysis of curved beam with non-symmetric cross sections based on the

centroid-shear center formulation. Also the isoparametric curved beam element is developed for two

cases in which the restrained warping torsion is considered or not, respectively. Through the

numerical examples, FE solutions by this study are compared with those from the centroid

formulation and the results by available references and ABAQUS’s shell elements. Consequently,

the following conclusions may be drawn.

1. The vibration and elastic theories of shear-deformable warping-free curved beams may be easily

derived from the thin-walled curved beam theory based on the centroid-shear center formulation

Fig. 6 Lateral displacement at the shear center of L-shaped girder



Free vibration and elastic analysis of shear-deformable non-symmetric thin-walled curved beams 31

by simply putting the sectional properties associated with warping to zero. 

2. For vibration and elastic analysis of curved beams with non-symmetric cross sections, the

solutions by this study in greatly agreement with those obtained from the centroid formulation.

3. For curved beam with L-shaped cross section, the natural frequencies and displacements

obtained from this curved beam with 6 DOF per node are in excellent agreement with those

from ABAQUS’s shell elements and curved beam elements with 7 DOF per node including

warping, respectively.

4. Resultantly it is believed that this study based on the centroid-shear center formulation

overcomes the drawbacks of the centroid formulation which has some difficulties in formulating

a non-symmetric curved beam neglecting the restrained warping torsion.
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Appendix. Equilibrium equations of curved beam

Equilibrium equations in Eqs. (8a-g) can be derived by using the equilibrium conditions of forces and
moments of a small segment of curved beam as shown in Fig. 3. First, in the x1 direction, the components of
the axial forces are equal to

(A-1)

where  is a small value and resultantly Eq. (A-1) leads to

(A-2)

Similarly, the x2 and x3 direction components of the shear forces acting on the element are

(A-3)

(A-4)

And respectively, Eq. (A-3) and Eq. (A-4) can be rewritten as

(A-5)

(A-6)

Additionally the moment equilibrium about the , x2 and x3 axes, respectively are

(A-7)

(A-8)

(A-9)

In Eq. (A-9),  denotes the twisting moment with respect to the centroid axis and is expressed as

(A-10)

Resultantly, Eqs. (A-7), (A-8) and (A-9) are represented, respectively as

(A-11)

(A-12)

(A-13)

F1– F1 dF1+( )cos dθ( ) p1 xd 1 F3 Fd 3+( )sin dθ( )+ + + 0=

θd dx1/R=

F1
′ F3

R
-----+ p1–=

F2– F2 Fd 2+( ) p2 xd 1+ + 0=
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F2
′ p2–=
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R
-----– F3

′+ p3–=

x1

s
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c
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-------+ + m1–=
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----F2

e2

R
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Finally, to obtain the restrained torsional moment equilibrium about the  axis, we consider the stress
resultant MR in Eq. (2h).

(A-14)

where

(A-15)

Eq. (A-15) can be expressed as 

(A-16)

In the linear geometric case, we can consider following relation

(A-17)

where αn2 and αn3 denote the direction cosine for the initial direction of the exterior normal. The exterior
normal n for the cylindrical surface is perpendicular to the x1 direction. And the stress boundary condition is

(A-18)

Based on Eqs. (A-17) and (A-18), Eq. (A-16) leads to

(A-19)

Also using the cylindrical coordinate system, the equilibrium equation is presented by Saada (1974).

(A-20)

We can rewrite Eq. (A-20) in the following form

(A-21)

Resultantly, Eq. (A-19) is written

(A-22)

If we consider the uniformly distributed bimoment, we can obtain the following equilibrium equation.

(A-23)
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