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An improved interval analysis method for 
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Abstract. Based on the improved first order Taylor interval expansion, a new interval analysis method
for the static or dynamic response of the structures with interval parameters is presented. In the improved
first order Taylor interval expansion, the first order derivative terms of the function are also considered to
be intervals. Combining the improved first order Taylor series expansion and the interval extension of
function, the new interval analysis method is derived. The present method is implemented for a
continuous beam and a frame structure. The numerical results show that the method is more accurate than
the one based on the conventional first order Taylor expansion.
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1. Introduction

The numerical analysis of structural behavior is usually performed for specified structural

parameters and loading conditions. However, in most practical situations, the structural parameters

and loads are uncertain, for example, there may be measurement inaccuracy or errors in the

manufacturing process. Therefore, the concept of uncertainty plays an important role in the

investigation of various engineering problems, and it is very necessary to predict the errors resulted

from the above mentioned uncertainties in structural analysis and design. The most common

approach to problems of uncertainty is to model the structural parameters as random variables or

fields. Under the circumstances, all information about the structural parameters is provided by the

joint probability density function (or distribution function) of the structural parameters.

Unfortunately, probabilistic model is not the only one that can be used to described the uncertainty,

and uncertainty is not tantamount to randomness. Indeed, probabilistic methods are not able to

deliver reliable results at the required precision without sufficient experimental data to validate the
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assumptions made regarding the joint probability densities of the random variables or functions

involved. In addition to the probabilistic models, convex models have been used for modeling

uncertainty phenomena in a wide range of engineering applications (Ben-Haim and Elishakoff 1990,

Qiu 2003).

Since the mid-1960s, a new method called the interval analysis has appeared. Moore (1979) and

his co-workers, Alefeld and Herzberger (1983) have done the pioneering work. Mathematically,

linear interval equations, nonlinear interval equations and interval eigenvalue problems have been

resolved partly. But because of the complexity of the algorithms, it is difficult to apply these results

to deal with practical engineering problems. Recently, the interval analysis method has been used to

deal with the static displacement, eigenvalue, and dynamic response analysis of the uncertain

structures with interval parameters (Qiu and Wang 2003, Chen and Lian 2002, Chen and Yang

2000). However, these results are all based on the conventional first order Taylor expansion. In fact,

the exact interval values of the structural behavior don’t lie in the intervals obtained by Chen, Lian

and Yang, especially when the interval relative uncertainties of the structural interval parameters are

fairly large. Hence, it is necessary to develop a more accurate method to solve the uncertain

problems of structures with interval parameters. This paper presents an improved interval analysis

method based on the improved first order Taylor expansion.

The paper will start with a brief review of the interval analysis technique based on the first order

Taylor expansion presented by Chen and Yang (2000), and then discuss the improved first order

Taylor interval expansion. Using the improved first order Taylor series expansion and interval

extension of function, the new interval analysis method can be obtained. In the improved first order

Taylor expansion, the first order derivative terms of the function are also considered to be intervals

so that the exact interval values of the function with interval parameters are included in the

approximate intervals obtained by the new interval analysis method. The present method is

implemented for a continuous beam and a frame structure. The numerical results are compared with

those obtained by the method presented by Chen and Yang.

2. The Taylor expansion of the interval functions

2.1 The first order Taylor expansion of the interval functions

It’s well known that typical structural analysis and design problems resort to Finite Element

analysis, in which the structural behaviors might not be analytic. So it is difficult to get the exact

interval solutions of the structural behaviors. We can resort to the first order Taylor expansion to

obtain the rational approximation of a complex function and then apply the natural interval

extension to the rational approximation to get its interval solutions. Thus the rational approximation

of a complex function is a linear function of the variables, and each variable appears only once, so

the interval solution of the rational approximation is unique (Hansen 1992).

In general, an interval-valued function can be described as

(1)

where  is the interval parameter vector of the function.

f X
I( ) f X1

I … Xn

I, ,( )=

X
I

X1

I … Xn

I, ,( )
T

=



An improved interval analysis method for uncertain structures 715

Using the first order Taylor expansion to expand  about the mid-point of the interval vector

X
I, one can obtain

(2)

where  is the gradient of f, , ,

.

Take a function as a simple example, that is, . The exact interval

solutions for different interval variables are easy to calculated. Now we use the first order Taylor

series expansion to expand the function about the mid-points of the interval variables to get the

approximation of the interval value. In Table 1, the comparison is given for the interval value of the

exact solutions and the approximate solutions for different interval variables, where δ is the relative

uncertainty of an interval variable which is defined early in this paper. Suppose the mid-point of the

exact solution is denoted as f C. Similarly, denote the mid-point of the approximate solution as gC.

The error of the mid-point is the value of .
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Table 1 Comparison for the interval value of g(x, a) based on the first order Taylor expansion

Interval variables δ Exact solution Approximate solution Error of mid-point

x I = [2.4, 2.6]
a I = [0.4, 0.6]

0.04
0.2

f I: [0.65, 1.029]
f C: 0.8393

gI: [0.64, 1.02]
gC: 0.8333

0.71%

x I = [2.3, 2.7]
a I = [0.3, 0.7]

0.08
0.4

f I: [0.476, 1.238]
f C: 0.8575

gI: [0.46, 1.21]
gC: 0.8333

2.82%

x I = [2.2, 2.8]
a I = [0.2, 0.8]

0.12
0.6

f I: [0.311, 1.467]
f C: 0.8889

gI: [0.27, 1.4]
gC: 0.8333

6.25%
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It should be noted that in the first order Taylor expansion Eq. (2), the gradient of f is a constant

 which is the gradient at mid-point of the interval vector XI. From Table 1, it can be

seen that the interval values of the function obtained by this method do not actually include the

exact interval values of the function. To improve the accuracy of the interval value of the function,

the gradient of f can be also considered to be interval.

2.2 The improved first order Taylor expansion of the interval functions

Let f be a function of a single variable. Expanding f (x) about x0 and neglecting the higher-order

terms, one can obtain 

(3)

ξ lies between x0 and x. Hence, if x0 and x are in an interval X I, ξ must be in X I also, therefore

, 

(4)

and

(5)

Since this relation holds for all , therefore

(6)

Now suppose f is a function of n variables. Let X0 and X be vectors of n components and α be a

scalar. Then,  can be regarded as a function of the single variable α, using

Eq. (3) and expanding  about α = 0 and setting α = 1, one can have 

(7)

where , g is the gradient of f. If  is an interval containing  and , then

, therefore

(8)

Since this relation holds for all , one can have

(9)

where .

Note that all the arguments of g are intervals. In the following, a method due to Hansen (1992)

which shows that some of the arguments can be replaced by real quantities will be described. This

means that a sharper bound on f (XI) can be obtained, in general.
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For simplicity, let n = 2. First consider f (x1, x2) as a function of x2 only. Expanding f (x1, x2) about

, one can obtain 

(10)

then expanding  about  as a function of x1, one has

(11)

Combining Eq. (10) and Eq. (11), one can have

(12)

If  and , then .

Replacing x in the arguments of the components of g by X I and  by the bounding

interval , one can obtain

(13)

Since this relation holds for all , one can have 

(14)

For n variables, the corresponding expression is

(15)

where .

Note that all the arguments of all components of g are intervals in Eq. (9), while in Eq. (15),

some of them are real. Thus, the bound obtained by Eq. (15) is sharper than that obtained by Eq. (9).

From Eq. (7), a complex function can be approximated by a rational function 

(16)

that is, 
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Using the interval extension of function, Eq. (18) becomes

(19)

From Eq. (15) and Eq. (19), one can have

(20)

For simplicity, let n = 2, one can obtain 

(21)

where .
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Take the same function considered early in Sec.2.1 as a simple example, that is g(x, a) = ax/(x − 1),

. In Table 2, the comparison is given for the interval value of the exact solution and the

approximate solution based on the improved Taylor expansion for different interval variables.

From Table 2, it can be seen that the interval values of the function obtained by the improved

method include the exact interval values of the function, and the error of the mid-point goes up as

the relative uncertainties of the interval variables increase. In fact, the relative uncertainties of the

interval variables are small in practical engineering problems, so the approximate approach based on

the improved first order Taylor expansion is more accurate that that obtained by the original one.

3. Numerical examples 

 

In order to explain the concepts and the method presented, two examples are given as follows.

3.1 Example 1 

Fig. 1 is a continuous beam which is modeled with 4 nodes and 3 elements. Suppose the height

and width of the cross-section of all beam elements are HC = 0.3 m and BC = 0.2 m, respectively.

Young’s modulus of the first element is = 5 × 106 kN/m2 while in elements 2 and 3, the Young’s

moduli are = = 107 kN/m2. The results for the interval static displacements and their

uncertainties are listed in Tables 3-6 where i is the node number; j is the displacement number; Uij

x 1≠  a 0≠,

E1

C

E2

C
E3

C

Table 2 Comparison for the interval value of g(x, a) based on the improved first order Taylor expansion

Interval variables δ Exact solution Approximate solution Error of mid-point

xI = [2.4, 2.6]
aI = [0.4, 0.6]

0.04
0.2

f I: [0.65, 1.029]
f C: 0.8393

gI: [0.637, 1.0296]
gC: 0.8333

0.71%

xI = [2.3, 2.7]
aI = [0.3, 0.7]

0.08
0.4

f I: [0.476, 1.238]
f C: 0.8575

gI: [0.426, 1.2407]
gC: 0.8333

2.82%

xI = [2.2, 2.8]
aI = [0.2, 0.8]

0.12
0.6

f I: [0.311, 1.467]
f C: 0.8889

gI: [0.2, 1.4667]
gC: 0.8333

6.25%

Fig. 1 A continuous beam system
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is the jth displacement of the ith node; and ∆Uij is the uncertainty of the jth displacement of the ith

node. For comparison, the results obtained by the method presented by Chen and Yang are also

listed in the Tables.

From Tables 3-6, it can be seen that the displacement uncertainties obtained by the improved

method are a little larger than those obtained by the one presented by Chen and Yang, but the

approximate displacement intervals obtained by the improved method include the exact

displacement intervals. In many cases, the structural parameter errors or uncertainties are small, but

their integration will yield a larger error, which can be seen from Table 6. Also, one can see that the

nonlinear parameters have more effect on the results than the linear ones. So, we suggest that the

nonlinear parameter errors should be minimized during the design or manufacture process.

Table 3 Comparison of displacements and uncertainties obtained by the present method and the method
presented by Chen (∆Ei = (2/1000)Ei

C )

i j Exact values Uij
C  (Chen’s method) ∆Uij (Chen’s method) Uij

C  (present) ∆Uij (present)

2 2 −0.36578E-01 −0.35743E-01 0.21976E-03 -0.35743E-01 0.41573E-03

2 3 0.35634E-02 0.35273E-02 0.40567E-04 0.35273E-02 0.62577E-04

3 3 0.71434E-02 0.72663E-02 0.94700E-04 0.72663E-02 1.14302E-04

Table 4 Comparison of displacements and uncertainties obtained by the present method and the method
presented by Chen (∆Bi = (2/1000)Bi

C )

i j Exact values Uij
C(Chen’s method) ∆Uij (Chen’s method) Uij

C (present) ∆Uij (present)

2 2 −0.36578E-01 −0.35743E-01 0.21976E-03 -0.35743E-01 0.40867E-03

2 3 0.35634E-02 0.35273E-02 0.40567E-04 0.35273E-02 0.59688E-04

3 3 0.71434E-02 0.72663E-02 0.94700E-04 0.72663E-02 1.08776E-04

Table 5 Comparison of displacements and uncertainties obtained by the present method and the method
presented by Chen (∆Hi = (2/1000)Hi

C )

i j Exact values Uij
C  (Chen’s method) ∆Uij (Chen’s method) Uij

C (present) ∆Uij (present)

2 2 −0.36578E-01 −0.35743E-01 0.66061E-03 −0.35743E-01 0.87573E-03

2 3 0.35634E-02 0.35273E-02 0.12194E-03 0.35273E-02 0.32678E-03

3 3 0.71434E-02 0.72663E-02 0.28467E-03 0.72663E-02 0.49302E-03

Table 6 Comparison of displacements and uncertainties obtained by the present method and the method
presented by Chen (∆Ei = (2/1000)Ei

C , ∆Bi = (2/1000)Bi
C , ∆Hi = (2/1000)Hi

C )

i j Exact values Uij
C (Chen’s method) ∆Uij (Chen’s method) Uij

C  (present) ∆Uij (present)

2 2 −0.36578E-01 −0.35743E-01 0.11032E-02 −0.35743E-01 0.21374E-02

2 3 0.35634E-02 0.35273E-02 0.20365E-03 0.35273E-02 0.32574E-03

3 3 0.71434E-02 0.72663E-02 0.47540E-03 0.72663E-02 0.56332E-03
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3.2 Example 2

Fig. 2 shows a frame structure with 10 nodes and 12 elements. Suppose the sine excitation with

frequency (ω = 100 s−1) is applied to node 10 along the x-positive direction and the amplitude of the

load is 3000 N. Suppose that Young’s modulus of all beam elements is E = 2.1 × 1011 N/m2, mass

density of all beam elements is ρ = 7800 kg/m3. The width and height of all beam elements are

BC = 5.8 × 10−2 m and HC = 7.83 × 10−2 m, respectively; the initial conditions are x = 0 and x = 0.

When the parameters of B and H are interval parameters, the interval response based on the

improved analysis method at ∆B = 5%BC and ∆H = 5%HC is given in Fig. 3, which is similar for

other interval parameters. For comparison, some results obtained by the present method and the

method presented by Chen and Yang are listed in Table 7. 

Fig. 2 A frame structure

Fig. 3 The interval response for example 2
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4. Conclusions 

 

In this paper, a new interval analysis method based on the improved first order Taylor interval

expansion is proposed for the response of structures with interval parameters. The improved first

order Taylor interval expansion is developed in which the first order derivative terms of the function

are considered to be intervals. It can be seen that, using the improved method, one can obtain more

accurate interval response than that obtained by the method based on the conventional first order

Taylor expansion. The technique in this paper is based on Taylor series expansion, therefore the

Table 7 Comparison of dynamic responses and uncertainties of node 10 at x direction obtained by the present
method and the method presented by Chen (∆Bi = (5/100)Bi

C , ∆Hi = (5/100)Hi
C)

t (s) Exact values xC(t) (Chen’s method )∆xC(t) (Chen’s method) xC(t) (present ) ∆xC(t) (present)

0.413655
0.414764
0.415872
0.416981
0.418089
0.419197
0.420306
0.421414
0.422523
0.423631
0.424739
0.425848
0.426956
0.428065
0.429173
0.430281
0.431390
0.432498
0.433607
0.434715
0.435823
0.436932
0.438040
0.439149
0.440257
0.441365
0.442474
0.443582
0.444691
0.445799
0.446907
0.448016
0.449124
0.450233
0.451341
0.452523

0.000575
0.000561
0.000536
0.000537
0.000509
0.000487
0.000474
0.000435
0.000411
0.000376
0.000335
0.000287
0.000250
0.000195
0.000156
9.65E-05
4.68E-05
−2.9E-06
−5.3E-05
−0.00011
−0.00016
−0.00022
−0.00023
−0.00025
−0.00030
−0.00035
−0.00042
−0.00046
−0.00043
−0.00045
−0.00050
−0.00051
−0.00052
−0.00053
−0.00053
−0.00054

0.000565
0.000559
0.000549
0.000535
0.000516
0.000493
0.000466
0.000436
0.000402
0.000365
0.000325
0.000283
0.000239
0.000192
0.000145
9.62E-05
4.69E-05
−2.8E-06
−5.2E-05
−0.00010
−0.00015
−0.00020
−0.00024
−0.00029
−0.00033
−0.00037
−0.00040
−0.00044
−0.00047
−0.00049
−0.00052
−0.00053
−0.00055
−0.00056
−0.00056
−0.00057

 0.000259
 0.000266
 0.000269
 0.000269
0.000265
0.000258
0.000230
0.000212
0.000189
0.000165
0.000138
0.000109
0.000082
0.000052
2.68E-05
9.80E-06
2.75E-05
5.04E-05
0.00007
0.00009
0.00011
0.00012
0.00014
0.00015
0.00016
0.00016
0.00018
0.00019
0.00019
0.00021
0.00021
0.00022
0.00022
0.00023
0.00023
0.00025

0.000565
0.000559
0.000549
0.000535
0.000516
0.000493
0.000466
0.000436
0.000402
0.000365
0.000325
0.000283
0.000239
0.000192
0.000145
9.62E-05
4.69E-05
−2.8E-06
−5.2E-05
−0.00010
−0.00015
−0.00020
−0.00024
−0.00029
−0.00033
−0.00037
−0.00040
−0.00044
−0.00047
−0.00049
−0.00052
−0.00053
−0.00055
−0.00056
−0.00056
−0.00057

0.000382
0.000401
0.000402
0.000402
0.000394
0.000385
0.000376
0.000364
0.000342
0.000284
0.000265
0.000241
0.000235
0.000187
0.000103
4.12E-05
1.50E-05
4.15E-05
8.02E-05
0.000120
0.000150
0.000180
0.000190
0.000210
0.000260
0.000270
0.000270
0.000310
0.000310
0.000320
0.000350
0.000350
0.000360
0.000380
0.000380
0.000410
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conditions under which the technique may be applied can be explained as: 1) The structural

response can be approximated by the Taylor series expansion; 2) The ranges of the structural

parameters can be obtained and the interval uncertainties are small compared with the mean values

of the interval parameters. The most typical numerical examples are given to illustrate the validity

of the proposed technique, and the method can also be applied to more complex problems subject to

the conditions given above. If the interval relative uncertainties of the interval parameters are fairly

large, in order to obtain higher computational accuracy, the second order Taylor expansion should

be considered.

Acknowledgements

 

This work is supported by Jiangsu Planned Projects for Postdoctoral Research Funds and

Innovation Funds of Scientific Research of Nanjing University of Aeronautics and Astronautics.

References

Alefeld, G. and Herzberger, J. (1983), Introductions to Interval Computations, Academic Press, New York. 
Ben-Haim, Y. and Elishakoff, I. (1990), Convex Models of Uncertainty in Applied Mechanics, Elsevier Science

Publishers, Amsterdam.
Chen, S.H., Lian H.D. and Yang, X.W. (2002), “Interval displacement analysis for structures with interval

parameters”, Int. J. Numer. Meth. Eng., 53(2), 393-407.
Chen, S.H. and Yang, X.W. (2000), “Interval finite element method for beam structures”, Finite Element in

Analysis and Design, 34(1), 75-88.
Chen, S.H. and Lian H.D. (2002), “Dynamic response analysis for structures with interval parameters”, Struct.

Eng. Mech., 13(3), 299-312.
Hansen, E. (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New York.
Moore, R.E. (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia.
Qiu, Z.P. and Wang, X.J. (2003), “Comparison of dynamic response of structures with uncertain-but-bounded

parameters using non-probabilistic interval analysis method and probabilistic approach”, Int. J. Solids Struct.,
40, 5423-5439.

Qiu, Z.P. (2003), “Comparison of static response of structures using convex models and interval analysis
method”, Int. J. Numer. Meth. Eng., 56(12), 1735-1753. 

Appendix. Basic interval mathematics

In interval mathematics, the errors or uncertainties are always denoted by intervals. So it is necessary to
introduce some results in interval analysis (Moore 1979, Hansen 1992).

Let  be a structural parameter vector with bound errors or uncertainties, where

then

α α1 α2 … αm, , ,( )
T

=

α i α i

I
αi

C
α i α i

C
,∆– α i∆+[ ]=∈

α α
I

α
C

α α
C

,∆– α∆+[ ]=∈
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where

and

In interval mathematics, a subset of real numbers R of the form [a1, a2] =  is
called a closed real interval denoted by , where  and  are the lower and upper bounds,
respectively. The set of all the closed real intervals is denoted by I(R).

The mid-point and uncertainties of an interval X I are defined as 

(A.1)

and 

(A.2)

Respectively.
A symmetric interval means an interval X I in which .
Let ,  be any intervals, the relative uncertainty of X I is defined as

, we say  if and only if  and , X I is called

point interval or degenerate interval if .

An n-dimensional interval vector is represented as

(A.3)

the set of all n-dimensional interval vectors is denoted by I(Rn).
Similarly, the mid-vector and uncertainty of an interval vector can be defined as

(A.4)

and 

(A.5)

where  and  are given by Eq. (A.1) and Eq. (A.2), respectively.
A matrix whose elements are intervals is called an interval matrix and denoted by , where 

is a matrix composed of the lower bounds of the intervals and  is a matrix composed of the upper bounds
of the intervals. The set of all interval matrices is denoted by I(Rm×n). The mid-matrix and uncertainty of an
interval matrix AI are defined as

 (A.6)

and 

(A.7)

where  and .
An arbitrary interval  can be written as the following form

α
C

α1

C
α2

C
… αm

C
, , ,( )

T
=

α∆ α1∆ α2∆ … αm∆, , ,( )
T

=

t a1 t a2≤ ≤ a1 a2 R∈, ,{ }
X

I
X X,[ ]= X X

X
C

m X
I

( ) X X+( )/2= =

X∆ rad X
I

( ) X X–( )/2= =

X X–=

X
I

X X,[ ] I R( )∈= Y
I

Y Y,[ ] I R( )∈=

δ X
I

( ) X∆ / X
C

X X–( )/ X X+== X
I

Y
I

= X Y= X Y=

X X=

X
I

X1

I
X2

I
… Xn

I
, , ,( )

T
=

X
C

X1

C
X2

C
… Xn

C
, , ,( )

T
=

X∆ X1∆ X2∆ … Xn∆, , ,( )
T

=

Xi

C
Xi∆

A
I

A A,[ ]= A

A

A
C A A+

2
--------------- or aij

C
aij aij+

2
-----------------= =

A∆
A A–

2
-------------- or aij

C
∆

aij aij–

2
-----------------= =

A
C

aij

C
( )= A∆ aij∆( )=

X
I

I R( )∈
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(A.8)

where  and .
Similar expressions exist for the interval vector and interval matrix. For , one can have

(A.9)

where .
These basic quantities will play an important role in the following discussion.
Let  and  be the interval numbers, respectively, then 

are defined by the following formulas

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

Let  be any real number and  be any real interval, then

(A.16)

Let  be any real vector and  be any real
interval matrix, then

(A.17)

(A.18)

where .
Let f be a real-valued function of n real variables . An interval extension of f means that an

interval-valued function F of n interval variables , for all , possesses the
following property

(A.19)

Given a rational function of real variables, one can replace the real variables by the corresponding interval
variables and replace the real arithmetic operations by the corresponding interval arithmetic operations to
obtain a rational interval function called a natural interval extension of the real rational function.

An interval function F is said to be inclusion monotonic if  implies 

(A.20)

It is obvious that interval arithmetic is inclusion monotonic. That is, if op denotes +, −, ×, /, then 
 implies 

X
I

X
C

X
I

∆+ X
C

Xe∆∆+ X
C

X X
C

,∆– X∆+[ ]= = =

X
I

∆ X∆– X∆,[ ]= e∆ 1– 1,[ ]=

A
I

I R
m n×

( )∈

A
I

A
C

A
I

∆+ A
C

Ae∆∆+ A
C

A A
C

,∆– A∆+[ ]= = =

A
I

∆ A∆– A∆,[ ]=

X
I

x x,[ ]= Y
I

y y,[ ]= X
I

Y
I

+ X
I

Y
I

– X
I

Y
I

× X
I
/Y

I
, , ,

X
I

Y
I

+ x x,[ ] y y,[ ]+ x y+ x y+,[ ]= =

X
I

Y
I

– x x,[ ] y y,[ ]– x y– x y–,[ ]= =

X
I

Y
I

× x x,[ ] y y,[ ]× min x y x y x y x y, , ,( ) max x y x y x y xy, , ,( ),[ ]= =

X
I

Y
I

-----
x x,[ ]

y y,[ ]
-------------- x x,[ ]

1

y
---

1

y
---,× , 0 Y

I
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X
I

Y
I

∩ max x y,( ) min x y,( ),[ ]=

X
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Y
I

∪ min x y,( ) max x y,( ),[ ]=

α R∈ X
I

x x,[ ] X
C

Xe∆∆+ I R( )∈= =

αX
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X
I
α X

C
α X α e∆∆+ αX

C
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T

= R
n
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m n×
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C
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I
X2

I
… Xn

I
, , , xi Xi

I
i 1 2 … n, , ,=( )∈

F x1 x1,[ ] x2 x2,[ ] … xn xn,[ ], , ,( ) f x1 x2 … xn, , ,( )=

Xi

I
Yi

I
i 1 2 … n, , ,=( )⊂

F X1

I
X2

I
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I
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I
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I
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(A.21)

The interval extensions of a given function f are not unique. For example, two expressions for function g
are given by 

(A.22)

(A.23)

 
Using AI = [0,1] and X I = [2,3] replace a and x, two possible evaluations can be obtained

Both interval results contain the exact result of f for  and , which is [0, 2]. The result
for g(2) is precisely the range of g over the given sets, because X I and A I occur only once in the expression in
g(2) (Hansen 1992). It shows one important rule in interval calculation, that is, the least times the interval
parameters appear, the sharper the interval is, which is important in interval calculations.

Irrational functions are treated as follows. Let f be a real irrational function of a real vector
. Assume that a rational approximation r(X) is known such that  for

all x such that  for some constants ai and bi. Then 
 for any intervals . Thus the range of f over the region with

 can be bounded by evaluating  using interval arithmetic and adding the
error bound .

This “interval evaluation” of the irrational function f is inclusion monotonic if the interval evaluation of r is
inclusion monotonic. The result is an interval extension of f.

Then one can obtain the general conclusion. Let  be an inclusion monotonic interval exten-
sion of a real function . Then  contains the range of values of  for all

.
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I
( ) Y1

I
 op Y2

I
( )⊂

g
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