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Serviceability reliability analysis of cable-stayed bridges
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Abstract. A reliability analysis method is proposed in this paper through a combination of the
advantages of the response surface method (RSM), finite element method (FEM), first order reliability
method (FORM) and the importance sampling updating method. The accuracy and efficiency of the
method is demonstrated through several numerical examples. Then the method is used to estimate the
serviceability reliability of cable-stayed bridges. Effects of geometric nonlinearity, randomness in loading,
material, and geometry are considered. The example cable-stayed bridge is the Second Nanjing Bridge
with a main span length of 628 m built in China. The results show that the cable sag that is part of the
geometric nonlinearities of cable-stayed bridges has a major effect on the reliability of cable-stayed
bridge. Finally, the most influential random variables on the reliability of cable-stayed bridges are
identified by using a sensitivity analysis.

Key words: reliability analysis; failure probability; response surface method (RSM); importance
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linearity.

1. Introduction

Cable-stayed bridges have been used extensively in the construction of long span bridges in recent

years. The increasing popularity of cable-stayed bridges among bridge engineers can be attributed

to: (1) the appealing aesthetics; (2) the full and efficient utilization of structural materials; (3) the

increased stiffness over suspension bridges; (4) the efficient and fast mode of construction; and (5)

the relatively small size of the bridge elements (Ren 1999).

The static behavior of cable-stayed bridges has been studied by many researchers, including

Fleming (1979), Nakai et al. (1985), Hegab (1986), Aboul-ella (1988), Nazmy and Abdel-Ghaffar

(1990), Self and Dilger (1990) and Ren (1999). These studies were based on the assumption of

complete determinacy of structural parameters. This is usually referred to as deterministic analysis.

In reality, however, there are uncertainties in design variables. These uncertainties include geometric

properties (cross-sectional properties and dimensions), material mechanical properties (modulus and

strength, etc.), load magnitude and distribution, etc. Thus the deterministic analysis cannot provide

complete information regarding static behavior of cable-stayed bridges. Therefore, the static

behavior of cable-stayed bridges must be studied under a probabilistic viewpoint.
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Reliability analysis provides the tool of incorporating structural modeling uncertainties in the

analysis of the structural response by describing the uncertainties as random variables. Liu and Der

Kiureghian (1991) investigated the reliability of a square plate with a hole of random geometry in

its center by a finite element reliability method for geometrically nonlinear structures under static

loads that employs the first- and second-order reliability methods, namely, FORM and SORM. Imal

and Frangopol (2001, 2002) extended the finite element reliability method to investigate the

reliability of suspension bridges. However, studies of the reliability of cable-stayed bridges under

static loads have rarely been reported. Bruneau (1992) investigated the reliability of cable-stayed

bridges under static loads, and assessed the practicability of system-reliability analytical methods to

assist in the design of cable-stayed bridges. Unfortunately, there are three disadvantages in his study.

First, all geometric nonlinear sources in cable-stayed bridges were not considered. However, the

calculation results of Nazmy and Abdel-Ghaffar (1990) had shown that the geometric nonlinearities

significantly affect the static behavior of long span cable-stayed bridges. Second, in his study, the

structural reliability index was obtained using the first-order second-moment method (FOSM). In

FOSM methods, the information on the distribution of random variables is ignored (Haldar 2000).

Third, a complete sensitivity analysis was not included in his study. Recently, Chen (2000) studied

the serviceability reliability of cable-stayed bridges. The sensitivity index that indicates the influence

of each of the random variables on the overall reliability analysis was not computed. Further, the

study concentrated on implementation of the response surface method (RSM) in the reliability

analysis of cable-stayed bridges. 

Several techniques exist to perform structural reliability analyses. These techniques may be

divided into three categories as: (1) FORM and SORM, (2) RSM, and (3) Monte Carlo simulation

(MCS). 

FORM and SORM are the earliest and most widely used methods in structural reliability analysis.

Extensive reviews of these methods are found in Zhao and Ono (1999a, 2001), Rackwitz (2001).

The main idea of these methods is to estimate the probability of failure using first-order or second-

order approximations to the limit state at the design point. These methods require the evaluation of

the derivatives of the response functions or limit state functions with respect to the random

variables. When these functions are explicit functions of the random variables, it is easy to compute

the derivatives of these functions. However, in many cases, particularly for complicated structures,

the limit state functions are usually implicit in terms of the random variables. Therefore, derivatives

of the limit state functions are not readily available. This restricts the applicability of these methods

to the reliability analysis of complicated structures where the limit state surfaces are not known

explicitly. Liu and Der Kiureghian (1991) proposed an improved FORM/SORM method in

conjunction with a probabilistic finite element analysis to solve this problem. In this procedure,

response gradients for geometrically nonlinear structures with parametric uncertainties need to be

computed. Unfortunately, the existing deterministic finite element code available to design engineers

cannot compute response gradients. Therefore, to use the method, it is necessary to modify the

existing deterministic finite element code. Furthermore, errors in using this approach for nonflat or

implicit limit state functions are not easy to determine (Guan and Melchers 1997). 

RSM could be pursued for the reliability analysis of structures with implicit limit state functions.

The basic idea of the method is to approximate the original complex and implicit limit state

functions by simple response surface function (RSF). A major advantage of the method is that the

implicit limit state functions are represented in an explicit form. Thus full advantage can be taken of

existing computational methods developed for reliability analyses. Due to its advantage, the method
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has widely been applied in reliability analysis of structures (Bucher and Bourgund 1990,

Rajashekhar and Ellingwood 1993, Huh and Haldar 2002). However, the method has the following

disadvantages: (1) an arbitrary parameter in RSM, hi, has a considerable effect on the estimated

probability of failure; (2) it may not be accurate when the probability of failure is extremely small. 

MCS is another method for the reliability analysis of structures with implicit limit state functions.

The method uses randomly generated samples of the input variables for each deterministic analysis,

records the numbers of times that failure occurs, and estimates probability of failure after numerous

repetitions of the deterministic analysis. This method is robust, simple and easy to use. Therefore,

the method is often used to validate other analysis techniques. However, the method has one

drawback: it needs an enormously large amount of computation time. To reduce the computational

cost, different variance reduction techniques such as Importance sampling (Harbitz 1983, Shinozuka

1983) and Adaptive sampling (Karamchandani et al. 1989) can be employed. Liu and Moses (1994)

proposed an RSM-based Monte Carlo Importance Sampling (RSM-MCIS) to estimate structural

reliability. The basic procedure of the method is: (1) use RSM to approximately obtain the limit

state surface; (2) based on the obtained limit state surface, apply Monte Carlo Importance Sampling

to evaluate structural reliability. However, when the difference between limit state surface obtained

by RSM and actual limit state surface is large, RSM-MCIS estimate will produce significant errors.

The weakness in RSM-MCIS is discussed in Section 3.

The purposes of this paper are to propose an efficient method to overcome the drawbacks of the

previous reliability methods, to investigate the serviceability reliability of cable-stayed bridges using

the proposed method, and to conduct a sensitivity analysis to ascertain the effect of parameter

uncertainty on the final results.

2. Proposed method 

2.1 Principle

The proposed method is a hybrid method, consisting of RSM, FEM, FORM and the importance

sampling updating method. The method is based on three key concepts: (1) approximation of the

limit state by RSM; (2) deterministic finite element analysis by FEM; and (3) estimation of the

failure probability through a combination of FORM and importance sampling updating method.

The limit state functions may be categorized into two types: (1) explicit limit state function; and

(2) implicit limit state function. If the limit state function is explicit in terms of the basic random

variables, it becomes easy to conduct reliability analysis of structures. This is mainly because many

available methods for reliability analysis such as FORM and SORM can be used. However, in

practice limit state function is not explicitly known. In other words, the limit state function is

usually implicit. To solve this problem, RSM is used. The main idea of the RSM is to approximate

the implicit limit state function by simple and explicit polynomial. A second-order polynomial

without cross terms is adopted here. The second-order polynomial can be represented as

(1)

Where = the approximate limit state function; = ith random variable; and

ĝ X( ) b0 biXi
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b0, bi, bii = unknown coefficients to be determined by solving a set of simultaneous equations. The

number of unknown coefficients in (1) is p = 2k + 1. Consider three values of each random variable,

namely, a low value, a medium value, and a high value (e.g., ), where the

value of hi is considered to be 3.0 for the first iteration and 0.99 for the subsequent iterations; 

and = coordinates of the center point and standard deviation of a random variable Xi. The initial

center point can be the mean value point. For determining the location of the center point, the

iterative linear interpolation scheme suggested by Bucher and Bourgund (1990) is used in this study.

A detailed description of the RSM can be obtained from Haldar and Mahadevan (2000). It should

be pointed out that the approximate limit state function in Eq. (1) is only determined one (first) time

in the analytical procedures of the proposed method. In other words, the iterative linear interpolation

scheme used in the traditional RSM is unnecessary for the proposed method. This is because the

importance sampling updating technique is introduced in the proposed method. The importance

sampling updating technique is described later.

The use of the proposed method may involve in deterministic finite element analysis. FEM is

considered to be the most reliable analysis method. In this paper, the primary purpose of applying

FEM is to extend the proposed method to implement finite element reliability analysis. For more

details concerning the FEM used in this paper, the reader is referred to Cheng (2000).

FORM and SORM can be used to estimate the failure probability. As indicated in Cambier et al.

(2002), these methods have a significant disadvantage: the accuracy of the results is very difficult to

be validated. To circumvent the disadvantage of these methods, Hohenbichler and Rackwitz (1988)

developed an importance sampling updating method to improve the SORM estimate. In the method

proposed in this paper, the importance sampling updating method is extended to improve the FORM

estimate. For completeness, the importance sampling updating method is briefly described. A more

detailed description may be obtained from Hohenbichler and Rackwitz (1988).

The probability of failure through sampling of a correction factor to the SORM second order

estimate can be written as Cambier et al. (2002)

  (2)

 (3)

where Φ = the standard normal cumulative probability; φ = the standard normal density; κi = the

main curvatures of the limit state function at the design point u*; β = the first-order reliability index;

E[Z(v)] = the correction factor that is determined by simulation; v = the independent normal vector

with means E[vi] = 0, variances Var[vi] =  and such that vT · u* = 0; f (v) = the root

of g(v, f (v)) = 0; and g = the actual limit state function in the standard space.

Let κi = 0 in Eqs. (2) and (3), the probability of failure through sampling of a correction factor to

the FORM first order estimate is given by

  (4)
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  (5)

where v = the independent normal vector with means E[vi] = 0 and variances Var[vi] = 1.

The unique feature of the proposed method is the combination of the advantages of RSM, FEM,

FORM and the importance sampling updating method. It should be noted that the proposed method

is different from the RSM-based Monte Carlo Importance Sampling method (RSM-MCIS) presented

by Liu and Moses (1994). As stated before, Monte Carlo Importance Sampling in RSM-MCIS is

based on the approximate limit state surface obtained by using RSM. Therefore, when the noise is

added in the approximate limit state function, RSM-MCIS will produce significant errors as will be

shown later. This problem can be resolved by the proposed method because the importance

sampling updating technique in the proposed method is based on the actual limit state surface. The

efficiency and accuracy of the proposed method are verified in the subsequent section.

Z v( ) Φ f v( )–( )
Φ β–( )

----------------------=

Fig. 1 Flow chart for the procedures the proposed method
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2.2 Procedure for the proposed method

The procedures of the proposed method are:

(1) Determine the values of the random variables at the chosen sampling points. For problems

involving k variables, (2k + 1) samples described above are chosen in this paper.

(2) Conduct a deterministic finite element analysis using these values of the random variables.

(3) Use the response surface method (RSM) to construct the approximate limit state function

. 

(4) After the approximated limit state function  is determined, the FORM with the Hasofer-

Lind-Rackwitz-Fiessler algorithm is applied to obtain the reliability index.

(5) Apply the importance sampling updating method to improve the obtained reliability index.

A flow chart for the above procedures is given in Fig. 1.

3. Verification examples and investigations

The main objective here is to investigate the computation efficiency and accuracy of the proposed

method for reliability analysis. Five examples are presented in this section. The first example

considers linear limit state function. The second example considers general parabolic limit state

function. This example demonstrates the accuracy and efficiency of the proposed method for a

problem with a large number of random variables and large curvatures. The third and the fourth

examples are given to demonstrate the application where the limit state function is not available in

closed form and finite element analysis is required to compute . The last example is

considered to demonstrate the applicability of the proposed method in geometrically nonlinear finite

element reliability analysis of structures. 

For the purpose of these investigations, the proposed method was implemented in a reliability

analysis program. The program was developed using the FORTRAN77/90 computer language. For

comparison, other reliability analysis methods such as FORM, SORM, RSM, MCS, RSM-MCIS

were also implemented in the computer program. The program NASAB (Cheng 2003) was used for

the deterministic finite element analysis. 

In the following reliability analyses, the computation time is referred to that of a Pentium III,

800 MHz PC. In the following tables, the figures in the parentheses refer to the number of the

simulations.

3.1 Example 1: Linear limit state function (explicit limit state function) 

The example is taken from Der Kiureghian et al. (1987). The limit state function is 

  (6)

The statistics of the six random variables in this limit state function are listed in Table 1. The

results are shown in Table 2. Fig. 2 illustrates the effectiveness of the different methods (MCS,

RSM-MCIS and the proposed method). It shows the coefficient of variation of the probability of

failure versus the number of Monte Carlo Simulations. The exact results are obtained by using MCS

with 100,000 samples.

ĝ X( )
ĝ X( )

ĝ X( )

G x( ) x1 2x2 2x3 x4 5x5– 5x6–+ + +=
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From Table 2, it can be seen that: (1) FORM and RSM give the same results. This indicates that

the actual limit state function is very closely approximated by a second-order polynomial without

cross terms; (2) Both the proposed method and RSM-MCIS achieve excellent accuracy, whereas the

FORM, SORM and RSM estimates are quite approximate for this example; (3) The proposed

method requires fewer samples than both MCS and RSM-MCIS for comparable accuracy. Thus the

Table 1 Statistics of the random variables for Example 1

Variable Mean Standard deviation Distribution

x1 120 12 Lognormal

x2 120 12 Lognormal

x3 120 12 Lognormal

x4 120 12 Lognormal

x5 50 15 Lognormal

x6 40 12 Lognormal

Table 2 Results of Example 1

Method β pf
Number of the 

simulations

FORM 2.348 9.433e-3 -

SORM 2.271 1.157e-2 -

RSM 2.348 9.433e-3 -

MCS (exact results) 2.251 1.220e-2 100,000

RSM-MCIS 2.249 1.225e-2 57,300

Proposed method 2.252 1.215e-2 30,000

Fig. 2 Coefficient of variation of the probability of failure for Example 1
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CPU time spent by the proposed method is less than the time required by the MCS and RSM-

MCIS.

It is seen from Fig. 2 that the proposed method converges very quickly, since with 1,000 samples,

the coefficient of variation of the probability of failure is less than 3%.

3.2 Example 2: General parabolic limit state function (explicit limit state function)

Considering the following limit state function in standardized space, which has been used in Der

Kiureghian and Lin (1987) and Zhao and Ono (1999b). 

  (7)

Here u is standard normal variables, βF is taken to be 2.0, and a is taken to be 0.03. A range of n

values between 5 and 30 is considered. The results for different values of n are listed in Table 3.

The exact values for n = 5, 10, 15 and 20 are obtained using MCS with 10,000,000 samples. The

exact values for n = 30 are obtained from Cambier et al. (2002). This is because that MCS is not

appropriate for a value of n = 30 (Cambier et al. 2002). From Table 3 one can see that when the

number of random variables is large (e.g. n = 30), the errors in these methods (FORM, SORM,

RSM and RSM-MCIS) become very large. However, there is very good agreement between the

results obtained using the proposed method and the exact results with any number of random

variables, n. Furthermore, it is noteworthy that the RSM failed to converge to a solution in the case

of n = 30. This is because that there are slight differences in the approximate limit state function

obtained by RSM and the actual limit function, which are shown in Table 4. Note that Table 4 gives

G x( ) βF un–
1

2
--- j
j 1=

n 1–

∑ auj

2
+=

Table 3 Results of Example 2

Method
Parameter

n = 5 n = 10 n = 15 n = 20 n = 30

FORM
β 2.000 2.000 2.000 2.000 2.000

pf 2.275e-2 2.275e-2 2.275e-2 2.275e-2 2.275e-2

SORM
β 2.114 2.446 2.900 3.412 4.49

pf 1.726e-2 7.216e-2 1.866e-2 3.224e-4 3.550e-6

RSM
β 2.000 2.000 2.000 2.000 not converged

pf 2.275e-2 2.275e-2 2.275e-2 2.275e-2 not converged

RSM-MCIS

β 2.133 2.558 3.135 3.803 5.402

pf
1.645e-2
(10,000)

5.265e-3
(10,000)

8.604e-4
(10,000)

7.153e-5
(10,000)

3.301e-8
(100,000)

Proposed 
method

β 2.136 2.551 3.135 3.820 5.266

pf
1.634e-2
(10,000)

5.374e-3
(10,000)

8.593e-4
(10,000)

6.672e-5
(10,000)

6.971e-8
(100,000)

Exact
results

β 2.136 2.551 3.139 3.809 5.264

pf 1.634e-2 5.366e-3 8.482e-4 6.990e-5 7.060e-8
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a comparison of the coefficients in (1) for the sake of simplicity. From Table 4, one can see that the

noise is added in the approximate limit state function. As indicated in Liu and Der Kiureghian

(1991), FORM with the Hasofer-Lind-Rackwitz-Fiessler algorithm does not perform well for the

noise problem. Thus, RSM based on the FORM became invalid. The proposed method can be

employed to solve this problem. In the proposed method, to obtain the first-order reliability index,

the tolerance criteria used in the Hasofer-Lind-Rackwitz-Fiessler algorithm needs to be modified

temporarily. However, this does not affect the finial results since the inaccuracy first-order reliability

index can be improved using importance sampling updating algorithm in the proposed method. It

should be pointed out that the tolerance criteria mentioned above refers to the tolerance between

Table 4 Comparison of coefficients between fitted and exact values

Coefficients (Eq. 1) Fitted values (Eq. 7) Exact values (Eq. 7)

b0 2.000 2.000

b1~b29 0.000 0.000

b30 −1.000 −1.000

b0101 1.499999966472387e-002 1.500e-2

b0202 2.999999932944775e-002 3.000e-2

b0303 4.499999899417162e-002 4.500e-2

b0404 5.999999865889549e-002 6.000e-2

b0505 7.499999832361937e-002 7.500e-2

b0606 8.999999798834324e-002 9.000e-2

b0707 0.104999997653067 0.105

b0808 0.119999997317791 0.120

b0909 0.134999996982515 0.135

b1010 0.149999996647239 0.150

b1111 0.164999996311963 0.165

b1212 0.179999995976686 0.180

b1313 0.194999995641410 0.195

b1414 0.209999995306134 0.210

b1515 0.224999994970858 0.225

b1616 0.239999994635582 0.240

b1717 0.254999994300306 0.255

b1818 0.269999993965030 0.270

b1919 0.284999993629754 0.285

b2020 0.299999993294477 0.300

b2121 0.314999992959201 0.315

b2222 0.329999992623925 0.330

b2323 0.344999992288649 0.345

b2424 0.359999991953373 0.360

b2525 0.374999991618097 0.375

b2626 0.389999991282821 0.390

b2727 0.404999990947545 0.405

b2828 0.419999990612268 0.420

b2929 0.434999990276992 0.435
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design point values as the iteration progresses. 

Figs. 3 and 4 show the coefficient of variation of the probability of failure for different methods

with different values of n. From these figures, it can be seen that the proposed method is the most

efficient method for all values of n.

3.3 Example 3: Linear frame structure with one story and one bay (implicit limit state

function)

The third example is a linear frame structure of one story and one bay as shown in Fig. 5.

Fig. 3 Coefficient of variation of the probability of failure with different values of n = 5, 10, 15, 20 for
Example 2

Fig. 4 Coefficient of variation of the probability of failure with the value of n = 30 for Example 2
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Different cross sectional areas Ai and horizontal load P are treated as independent random variables;

their statistics are listed in Table 5. The sectional moments of inertia are expressed as 

. The Young’s modulus, E, is treated as deterministic. E = 2.0 ×

106 KN/m2. Of interest is the probability that the horizontal displacement at node 3 exceeds 0.01 m.

Thus, the limit state function is expressed as

(8)

The results are listed in Table 6. The exact values in Table 6 are obtained from Zhao (1996). It

can be observed from Table 6 that the results from the proposed method are closer to the exact

results than those of both RSM and RSM-MCIS. Also, the proposed method requires few samples

and numbers to form response surface function. Thus, the proposed method promise to save

computational effort, particularly when a deterministic finite element analysis requires large amount

Ii αiAi

2
=

α1 0.08333= α2 0.16670=,( )

G A1 A2 P, ,( ) 0.01 u3 A1 A2 P, ,( )–=

Fig. 5 Linear portal frame of Example 3

Table 5 Statistics of the random variables for Example 3

Variable Mean Standard deviation Dimension Distribution

A1 0.36 0.036 m2 Lognormal

A2 0.18 0.018 m2 Lognormal

P 20 5.0 KN Type I largest

Table 6 Results of Example 3

Method β pf
Numbers of 

forming RSF
CPU time

 (s)

RSM 2.791 2.625e-3 16 29.46

RSM-MCIS 2.710 3.361e-3 16 29.64(10000)

Proposed method 2.808 2.490e-3 2 100.45(100)

Exact results (Zhao 1996) 2.831 2.322e-3 - -

Note: RSF is the so-called approximation function,  mentioned in this paperĝ X( )
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of computation time or the number of FEM calculations is large. Note that the CPU time required

for the proposed method is large compared to both RSM and RSM-MCIS. This is mainly because

the importance sampling updating technique in the proposed method is based on the actual limit

state surface. However, it should be pointed out that the CPU time required for the proposed

method is acceptable. Although more CPU time is required when compared with the RSM and

RSM-MCIS, the results obtained with the proposed method are much more accurate. Another

observation from this table is that the RSM-MCIS gives worse results than the RSM. This is

because (1) Monte Carlo Importance Sampling in the RSM-MCIS is based on the approximate limit

state function obtained by RSM; and (2) the difference between the approximate limit state function

and actual limit state function is large. 

Guan and Melchers (2001) investigated the effects of an arbitrary parameter in RSM, hi on the

estimated failure probability. They concluded that the value of hi could have a considerable effect.

On the other hand, the different values of hi also affect the accuracy of the results obtained from

RSM. However, these problems can be overcome using the proposed method. To validate this point,

we set the parameter hi to be different values and solve the previous example (Example 3) using the

proposed method and RSM. The results are listed in Table 7. From this table, it can be seen that the

proposed method does offer a significant improvement over the RSM results.

3.4 Example 4: Linear frame structure with twelve stories and three bays (implicit limit

state function)

The fourth example is a linear frame structure with twelve stories and three bays as shown in

Fig. 6. Different cross sectional areas Ai and horizontal load P are treated as independent random

variables; their statistics are listed in Table 8. The sectional moments of inertia are expressed as

 . The Young’s modulus, E, is treated

as deterministic. . Element types are indicated in Fig. 6. Of interest is the

probability that the horizontal displacement at node A exceeds 0.096 m. Thus, the limit state

function is expressed as

(9)

The results are shown in Table 9. From the table, one can see that the proposed method with few

simulations achieves excellent accuracy. The exact values in Table 10 are obtained from Zhao

(1996).

Ii αi Ai

2
= α1 α2 α3 0.08333= = = α4 0.26670= α5 0.2000=, ,( )

E 2.0 10
7

KN/m
2×=

G A1 A2 A3 A4 A5 P, , , , ,( ) 0.096 uA A1 A2 A3 A4 A5 P, , , , ,( )–=

Table 7 Effect of initial value of hi on the estimates

Method

Initial value of hi 

hi = 1.0 hi = 1.5 hi = 2.0 hi = 2.5 hi = 3.0

β pf β pf β pf β pf β pf

RSM 2.612 4.496e-3 2.698 3.486e-3 2.731 3.160e-3 2.772 2.786e-3 2.791 2.625e-3

Proposed method 2.820 2.398e-3 2.819 2.409e-3 2.817 2.427e-3 2.813 2.453e-3 2.808 2.49e-3
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Fig. 6 Linear portal frame of Example 4

Table 8 Statistics of the random variables for Example 4

Variable Mean Standard deviation Dimension Distribution

A1 0.25 0.025 m2 Lognormal

A2 0.16 0.016 m2 Lognormal

A3 0.36 0.036 m2 Lognormal

A4 0.20 0.020 m2 Lognormal

A5 0.15 0.015 m2 Lognormal

P 30.0 7.5 kN Type I largest

Table 9 Results of Example 4

Method β pf

RSM 1.4469 7.396e-2

Proposed method 1.4264(300) 7.688e-2

Exact results (Zhao 1996) 1.4391(2000) 7.5058e-2
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3.5 Example 5: Geometrically nonlinear truss (implicit limit state function)

A geometrically nonlinear truss, studied by Frangopol and Imai (2000), is considered in this

example. The geometry of the truss as shown in Fig. 7 is assumed to be deterministic. The cross-

sections of the members (A1 = A2 = 250 mm2) are assumed to be identical and deterministic. The

statistics of the random variables considered are listed in Table 10. Taken from Frangopol and Imai

(2000), the limit state function is defined as

(10)

where = the vertical displacement at the node 2. 

The reliability of the truss was analyzed using the proposed method and RSM. Two types of

reliability analysis are considered: (1) linear reliability analysis; and (2) geometrically nonlinear

reliability analysis. The computational results are presented in Table 11. Note that the exact values

in this table are obtained using the proposed method with a coefficient of variation less than 6%.

From this table, one can find that when the exact reliability index is small, both the proposed

method with few simulations and the RSM give very good approximations for the linear and

geometrically nonlinear reliability analyses. When the exact reliability index is extremely large (e.g.

β = 7.85), the RSM produces large errors, even not converged. The proposed method with few

simulations provides good results. 

G P E,( ) 0.25 v2 P E,( )–=

v2 P E,( )

Table 10 Statistics of the random variables for Example 5

Variable Mean Standard deviation Dimension Distribution

P

4.5
9.0

13.5
18.0

2.25
4.5

6.75
9.00

KN Normal

E1 200 10.0 GPa Normal

Fig. 7 Geometrically nonlinear truss of Example 5
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4. Application to an example long span cable-stayed bridge

4.1 Description of the example bridge

The example cable-stayed bridge studied here is the Second Nanjing Bridge, with a 628 m central

span length, which is now the longest cable-stayed bridge in China. The bridge span arrangements

are (58.5 + 246.5 + 628 + 246.5 + 58.5) m. There are six traffic lanes. The elevation view of the

bridge is shown in Fig. 8. 

The bridge deck is a 37.2 m wide and 3.144 m deep steel box. The bridge towers are the

diamond-shaped concrete towers of 196 m high. For more details of the bridge, the reader is

referred to Tang (2001), Xiang (1997). 

Table 11 Results of Example 5

Load 
(KN)

Linear reliability analysis Nonlinear reliability analysis

RSM
Proposed 
method

Exact results RSM
Proposed 
method

Exact results

P = 4.5
β = 7.574

pf = 1.810e-14

β = 7.822
pf = 2.600e-15

(300)

β = 7.850
pf = 2.600e-15

(30611)

Not 
converged

β = 10.560
pf = 2.283e-26

(300)

β = 10.581
pf = 1.825e-26

(30902)

P = 9.0
β = 3.341

pf = 4.174e-4

β = 3.345
pf = 4.114e-4

(300)

β = 3.350
pf = 4.041e-4

(6324)

β = 5.289
pf = 6.149e-8

β = 5.284
pf = 6.320e-8

(300)

β = 5.289
pf = 6.149e-8

(3029)

P = 13.5
β = 1.622

pf = 5.240e-2

β = 1.621
pf = 5.251e-2

(300)

β = 1.622
pf = 5.240e-2

(1000)

β = 3.013
pf = 1.293e-3

β = 3.012
pf = 1.298e-3

(300)

β = 3.013
pf = 1.293e-3

(1586)

P = 18.0
β = 0.730
pf = 0.233

β = 0.727
pf = 0.234

(300)

β = 0.729
pf = 0.233

(1000)

β = 1.800
pf = 3.593e-2

β = 1.800
pf = 3.593e-2

(300)

β = 1.800
pf = 3.593e-2

(1000)

Fig. 8 Elevation of the 2nd Nanjing Bridge (Unit: m)



624  Jin Cheng and Ru-Cheng Xiao

4.2 Nonlinear considerations and finite element modeling 

A long-span cable-stayed bridge exhibits geometric nonlinear characteristics under loadings. These

geometric nonlinearities come from the cable sag effect, axial force-bending interaction effect, and

large displacement effect. 

The major structural components of a cable-stayed bridge are the cables, the towers and the

stiffening girders. The finite element modeling of these components can be accomplished with the

aid of two basic elements: truss element (cable element) and beam element. Plane beam elements

were used to model the girder and towers. The cables were modeled by plane truss (cable)

elements. Three finite element models are considered in the following reliability analysis. In Model

1, geometric nonlinearities are not considered. In Model 2, only axial force-bending interaction

effect and large displacement effect of the geometric nonlinearities mentioned above are considered.

Each cable is treated as a plane truss element. In Model 3, all geometric nonlinearities mentioned

above are accurately considered. A single two-node catenary element proposed by Karoumi (1999)

is used in modeling each cable. The main advantage of the element is its ability to accurately

account for cable sag effects. In this paper, an incremental-iterative method based on the Newton-

Raphson method is employed for the solution of geometric nonlinear problems. The solution

method has been implemented in a deterministic analysis program called NASAB (Cheng 2003).

There is no restraint between the girder and towers. In this case the bridge girder swings freely at

towers (called a floating system). All other supports of the girder are assumed to be simply

supported (moveable hinge restraints).

4.3 Reliability analysis

Sectional properties (Ai, Ii), elastic modulus (Ei), weight per unit volume of material (γi), and

applied live loads (q) are chosen as the random variables of interest for this study. The statistical

descriptions of these random variables are shown in Table 12. They are similar to the ones given by

Chen (2000). For simplicity, the applied live loads are assumed to be uniformly distributed on the

bridge deck. Two uniform live load cases are considered in the reliability analysis. Live load case I

is the live load uniformly distributed in all spans. Live load case II is the live load uniformly

distributed only in the central span. It should be pointed out that the live load model and mean

value of load is simply taken as the design value found from the Chinese design code (Highway

Cable-stayed Bridge Design Specification in China (JTJ027-96) 1996).

After the long span cable-stayed bridge is completed, and before the live load is applied, the

bridge has sustained large dead load deformations and stresses in each member. To consider the

effect of dead load, the reliability analysis should involve two steps: (1) the initial shape of the

cable-stayed bridge under dead loads is determined. The finite element computation procedure

proposed by Wang et al. (1993) is adopted for determining the initial shape of cable-stayed bridges

under dead loads. The computation procedure has been implemented in a deterministic analysis

program called NASAB; and (2) based on the determined initial shape, the reliability analysis is

performed. In the analysis, serviceability failure is defined to occur when a deflection exceeds an

allowable deflection limit. The allowable displacement at midpoint of center span, δallow , is

considered not to exceed L/400, where L is the central span length. The value 400 is obtained from

(Highway Cable-stayed Bridge Design Specification in China (JTJ027-96) 1996). Of course, any

other value can be used for this purpose. For this example, δallow becomes 1.57 m and the
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serviceability limit state can be represented as:

  (11)

where = the vertical displacement at midpoint of center span. It should be pointed out that

the following computation results are obtained using the proposed method with a coefficient of

variation less than 5%. 

Fig. 9 shows the effect of geometric nonlinearities on the serviceability reliability of a long span

cable-stayed bridge under live load case I. From the figure, it can be seen that (1) the reliability

results obtained by the model 1 are higher than those obtained by the models 2 and 3. This implies

that reliability analyses neglecting all geometric nonlinear effects overestimate the serviceability

reliability of the cable-stayed bridge under live load case I; (2) the difference in the reliability index

between the two models 1 and 2 is small. This implies that the effects of axial force-bending

G x( ) 1.57 ymid x( )–=

ymid x( )

Table 12 Statistics of the random variables for example bridge

Random 
variables

Substructures
Distribution

types
Mean value

Standard
deviation

Elastic 
modulus

E1 Girder Normal 2.1×108 kN/m2 2.1×107 kN/m2

E2 Towers Normal 3.5×107 kN/m2 3.5×106 kN/m2

E3 Cables Normal 1.85×108 kN/m2 1.85×107 kN/m2

Cross
 sectional

areas

A1 Girder Lognormal 1.697 m2 0.08485 m2

A2 Towers, 152.11-195.41 m Lognormal 18.19 m2 0.9095 m2

A3 Towers, 41.41-152.11 m Lognormal 18.44 m2 0.922 m2

A4 Towers, 0-41.41 m Lognormal 33.07 m2 1.6535 m2

A5 Cables 
(no.15-19,22-26,55-59,62-66)

Lognormal 1.0698×10−2 m2 5.349×10−4 m2

A6 Cables
(no.11-14,20-21,27-30,51-54, 

60-61,67-70)

Lognormal 1.2546×10−2 m2 6.273×10−4 m2

A7 Cables
(no. 8-10,31-35,46-50,71-73)

Lognormal 1.5316×10−2 m2 7.658×10−4 m2

A8 Cables
(no.3-7,36-38,43-45,74-78)

Lognormal 1.8548×10−2 m2 9.274×10−4 m2

A9 Cables
(no.1-2,39-42,79-80)

Lognormal 2.0396×10−2 m2 1.020×10−3 m2

Sectional
moments 
of inertia

I1 Girder Lognormal 3.404 m4 0.1702 m4

I2 Towers, 152.11-195.41 m Lognormal 41.397 m4 2.06985 m4

I3 Towers, 41.41-152.11 m Lognormal 43.40 m4 2.17 m4

I4 Towers, 0-41.41 m Lognormal 108.12 m4 5.406 m4

Weight per 
unit volume 
of material

γ1 Girder Normal 139.75 kN/m3 6.9875 kN/m3

γ2 Towers Normal 24.5 kN/m3 1.225 kN/m3

γ3 Cables Normal 76.85 kN/m3 3.8425 kN/m3

  Live load q Girder Normal

47.431 kN/m
59.288 kN/m
71.146 kN/m
83.004 kN/m

6.166 kN/m
7.707 kN/m
9.249 kN/m
10.79 kN/m
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interaction and large displacement in the geometric nonlinearities are negligible. However, the

difference in the reliability index between the two models 2 and 3 is large. This implies that the

cable sag in the geometric nonlinearities significantly affects the reliability of the cable-stayed

bridge. Hence, in the serviceability reliability analysis of long span cable-stayed bridges, the cable

sag effect of geometric nonlinearities cannot be ignored. In the following analyses, only model 3

mentioned above is used. 

Fig. 10 shows the effect of live loads on the serviceability reliability of a long span cable-stayed

bridge. Two live load cases as mentioned above are considered. From Fig. 10, it can be seen that

the reliability of the cable-stayed bridge under live load case II (uniformly distributed only in the

central span) is lower than that under live load case I (uniformly distributed only in all spans).

To investigate the effects of the support conditions of the bridge girder on the serviceability

reliability of a long span cable-stayed bridge under live load case I, three cases of the girder support

conditions used in Ren (1999) are considered. Case I: There is no restraint between the girder and

towers. In this case the bridge girder swings freely at towers (called a floating system). All other

supports of the girder are assumed to be simply supported (moveable hinge restraints). Case II: the

joint between the main girder and left tower is a fixed hinge, whereas another joint between the

main girder and right tower is a movable hinge, and all side piers are moveable hinge (roller)

supports. Case III: it is assumed that there are some restraints between the girder and towers where

the left joint is a fixed hinge restraint and the right joint is a moveable hinge restraint. Nevertheless,

both ends of the girder are assumed to have fixed hinge supports. The middle side piers still have

moveable hinge supports. It should be pointed out that the floating system denoted as Case I in the

paper is the actual connection of the bridge modeled as for design purposes. The other two cases of

the girder support conditions are chosen in this paper for comparative purposes. The reliability

indices in these three cases are summarized in Table 13. From this table, it can be seen that the

serviceability reliability of long span cable-stayed bridges is dependent on the manner of the support

conditions of the bridge girder. Small restraints result in lower reliability, whereas stronger restraints

lead to higher reliability. Therefore, it is very important to select the appropriate support conditions

of the bridge girder to enhance overall reliability of long-span cable-stayed bridges.

Fig. 9 Serviceability reliability index, β for several
mean live loads, q for models 1,2 and 3 (live
load case I)

Fig. 10 Serviceability reliability index, β for several
mean live loads, q for live load cases I and
II (Model 3)
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4.4 Sensitivity analysis

An important step in the structural reliability analyses is the sensitivity analysis of reliability

indices. This helps identify the important parameters. On the other hand, sensitivity analysis is also

useful in reducing the size of problems with a large numbers of random variables. This is because

that, in general, only a few variables have a significant effect on the structural reliability (Haldar

2000). Some literature is available on sensitivity analysis of reliability indices. Liu and Der

Kiureghian (1991) presented extensive analyses of reliability sensitivities with respect to parameters

defining the random fields. The results indicate relative importance of the basic variables and fields

for the static behavior of the plate. Imai and Frangopol (2001, 2002) carried out sensitivity analyses

of reliability indices with respect to the mean values and standard deviations of the variables of

interest. The results indicate that the wind load and resistance are the most influential variables on

the reliability of suspension bridges. To the writers’ knowledge, there has been no investigation on

the influences of the random variables on the reliability of cable-stayed bridges. In this section,

sensitivity analysis is used to identify the influences of the random variables on the reliability of

cable-stayed bridges. Of particular interest in this study is sensitivity measures with respect to the

mean and standard deviation of each random variable. The sensitivity measures are formulated as

indicated by Bjerager and Krenk (1989) 

 (12)

u* = β · α

βd

θd
------ α

T u*d

θd
--------=

Table 13 Comparison of reliability indices for various cases

Case Case I Case II Case III

β 5.764 5.854 6.454

Fig. 11 Sensitivity of reliability indexes with respect to (a) mean value, (b) standard deviation (live load case I
and Model 3)
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where  and α = the outward unit normal vector to the limit state surface in u*. Here θ is

the mean or standard deviation of each random variable.

The results of the sensitivity analysis are presented in Fig. 11. The results show that the cable area

has the most influential effect on the reliability of cable-stayed bridges. This illustrates the reasons

why the cable sag effect of geometric nonlinearities cannot be ignored for evaluating the reliability

of cable-stayed bridges. It can also be seen from Fig. 11 that as the loads increase, the effect of the

cable area on the bridge reliability reduces. The reason is the increase in stiffness with increasing

loads. 

5. Conclusions

A reliability analysis method has been proposed in this paper through a combination of the

advantages of RSM, FEM, FORM and the importance sampling updating method. Using the RSM

method combined with FORM, the proposed method can calculate the reliability of complex

structures of which the limit state functions are not known explicitly. Also, it is possible to use the

existing deterministic finite element code without modifying it. By introducing the FEM, the

proposed method can be used to perform finite element reliability analysis. The use of importance

sampling updating technique in the proposed method has the following advantages: (1) it makes the

proposed method obtain very good results with few simulations. Thus, significant reduction in

computing time is achieved compared to the direct Monte Carlo simulation (MCS); (2) it makes the

proposed method be insensitive to noise; (3) it makes the proposed method provide better results

than using the RSM and RSM-MCIS methods. This is because the importance sampling updating

technique is based on the actual limit state surface. Another advantage of the proposed method over

the RSM is that it is insensitive to the values of an arbitrary parameter in RSM, hi. The proposed

method is particularly useful for extremely small failure probability problems. The accuracy and

efficiency of the proposed method is compared through five examples. 

The proposed method has been applied to estimate the serviceability reliability of a long span

cable-stayed bridge. It was found that: (1) the cable sag in the geometric nonlinearities of cable-

stayed bridges has a major effect on the reliability of cable-stayed bridge; (2) with regard to live

loads, in the most cases, live load case II (uniformly distributed only in the central span) is more

risky to the long span cable-stayed bridge; (3) separating the girder from the towers reduces the

serviceability reliability of the long span cable-stayed bridge; (4) the effect of the cable area on the

reliability of cable-stayed bridges is significant.

It should be pointed out that the application of the proposed method is not limited to the

serviceability reliability analysis of cable-stayed bridges. Wider application of the proposed method

is being explored. 
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