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Study on structural damping of aluminium using 
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Abstract. In this work, the mechanism of damping and its theoretical evaluation for layered aluminium
cantilever structures jointed with a number of equispaced connecting bolts under an equal tightening
torque have been considered. Extensive experiments have been conducted on a number of specimens for
comparison with numerical results. Intensity of interface pressure, its distribution pattern, dynamic slip
ratio and kinematic coefficient of friction at the interfaces, relative spacing of the connecting bolts,
frequency and amplitude of excitation are found to play a major role on the damping capacity of such
structures. It is established that the damping capacity of structures jointed with connecting bolts can be
improved largely with an increase in number of layers maintaining uniform intensity of pressure
distribution at the interfaces. Thus the above principle can be utilized in practice for construction of
aircraft and aerospace structures effectively in order to improve their damping capacity which is one of
the prime considerations for their design. 
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1. Introduction

The study of damping and its improvement in structural members has become increasingly

significant in order to control undesirable effects of vibration with simultaneously enhancing the

damping capacity. This study has been taken up extensively in four major areas such as; material

science, structural mechanics, vibration control and inspection methods. The damping in mechanical

vibrating system has been classified into two classes depending on their energy dissipation sources

as (i) material damping and (ii) system damping. Coulomb (1784) postulated that material damping

arises due to interfacial friction between the grain boundaries of the material under dynamic

condition. Robertson and Yorgiadis (1946) have shown that damping arises due to internal friction

of engineering materials. Demer (1956) and Lazan (1968) have also established that the damping

properties of materials are due to their microstructures. The system damping arises from slip and

other boundary shear effects at mating surfaces, interfaces or joints between distinguishable parts.

Extensive studies have been made by Belgaumkar and Murty (1968), Grootenhuis (1970), and

Murty (1971) on support damping. Murty (1971) has established that the dissipated energy at the

support is very small compared to material damping.
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As the available damping inherent in the structural members (material damping) is inadequate,

various techniques have been adopted in practice to improve the damping capacity of structures.

These techniques are; (i) use of constrained/unconstrained viscoelastic layers, (ii) fabrication of

multi-layered sandwich construction, (iii) insertion of special high elastic inserts in the parent

structure, (iv) application of spaced damping techniques, and (v) fabricating layered and jointed

structures with welded/riveted/bolted joints. One of the most important techniques of improvement

of damping capacity of structures is by use of constrained and unconstrained layers. Initial work on

flexural vibration analysis of such systems was carried out in the early part of 1950. Ross et al.

(1959), Mead (1960), Pujara et al. (1968), Itterbeck et al. (1953), Nakra (1998), Chantalakhana et al.

(2000), Hu et al. (2000), Van Vuure et al. (2001), and Trindade et al. (2002) carried out more work

on constrained layer damping. Grootenhuis (1970) has reported that the unconstrained layer

treatment can compete with the sandwich forms of construction only when the damping material is

very stiff and can be applied in a thickness several times greater than the base structure. Reddy et al.

(1980) and Parthasarathy et al. (1985) have studied the damping effectiveness of unconstrained

partially applied damping treatment applied to rectangular platens. Cremer et al. (1972) and Nashif

et al. (1985) have established that the damping of structures improve by applying bonding surface

layer (free layer damping) to the structure of interest. Appreciable structural damping has been

achieved by laminated constructions of alternate layers of an elastic material such as metal and a

high damping viscoelastic such as plastic. These low weight structures have good structural, fatigue

and acoustic properties and this has resulted in the rapid development of sandwich structures for use

in air craft and other industries. A lot of work has been reported by Plantema (1966), Jones et al.

(1967), Mead and Markus (1970), Bert et al. (1967), Nakra et al. (1972), Bhimaraddi (1995), Wang

et al. (2000), Patel et al. (2001), Trindade et al. (2001), Yim et al. (2003), and Srikantha et al.

(2003) on damping of sandwich beams. Han (1985) has shown that the damping of sandwich type

plate with metal facing and felt has been enhances by thirty times compared to the damping of an

identical stiff solid plate. It has been established that the damping characteristics of a structural

member can be improved considerably by using high damping elastic inserts or pins. Mallik and

Ghosh (1973, 1974), and Rahmathullah and Mallik (1979) have shown that the damping capacity

increases with use of a proper combination of strip and insert material. Another technique of

improvement of damping capacity is by moving the damping material away from the structure. This

technique was first used to damp out noise and vibration in U. S. submarines. The details of studies

in this field have been done by Miller and Warnaka (1970). Joints are present in most of the

structures and usually over ninety percent of the inherent damping in a fabricated structure

originates in the joints. Belgaumkar et al. (1968), Masuko et al. (1973), and Nishiwaki et al. (1978,

1980) have reported extensive work on the technique of improvement of damping capacity of

welded structures and they have established that the damping capacity of a welded machine tool

structure is not different from that of a cast structure. Anno et al. (1970) have studied on the

relationship between the forms of welded joints and the damping capacity and reported that the steel

plates welded with the plug joints show a high damping capacity compared to other forms of

welded joints. Pain (1957) through his investigation has established that the riveted joints are also

responsible for improving the damping capacity of structures. Extensive work has been done by

Fernlund (1961), Kobayashi et al. (1986), Shin et al. (1991), Masuko et al. (1973), Nishiwaki et al.

(1978, 1980), Motosh (1975), Connolly et al. (1965), Mitsunaga (1965), Goodman and Klumpp

(1956), Ito and Masuko (1971, 1975), Courtney-Pratt et al. (1957) and Law et al. (2004) on the

damping of structures with bolted joints. It is generally recognized that the damping capacity of the
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jointed structures may be determined by the frictional loss energy caused by slip between interfaces

of steel plates. Beards and Williams (1977) have shown that the interfacial slip in joints is the major

contributor to the inherent damping of most fabricated structures. Goodman and Klumpp (1956)

reported that the damping capacity on the bolted joint is caused by the friction between the joint

surfaces, and therefore the surface topography has large effects on the damping capacity of bolted

structures. Ito and Masuko (1971, 1975) conducted experiments with the bolted cantilever specimens

to confirm the effects of the surface conditions such as surface roughness, machining method and

machined lay orientation of surfaces and found that the optimum mean interface pressure and the

logarithmic damping decrement are slightly changed by the machining method and the machined

lay orientation of joint surfaces. However, the surface conditions have significant effects on the

damping capacity. Courtney-Pratt et al. (1957) have experimentally proved that the equivalent

coefficient of friction changes with the quantity of micro-slip at the interfaces of the layered and

jointed cantilever beams. 

Although considerable amount of work has been done on experimental study of damping in

welded structures but no generalized theory has been established. Similarly, no such theory has been

developed for the mechanism of damping in case of riveted structures. Hence, layered construction

jointed with connecting bolts can be used more effectively with required damping capacity by

controlling the influencing parameters. Therefore, attention has to be focused on such influencing

parameters in order to maximize the overall damping capacity.

The logarithmic damping decrement, a measure of damping capacity of layered and jointed

structures has been determined by the energy principle considering the relative dynamic slip and the

pressure distribution at the interfaces of the contacting layers. These two major parameters are to be

accurately assessed for correct evaluation of the damping capacity of such structures. Previous

investigators, e.g. Fernlund (1961), Kobayashi and Matsubayashi (1986), and Shin et al. (1991)

have reported on this interface pressure and its distribution characteristics without specifying the

spacing of the connecting bolts between them. Masuko et al. (1973), Nishiwaki et al. (1978, 1980)

Fig. 1 Free-body diagram of a bolted joint showing the influence zone



634 B. K. Nanda and A. K. Behera

and Motosh (1975) have done extensive work assuming uniform intensity of pressure distribution at

the interfaces of the layered and jointed structures without considering the actual pattern but by

using Rötschar’s pressure cone (1973). Connolly et al. (1965) and Mitsunaga (1965) have reported

that the pressure distribution at the jointed interfaces is not uniform but varies almost parabolically

being maximum at the surface of the bolt hole. Further, Gould and Mikic (1972) and Ziada and Abd

(1980) have shown that the pressure distribution at the interfaces of a bolted joint is parabolic in

nature and there exists an influence zone in the form of a circle with 3.5 times the diameter of the

connecting bolt which is independent of the tightening load applied on it as shown in Fig. 1. Nanda

(1992) and Nanda and Behera (1999, 2000) have also done considerable amount of work on the

distribution pattern of the interface pressure and established that the same becomes uniform at a

distance of 2.00211 times the diameter of the consecutive connecting bolts joining the layered

beams. The damping capacity of such structures can be improved substantially by varying the

influencing parameters such as; intensity of interface pressure and its distribution characteristics,

spacing of the connecting bolts, tightening torque applied on them, coefficient of kinetic friction at

the interfaces, material used for the structure, dynamic slip ratio and the number of layers.

In the present investigation, damping capacity of such layered and jointed structures has been

evaluated from analytical expressions developed in the investigation and compared experimentally

for two as well as multi-layered aluminium cantilever beams under different conditions of excitation

in order to establish the accuracy of the theory developed.

2. Theoretical analysis

In case of a layered structure jointed with connecting bolts, the intensity of interface pressure

distribution under each bolt in a non-dimensional form has been assumed to be polynomial with

even powers as:

p/σs = A1 + A2(R/RB)2 + A3(R/RB)4 + A4(R/RB)6 + A5(R/RB)8 + A6(R/RB)10 (1)

where p, σs, R and RB are the interface pressure, surface stress on the jointed structure due to

tightening load, any radius within the influencing zone and radius of the connecting bolt

respectively and A1, A2, A3, A4, A5 and A6 are the constants of the polynomial. These constants are

evaluated from the numerical data of Ziada and Abd (1980) by using Dunn’s curve fitting software.

These are; 0.68517E+00, −0.10122E+00, 0.94205E-02, −0.23895E-02, 0.29487E-03 and −0.11262E-

04 respectively.

The present work is based on the loss energy due to friction at the interfaces and the strain energy

of a cantilever beam as shown in Fig. 2. The energy loss per cycle of vibration (Ef) arising due to

friction and relative dynamic slip (ur) at the interfaces has been found out using the theory of

Nishiwaki et al. (1980) as;

Ef = Fr dur = 2FrM urM (2)

where Fr, dur, FrM and urM are the frictional force at the interfaces of the beam in presence of

relative dynamic slip, incremental relative dynamic slip, maximum frictional force at the interfaces

of the beam during vibration and relative dynamic slip between the interfaces at the maximum

amplitude of vibration respectively as shown in Fig. 3.

∫°
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2.1 Determination of maximum frictional force

The maximum frictional force at the interfaces of the beam under transverse vibration is given by;

FrM = µN (3)

where µ and N are the kinematic coefficient of friction and the total normal force at the interfaces of

the layers under each connecting bolt respectively.

In order to find out the normal force at the interfaces of a bolted joint, a strip ABCD as shown in

Fig. 4 has been considered within the influence zone whose area is given by;

RdRdθ = x’sec2θdx’dθ (4)

The Eq. (1) for interface pressure distribution is modified considering σs as a function of axial

load on the connecting bolt due to tightening torque as;

p = [A1 + A2(R/RB)2 + A3(R/RB)4 + A4(R/RB)6 + A5(R/RB)8 + A6(R/RB)10]P/A’ (5)

where A’ and P are the area under a connecting bolt head and axial load on the connecting bolt due

to tightening torque respectively. This area A’ is found out considering the Fig. 5 as;

Fig. 2 Mechanism of dynamic slip at the interfaces

Fig. 3 Relationship between the friction force (Fr) and the relative dynamic slip (ur) during one cycle
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 A’ = (π /4)[(4RB)2 − (2RB)2] = 3πRB
2  (6)

Hence, the Eq. (5) for interface pressure distribution becomes;

p = [A1 + A2(R/RB)2 + A3(R/RB)4 + A4(R/RB)6 + A5(R/RB)8 + A6(R/RB)10][P/3πRB
2]  (7)

Combining Eqs. (4) and (7), the normal force on the above strip ABCD is given by;

 pRdRdθ  = [A1 + A2(R/RB)2 + A3(R/RB)4 + A4(R/RB)6 + A5(R/RB)8 + A6(R/RB)10]

 [P/3πRB
2][x’sec2θdx’dθ] (8)

Therefore, the total normal force at the interfaces within the influencing zone under each

connecting bolt is given by;

N = [A1 + A2(R/RB)2 + A3(R/RB)4 + A4(R/RB)6 + A5(R/RB)8 + A6(R/RB)10]

 [x’sec2θdx’dθ /3π RB
2]P (9)

R
B
cosθ

R
M
cosθ

∫
π /2–

π /2

∫

Fig 4 Influence zone of a connecting bolt

Fig. 5 Influence area under a connecting bolt head
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Integrating the above Eq. (9), the total normal force at the interfaces within the influencing zone

under each connecting bolt as found out by Nanda and Behera (2000) is given by;

N = [A1{(RM /RB)2 − 1} + {A2 /2}{(RM /RB)4 − 1} + {A3/3}{(RM /RB)6 − 1}

 
+{A4 /4}{(RM /RB)8 − 1}+ {A5/5}{(RM /RB)10 − 1} + {A6/6}{(RM /RB)12 − 1}][P/3] (10)

where RM is the limiting radius of the influencing zone under each connecting bolt.

The axial load “P” on the connecting bolt is the force with which it clamps the member together

and depends upon the torque applied in tightening. The tightening torque “T” for a connecting bolt

of nominal diameter (major diameter) DB which is to be tightened to an axial load “P” is given by

Shigley (1956) as;

T = K1PDB (11)

where K1 is the torque coefficient and for average and un-lubricated bolts K1 is about 0.20.

Hence, the axial load “P” on the connecting bolt due to tightening torque is given by;

P = [T/0.2DB] (12)

2.2 Determination of relative dynamic slip at maximum amplitude of vibration

The vibration of the cantilever beam specimen, as shown in Fig. 2, can be expressed as;

 
y(x, t) = Y(x) f (t) (13)

where the space function, Y(x) = C1sinλx + C2cosλx + C3sinhλx + C4coshλx, and the time function,

f(t) = Acosωnt + Bsinωnt, C1, C2, C3, and C4 are constants to be evaluated from the boundary

conditions with the usual notation; λ4 = ωn
2A”γ /EIg and A and B are constants to be evaluated from

the initial conditions. The terms ωn is the natural circular frequency of vibration, g is the

acceleration due to gravity and A’’, γ, E and I are the area of cross section, weight density, modulus

of elasticity and second moment of inertia of the cantilever beam respectively.

Using the initial free end displacement, y(l, 0) with its boundary conditions for the cantilever

beam, the equation for slope is given by;

 [∂ y(x, t)/∂ x] = −[(cosλl + coshλl)(coshλx − cosλx) − (sinλl + sinhλl)(sinλx + sinhλx)]

 [λy(l, 0) cosωnt] × [2(cosλlsinhλl − sinλlcoshλl)]−1 (14)

The actual relative dynamic slip at the interfaces of a bolted joint, which is at a distance of “li”

from the fixed end of a layered and jointed cantilever beam, is given by;

ur(li, t) = αu(li, t) (15)

where α is the dynamic slip ratio, ur(li, t) and u(li, t) are the relative dynamic slip between the

interfaces at a bolted joint in the presence and absence of a friction force respectively.

If the layered and jointed beam specimen is given an initial small free end displacement, the

relative dynamic slip at the interfaces of the layers due to small angle of slope of the beam as

shown in Fig. 2, is given by;

ur(li, t) = α[∆u1 + ∆u2] = 2α htanθ = 2αh [∂ y(li, t)/∂ x] (16)

where 2h is the thickness of each layer of the cantilever beam.
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Modifying Eq. (14) and combining the same with Eq. (16), the maximum relative dynamic slip

under a connecting bolt is found to be;

urM = [αh][(cosλl + coshλl)(coshλli − cosλli) − (sinλl + sinhλl)(sinλli + sinhλli)]

[λy(l, 0)] × [sinλlcoshλl − cosλlsinhλl]−1 (17)

In order to fabricate a layered and jointed cantilever beam, a number of connecting bolts with a

definite spacing of 3.5 times their diameter are required. Influence of all these connecting bolts on

overall dynamic slip ratio of the layered and jointed beam has also to be analysed for accuracy. Due

to the variation of the center distance of each connecting bolt from the fixed end of the cantilever

beam, the relative dynamic slip under one bolt will be different from another. Therefore, the actual

overall maximum relative dynamic slip for a layered and jointed cantilever beam with “q” number

of equispaced connecting bolts having a spacing of 3.5 times their diameter has been found out by

Nanda (1992) from Eq. (17) and is given by;

 
urM = αhXsumλy(l, 0) (18)

where Xsum = [(cosλl + coshλl) (coshλli − cosλli) − (sinλl + sinhλl) 

(sinλli + sinhλli)] × [sinλlcoshλl − cosλlsinhλl]−1

 

2.3 Determination of logarithmic damping decrement

It is assumed that the energy loss of the layered and jointed beam consists of the loss arising from

interface friction under the joints (Ef) and the loss from material and support damping (E0). Thus,

the logarithmic damping decrement of a layered and jointed beam is expressed as;

δ = [(Ef /En) + (E0/En)]/2 = δf +δ0 (19)

where En is the energy stored per cycle of vibration due to the initial amplitude of excitation

[y(l, 0)] and is given by En = [ky 2(l, 0)]/2

The logarithmic damping decrement due to material and support damping (δ0) being very small

compared to the interface friction damping, is neglected and the equation for the logarithmic

damping decrement is simplified as;

(20)

The energy loss per cycle due to friction at the interfaces as given in Eq. (2), can be modified by

combining Eqs. (3) and (18) and hence, the logarithmic damping decrement for such a beam is then

found to be;

 δ = Ef /2En = 2µ NαhXsumλ/ky(l, 0)  (21)

where k is the static bending stiffness of the layered and jointed cantilever beam.

As Eq. (21) for logarithmic damping decrement is valid for a two-layered and jointed cantilever

beam, a generalized equation has been developed for a multi-layered and jointed cantilever beam

and is given by;

 
i 1=

q

∑

 
i 1=

q

∑

δ δ f≈ Ef /2En=
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δ = 2(m − 1)µNαhXsumλ/ky(l, 0) (22)

where m is the number of layers.

Since direct evaluation of the dynamic slip ratio, α, and kinematic coefficient of friction, µ , were

not possible, the product of these two parameters, i.e., α × µ has been found out from the

experimental results for logarithmic decrement for two-layered aluminium specimens with 10 mm

diameter connecting bolts. For this purpose, Eq. (21) has been modified as;

α × µ = [ky(l, 0) δ ] / [2NhXsumλ] (23)

2.4 Determination of logarithmic damping decrement under uniform intensity of pressure

distribution at the interfaces

In order to obtain a uniform intensity of pressure distribution at the interfaces, the consecutive

influencing zones are to be superimposed by decreasing the spacing of the consecutive bolts on the

structure. This spacing between the consecutive bolts for uniform pressure distribution at the

interfaces has been evaluated with the help of a suitable software package and is found to be

2.00211 times the diameter of the connecting bolts, as reported by Nanda and Behera (1999) which

is independent of the tightening torque on the connecting bolts. The magnitude of the uniform

intensity of pressure distribution with the above spacing has been determined as shown in Fig. 5

and found to be;

p = 0.671P/3πRB
2 (24)

For a layered and jointed beam, the damping ratio, Ψ, is expressed as the ratio between the loss

energy dissipated due to the relative dynamic slip between the interfaces and the total energy

introduced into the system and is expressed as;

Ψ = [Eloss /(Eloss + Enet)]  (25)

where Eloss and Enet are the energy loss due to interface friction and energy introduced during

unloading process in to the system.

In the present analysis for determining the logarithmic damping decrement under uniform

intensity of pressure distribution at the interfaces, the frictional energy loss as well as energy

introduced in to the layered and jointed specimen per half cycle during unloading process has been

considered for mathematical simplicity. Accordingly frictional loss energy per half cycle during

unloading process has been found to be;

(26)

However, the energy introduced in to the specimen during unloading process per half cycle during

vibration soon after its initial displacement is given by; 

Enet = (3EI/l3) y2(l, 0)  (27)

From the above Eqs. (26) and (27) we get;

(28)

Eloss µpb ∂ur x t,( )/∂t{ } xd td[ ]

0

l

∫
0

π /ω
n

∫=

Eloss/Enet µpb ∂ur x t,( )/∂t{ } xd td[ ]/ 3EI/l
3

( )y
2

l 0,( )[ ]

0

l

∫
0

π /ω
n

∫=
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Considering uniform pressure distribution throughout the contact area of the interfaces and

assuming dynamic slip ratio, α, to be independent of the distance from the fixed end of the

cantilever beam and time, the above Eq. (28) can be modified as;

Eloss /Enet = [2µbhpα/{(3EI/l3)y2(l, 0)}] [∂{tan∂ y(x, t)/∂x}dxdt]/∂ t (29)

Moreover, the slope of the cantilever beams ∂ y(x, t)/∂x being quite small, [tan∂ y(x, t)/

∂x] ∂ y(x, t)/∂x.

Therefore, Eq. (29) is modified as;

Eloss /Enet = [2µbhpα /{(3EI/l3)y2(l, 0)}] [{∂ 2y(x, t)/∂ x∂ t}dxdt] (30)

Considering the boundary and the initial conditions of the cantilever beam as y(l, 0) = y0 (positive

downward deflection) and ∂ y(l, 0)/∂ t = 0 (no initial velocity) respectively, the bending deflection of

the beam under vibration can be expressed as;

y(x, t) = Y(x){y0/Y(l)}cosωnt (31)

where Y(x) is the space function and the rest is the time function.

Using the above Eq. (31) in Eq. (30) and changing the limits of the time interval from 0 and π/ωn

to 0 and π/2ωn and multiplying the expression by two for yielding definite solution we get;

Eloss /Enet = [4µbhpα/{(3EI/l3)y2(l, 0)}] ∂ 2[Y(x){y0/Y(l)}cosωnt]dxdt/[∂x∂t] (32)

Differentiating Eq. (31) with respect to “x” we get;

[∂ y(x, t)/∂ x] = [{∂ Y(x)/∂ x}{y0/Y(l)}cosωnt] (33)

Again differentiating the above Eq. (33) with respect to time we get;

[∂ 2y(x, t)/∂x∂t] = [(−ωn){∂ Y(x)/∂ x}{y0/Y(l)}sinωnt] (34)

Integrating for time and putting the limits 0 to π/2ωn, the above Eq. (34) is modified as;

[{∂ 2y(x, t)/∂x∂t}dt] =  = [{∂Y(x)/∂x}{y0/Y(l)}] (35)

Again integrating for space and putting the limits from 0 to l, the above Eq. (35) becomes;

[{∂ 2y(x, t)/∂x∂t}dt] = [∂ 2[Y(x){y0/Y(l)}cosωnt]dxdt/∂x∂t = y0 (36)

Using the Eq. (36) in Eq. (32), we get;

 
Eloss/Enet = [4µbhpαy(l, 0)]/[(3EI/l3)y2(l, 0)] (37)

Replacing 3EI/l3 = k, i.e., the equivalent spring constant (static bending stiffness) of the layered

and jointed beam, the above Eq. (37) reduces to

Eloss/Enet = [4µbhpα]/[ky(l, 0)] (38)

0

l

∫
0

π /ω
n

∫

≈

0

l

∫
0

π /ω
n

∫

0

l

∫
0

π /2ω
n

∫

0

π /2ω
n

∫ ∂y x t,( )/∂x[ ]
0

π /2ω
n

0

l

∫
0

π /ω
n

∫
0

l

∫
0

π /2ω
n

∫
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Eq. (25) is modified as;

Ψ = [Eloss /(Eloss + Enet)] = 1/[1 + Enet/Eloss] (39)

Putting the values of Eloss /Enet from Eq. (38) in Eq. (39) we get;

Ψ = 1/[1 + {ky(l, 0)}/{4µbhpα}] (40) 

The logarithmic damping decrement, δ, is usually expressed as, δ = ln(an/an+1). Assuming that the

energy stored in the system is proportional to the square of the corresponding amplitude, the

relationship between logarithmic damping decrement and damping ratio can be written as;

δ = ln(En/En+1)
1/2 = [ln{1/(1 − Ψ)}]/2 (41)

where En and En+1 are the energy stored in the system with amplitudes of vibration a1 and an+1

respectively.

In case of , the Maclaurin expansion of the Eq. (41) will yield;

δ = [Ψ + (Ψ 2/2)]/2 (42)

Similarly, in order to find out the logarithmic damping decrement for multi-layered cantilever

beams, the numbers of interfacial layers are to be taken into consideration. If “m” number of layers

are jointed together with connecting bolts to construct the multi-layered cantilever beams so as to

have uniform interface pressure, the damping ratio for such beams is given by;

Ψ = 1/[1 + {ky(l, 0)}/{4(m − 1)µbhpα}] (43)

3. Experimental techniques and experiments

In order to find out the logarithmic damping decrement of layered and jointed beams and to

compare it with the numerical results evaluated from analytical expressions, an experimental set-up

with a number of specimens has been fabricated. The experimental set-up with detailed

instrumentation is shown in Fig. 6. The specimens are prepared from commercial aluminium flats of

the sizes as presented in Table 1 by joining two as well as more number in layers with the help of

equispaced connecting bolts of same tightening torque on them. The distance between the

consecutive connecting bolts have been kept as 3.5 and 2.00211 times their diameter depending on

non-uniform and uniform intensity of pressure distribution at the interfaces respectively. The

cantilever lengths of the specimens have been varied accordingly in order to accommodate the

corresponding number of connecting bolts as presented in Table 1.

The specimens are rigidly fixed to the support to obtain perfect cantilever condition and

experiments are conducted initially to determine the bending modulus of elasticity (E) of the

specimen materials. Solid cantilever specimens out of the same stock of commercial flats are held

rigidly at the fixed end and its free end deflection (∆) is measured by applying static loads (W).

From these static loads and corresponding deflections, average static bending stiffness (W/∆) is

determined. The bending modulus for the specimen material is then evaluated from the expression E

= [(W/∆)(l3/3I)]. The average value of “E” for the aluminium specimens used in the experiments is

found to be 63.30 GN/m2.

Ψ 1≤
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Fig 6 Schematic diagram of experimental set-up with detailed instrumentation

 
Table 1 Details of the specimens used in the experiment

 Dimensions of the 
specimen (thickness

 × width), (mm × mm)

Diameter of the 
connecting
bolt, (mm)

Number of 
layers
used

Condition of 
interface
pressure

Number of 
bolts
used

Cantilever
length,
(mm)

 3.20 × 35.00 11 385.00

 5.60 × 35.00 10 2 non-uniform 10 350.00

 12.00 × 37.20 9 315.00

 4.80 × 35.00 11 385.00

10 3 non-uniform 10 350.00

 8.40 × 35.00 9 315.00

 6.40 × 35.00 11 385.00

10 4 non-uniform 10 350.00

 11.20 × 35.00 9 315.00

 3.20 × 40.04 18 360.38

 5.60 × 40.04 10 2 uniform 17 340.36

 12.00 × 37.20 16 320.34

 4.80 × 40.04 18 360.38

10 3 uniform 17 340.36

 8.40 × 40.04 16 320.34

 6.40 × 40.04 18 360.38

 10 4 uniform 17 340.36

 11.20 × 40.04 16 320.34

 6.40 × 40.04 Solid beam 360.38
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The static bending stiffness (k) of the specimens are determined and is found that the same for

layered and jointed beam is always less than that of an equivalent solid one (k’) and increases with

increase in tightening torque on the connecting bolts and remains almost constant after a limiting

value, i.e., 10.370 N m (7.5 lb ft) as shown in Fig. 7 for a particular case. The ratio of this bending

stiffness at the limiting tightening torque condition with the equivalent bending stiffness of a solid

one (α’) is found out for all specimens. The average value of α’ for each group of specimens has

been utilized in the numerical analysis.

The logarithmic damping decrement and natural frequency of vibration of all the specimens at

their first mode of free vibration are found out experimentally. The tightening torques on all the

connecting bolts of the specimens are maintained equal for each set of observations and varied in

steps as 3.46, 6.92, 13.84, 20.76, and 27.68 N m (i.e., 2.50, 5.00, 10.00, 15.00 and 20.00 lb ft

respectively). The lengths of these specimens during experimentation are also varied. In order to

excite the specimens at their free ends, a spring loaded exciter was used. The amplitude of

excitation was varied in steps and maintained as 0.1, 0.2, 0.3, 0.4, and 0.5 mm for all the specimens

tested under the different conditions of the tightening torque on the connecting bolts. The free

vibration was sensed with a non-contacting type of vibration pick-up and the corresponding signal

Fig. 7 Variation of static bending stiffness with applied tightening torque on the connecting bolts
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was fed to a cathode ray oscilloscope through a digitizer to obtain a steady signal. The logarithmic

damping decrement was then evaluated from the measured values of the amplitudes of the first

cycle (a1), last cycle (an+1) and the number of cycles(n) of the steady signal by using the equation

δ = ln(a1/an+1)/n. The corresponding natural frequency was also determined from the time period

(T1) of the signal by using the relationship f = 1/T1. It is found that the natural frequency of

vibration of specimens is always less than that of their equivalent solid ones. It increases with

increase in tightening torque on the connecting bolts and remains constant after a limiting value of

the torque, i.e., 10.370 N m (7.5 lb ft). This increase is due to higher static bending stiffness of the

layered and jointed specimens.

4. Determination of the product of dynamic slip ratio and kinematic coefficient of

friction (α · µ)

The experimental logarithmic damping decrement values for two layered and jointed beams with

10 mm diameter connecting bolts under different conditions of excitation have been used to

Fig. 8 Variation of µ × dynamic slip ratio (α) with natural frequency of vibration
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evaluate the corresponding values of the product of dynamic slip ratio and kinematic coefficient of

friction using Eq. (23). The variation in the dynamic slip ratios and natural frequency of the first

mode transverse vibration for a particular tightening torque on connecting bolts was determined

under different initial amplitudes of excitation. The results have been plotted and one such sample is

presented in Fig. 8. Moreover, the variation of these dynamic slip ratios with applied tightening

torque on the connecting bolts for different specimens have also been plotted and one such sample

has been shown in Fig. 9. All of these plots have been further used in the evaluation of the

numerical results for the logarithmic damping decrement of multi-layered jointed beams using the

Eqs. (22) and (42).

5. Comparison of experimental and numerical results

 

The logarithmic damping decrements of three and four layered cantilever specimens with 10 mm

diameter connecting bolts have been found out from Eq. (22) using the values of the product of

dynamic slip ratios and kinematic coefficient of friction from the respective plots as already

discussed. These numerical results have been determined along with the corresponding experimental

Fig. 9 Variation of µ × dynamic slip ratio (α) with applied tightening torque on the connecting bolts
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ones for comparison and one such result from each has been shown in Figs. 10 and 11. It is

observed that both the curves are very close to each other with a maximum variation of 1.18%

which authenticates the accuracy of the values of the product of dynamic slip ratios and kinematic

coefficient of friction determined numerically from the experimental results for the logarithmic

damping decrement.

Further, numerical results for two, three and four layered and jointed cantilever beams with

uniform intensity of interface pressure distribution at the interfaces and 10 mm diameter connecting

bolts have been found out using Eq. (42) in order to verify the accuracy of the numerical analysis.

These numerical results for logarithmic damping decrement have also been plotted along with the

corresponding experimental ones and one such plot for each case has been shown in Figs. 12, 13

and 14, showing that both the plots are very close to each other with a maximum variation of

1.17%.

Fig. 10 Variation of logarithmic decrement (δ ) with applied tightening torque on the connecting bolts
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6. Conclusions

From the theoretical analysis as well as numerical and experimental results, the following salient

points have been observed. They are discussed below and the conclusions have been drawn

accordingly.

(1) The static bending stiffness of the layered and jointed structure is smaller than that of an

equivalent solid one and increases with increase in the tightening torque on the connecting

bolts and remains constant beyond a limiting value of the tightening torque, i.e., 10.370 N m

(7.50 lb ft). Moreover, with the increase in the tightening torque, the interface pressure

increases and the cantilever beam tends to behave like a solid one thereby increasing the static

bending stiffness. On comparison, it is found that the static bending stiffness for layered and

jointed specimens with uniform intensity of pressure is less than that of the jointed specimens

with same diameter on the connecting bolts arranged otherwise. This is because of the

presence of more number of holes for the connecting bolts on the specimens with uniform

intensity of interface pressure. 

Fig. 11 Variation of logarithmic decrement (δ ) with applied tightening torque on the connecting bolts
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(2) The natural frequency of first mode vibration of the layered and jointed structure is found to

be smaller than that of its equivalent solid one and increases with an increase in the tightening

torque on the connecting bolts due to higher static bending stiffness. The static bending

stiffness increases because of higher interface pressure due to tightening torque. However, the

frequency remains constant beyond a limiting value of the tightening torque, i.e., 10.370 N m

(7.5 lb ft). 

(3) It has been found that the interface pressure distribution between the contacting layers jointed

by connecting bolts having spacing of 3.5 times its diameter increases with decrease in the

distance between the consecutive connecting bolts and attains uniformity throughout the

contacting surfaces for a particular spacing of the connecting bolts which has been found to be

2.00211 times the diameter of the bolt. Any further decrease in the distance between

consecutive connecting bolts will result in decrease of logarithmic damping decrement as the

Fig. 12 Variation of logarithmic decrement (δ ) with applied tightening torque on the connecting bolts
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layered and jointed cantilever beam behaves like a solid one. 

(4) The following influencing parameters play a vital role on the damping capacity of layered

structures jointed with connecting bolts. They are: (a) tightening torque on the connecting

bolts, (b) number of layers, (c) amplitude of excitation, (d) frequency of excitation, and (e)

arrangement of connecting bolts.

(a) The logarithmic damping decrement increases with increase in tightening torque and reaches a

peak value at a particular torque as established by Masuko et al. (1973) and this limiting torque at

which the logarithmic decrement reaches its peak value is so small that it is not possible to examine

practically in actual applications and is always less than 3.46 N m (2.5 lb ft). This increase of the

logarithmic decrement in the lower range of tightening torque is due to combined effect of low

interface pressure with high dynamic slip ratio. However, the same logarithmic damping decrement

decreases with further increase in tightening torque on the connecting bolts due to higher interface

Fig. 13 Variation of logarithmic decrement (δ ) with applied tightening torque
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pressure associated with lower dynamic slip ratio at the interfaces.

(b) Logarithmic damping decrement increases with increase in number of layers in a layered and

jointed structure due to increase in interface friction layers which causes increase in energy loss due

to interface friction. Although the static bending stiffness increases due to increase in thickness of

the multi-layered cantilever specimens but the total energy loss due to interface friction for such

beams is more compared to the gain in strain energy. The strain energy increases due to higher

static bending stiffness. Moreover, keeping overall thickness of the layered and jointed structure

constant, if the number of layers to fabricate the same are increased, the logarithmic decrement for

such structures will increase further because of higher dissipated energy due to multi-layered

interface friction along with lower static bending stiffness. Thus damping capacity of such structures

can be improved considerably. 

(c) The logarithmic damping decrement of a layered and jointed structure decreases with an

increase in amplitude of excitation due to introduction of higher strain energy into the system

compared to that of the dissipated energy due to interface friction. Although the dynamic slip ratio

increases with an increase in amplitude of excitation, but the strain energy introduced into the

system is more compared to the increase in dissipated energy due to interface friction and the net

effect is a decrease in the logarithmic damping decrement.

(d) The logarithmic damping decrement of a layered and jointed structure decreases with increase

in natural frequency of vibration of the specimen. This is because of increase in dynamic slip ratio

as well as the static bending stiffness with increase in natural frequency of vibration. Although the

increase in dynamic slip ratio increases the loss energy due to friction at the interfaces but the

increase in strain energy due to increase in static bending stiffness is more, resulting in decrease of

logarithmic damping decrement. 

(e) The arrangement of the connecting bolts has an influence on the logarithmic damping

Fig. 14 Variation of logarithmic decrement (δ ) with applied tightening torque on the connecting bolts



Study on structural damping of aluminium using multi-layered and jointed construction 651

decrement of layered and jointed structure. The logarithmic damping decrement decreases when the

distance between the consecutive bolts increases because of non-contact zone and the same

increases with the decrease in the distance between consecutive bolts due to overlapping of

influencing zones which increases the interface pressure. Logarithmic decrement attains maximum

under the condition of uniform intensity of pressure distribution at the interfaces. Moreover, it has

been established that the distance between the consecutive connecting bolts is 2.00211 times the

diameter of the connecting bolt under uniform intensity of interface pressure distribution. However,

the distance between the consecutive connecting bolts could not be reduced further due to

interference of nearby bolt heads for applying tightening torque with the help of the torque wrench.

Logarithmic damping decrement will reduce drastically because of very high interface pressure with

negligibly small dynamic slip at the interfaces. This type of structure behaves like a solid one

although they are layered and jointed. 

Finally, it is established that the damping capacity of the layered and jointed structures can be

improved considerably under uniform intensity of pressure distribution at the interfaces by using

connecting bolts with minimum possible tightening torque on them as well as with a large number

of layers. This increase in logarithmic damping decrement may go even up to more than 6 times as

compared to that of an equivalent solid beam. Layered and jointed aluminium structures being

lighter in weight and having higher damping capacity compared to other metallic structural

materials can be effectively used in aerospace structures, aircrafts and space landing vehicles.
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