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Abstract. Using the nonlinear load transfer function for pile side soil and the linear load transfer
function for pile end soil, a combined approach of the incremental load transfer matrix method and the
approximate differential equation solution method is presented for the nonlinear analysis of interaction
between flexible pile group and soil. The proposed method provides an effective approach for the solution
of the nonlinear interaction between flexible pile group under rigid platform and surrounding soil. To
verify the accuracy of the proposed method, a static load test for a nine—pile group under a rigid platform
is carried out. The finite element analysis is also conducted for comparison purposes. It is found that the
results from the proposed method match very well with those from the experimental test and are better in
comparison with the finite element method.
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1. Introduction

Composite pile foundation, also known as small settlement pile foundation, is a kind of
transition between natural and pile foundation. The most often seen flexible piles in composite
foundations are: soil pile, ash-soil pile, lime pile, cement coal-ash granular pile, etc. As
composite foundations are widely used in engineering practice, a question of how to determine
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the load carrying capacity and the settlement of the composite foundation become one of the
most important problems in geotechnical engineering. In-situ static load test is considered as the
most reliable method. However, the characteristics of composite foundations are that the pile and
its surrounding soil both take load; therefore, relatively large area of loaded test is needed to get
desired results. Large load test is relatively more expensive. Therefore, it is desirable to search
for simple and satisfactory computational approaches that meet engineering accuracy. It is well
known that, under foundation load, the loads carried by each flexible pile are different (Canetta
and Nove 1989, Hooper 1973. Poulos and Davis 1980). How to determine the distribution of load
for each pile and its surrounding soil under the foundation and the transfer rule for each pile are
important research topics in the field of soft foundation engineering. Presently, the finite element
method is the most commonly used method in the analysis of this type of composite foundation.
In general, there are two types of finite element methods used in this field: the first one is the
traditional “group pile” finite element method (Canetta and Nove 1989, Haddadin 1971, Balaam
et al. 1977). This method requires separate elements for a pile and its surrounding soil in the
reinforced area. Meanwhile, in order to simulate the pile-soil interaction between their
boundaries, one can put a contact element at the interface. The advantage of this method is that it
can analyze the loading mechanism of the soft foundation reinforced by flexible piles. However,
for large-scale soft foundation reinforced by pile group, because of huge degrees of freedom
involved, the calculation becomes very complicated and time consuming. The second method is
the composite constitutional finite element method (Randolph and Worth 1978). This method
regards the reinforced area as an inhomogeneous composite material made of piles and their
surrounding soil, then the constitutional equations that govern the whole soft foundation
reinforced by the flexible piles can be established. Finally, the finite element method is used to
solve the equations. This method divides the foundation into discrete elements without
consideration of the existence of the piles, therefore, the method can not take into account the
interaction between the piles and their surrounding soil.

Juran and Riccobono (1991) concluded through experiment that the load transfer mechanism of a
single pile is quite different under side load condition. They also stated that because the
development of the load capacity of the soil between piles, the piles under composite foundations
behave differently from a single free pile. Other researchers using Geddes stress coefficient studied
the interaction between the pile box (mat) foundation and the surrounding soil according to the
compatibility of the displacement of the pile and soil (Randolph and Worth 1979).

Because the load transfer method can reflect the nonlinear characteristics of the pile side soil
relatively well (Liu et al. 2004), a case where nine piles under a stiff platform will be considered
herein and the load transfer method will be used to analyze the nonlinear interaction between the
piles and soil. For pile side soil, nonlinear load transfer function will be used. And for pile end soil,
linear load transfer function will be adopted. This paper for the first time presents a combined
approach of the incremental load transfer matrix method and the approximate differential equation
solution method for the analysis of the title problem. To verify the accuracy of the proposed
method, a static load test is carried out for a nine-pile group under a rigid platform. The finite
element analysis is also conducted for comparison purposes. It is found that the results from the
proposed method match very well with the data from the test and are in closer agreement with the
measurements than those from the finite element method.
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2. Pile side load transfer function and basic assumptions
2.1 Load transfer function

The skin friction (shear stress) at the shear surface between the pile and pile side soil can be
described by the hyperbolic curve model as follows (Juran and Riccobono 1991, Xiao ef al. 2002,
2003):

- w(@) 1
T(Z) g + boW(Z) ( )
where w(z) is the relative displacement at the shear surface, gy and b, are the parameters of the load
transfer of the pile side soil.
Differentiating Eq. (1) can obtain the shear stiffness of the shear surface:
k(z) = —20 @
[ag + bow(2)]

2.2 Basic assumptions

To study the interaction between pile #1, 2 and 3, zones I, II and III are divided and shown in
Fig. 1. From the load and geometric symmetry, it is observed that the shear stress on the boundary
of zone I is equal to zero (Alamgir et al. 1996). Also, the shear stresses on boundary BE, BC, FC,
HC for zones II and TIT are neglected. Considering the nonlinear behavior of the load transfer and
the shear stiffness k(z) change with z, each pile and the corresponding pile side soil are divided into
N sections. In each section the local coordinate is established as z,, (i=1, 2, ..., N, m=1, 2, 3),
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Fig. 1 (a) System of the pile-soil, (b)(c) Stresses acting on element of pile and soil, respectively
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where m represents the number of pile. 4, is the length of the i-th pile (i=1, 2, ..., N). Also, the
total load is the summation of the load increment acting on each subject, i.e., P, = AP,(,,13+APE,128+ e
+AP%+...+AP%').

1) Neglecting the radial displacement of the pile side soil and the vertical displacement of soil
outside the foundation; assuming the axial deformations of the pile and pile side soil are
uniform.

2) Assuming the foundation is rigid, i.e., the vertical displacements at the bottom of the
foundation are identical for each pile.

3) Assuming the relationships between the friction increment caused by various load increments
for each section of the pile and its side soil and the relative displacement increment at the shear
surface are linear, i.e.,

smi

Arp();)l (Zml) = kpmi[Aw[SJ/Bl(Zml) - AW o (Zmi)] (3)

A/[.s(')/gi(zml) = k.s'mlAW v (Zmi) (4)

smi

where Az )(z,,,,), ALY (z,;) are respectively the increments of friction on the i-th pile section and

its surroulp1ding soil induced by the j-th level load at the m-th pile. Awih.(z,,), Aw')(z,,) are
respectively the increments of axial displacement on the i-th pile section and its surrounding soil
induced by the j-th level load at the m-th pile. k,,, and k,,; are respectively the shear stiffness (kN/
m’) between the i-th pile and its surrounding soil, and the shear stiffness of the soil for the m-th pile
under the j-th level of load. In the increment method of nonlinear analysis, usually they are
substituted with the shear stiffness under the (j — 1)th load increment; its value is obtained from the
total relative displacement of both sides of the shear surface using Eq. (2). In this paper, the

following two formulas are used to obtain k,,,, and k,,, under the j-th load increment.

mi

For pile side: kpmi = ( l)ao 5)
-

[ag + bo(w i (0) = w Vo]’

a,

Outside the boundary of the subject of the study: %, = p
[+ 61w, (0)]

(6)
where aqy, by, a; and b, are the parameters of the transfer function of the pile surrounding soil.

B Jj=1 .
Woms (0) = 3" Awp))(0)

j=1
Jj=1

wir (0) = 3T Aw()(0)
Jj=1

where Aw,g',’,,),(O) and Aw‘f,',ﬁ,),-(O) are the axial displacement increments of the m-th pile induced by
the j-th load increment at the bottom of the i-th section of the pile and its surrounding soil,
respectively.

4) The resistance forces at the pile end and its surrounding soil are assumed to follow the linear

models,
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Dy = kpsy (7a)
ps = kbss (7b)

where k;, is the stiffness of compression of the soil at the pile end. s, is the displacement at the pile
end, and s, is the displacement of the pile surrounding soil at the pile end.

3. Nonlinear analysis of the interaction between piles and soil

3.1 The interaction between number 1 pile and soil
The pile-soil system depicted in area I is selected as the study object. If the load increment AP fé)
is added to the object, then in the i-th segment of the pile at cross-section z;; the increment of the
internal force AP,S")]-(ZI,) will be induced. Considering the differential segment d.;; of the i-th
segment, as shown in Fig. 1(b), using the Hook’s law and the equilibrium condition, the differential

equation is:

2 ) ) )
LA - 2Ky (2, ) - Awd)(z,,)] (8)
dzi, E,r

dAw(j),- Zy;
AP (z) =m0 1)
dz,;

where E, is the elastic modulus of the pile and r; is the radius of the pile.

The same analysis can be applied to the soil around the pile. The increment of the internal force
APE’I),(ZI,) is induced by the increment load, the governing differential equation for the surrounding
soil shown in Fig. 1(c) is,

©

d’Aw(z,)

e — A [Awl(z1) - awdl(20)] (10)
Z1i
(@)
APOz,) = —E (ab - o) TR an
dz,,
where A, = A/2 zrik, i/ E(ab— mﬂf); E, is the deformation modulus of the surrounding soil; the
definitions of @ and b are given in Fig. 1.
Combining Eqgs. (8) and (10), one obtains
4r ) 2,00
d A‘/Vpi‘l(zll) _/ulzd Awpl;(zll) =0 (12)
dz,, dzy;
where g, = J A0, + 2, (= 1,2, 0y N)s Aoy = 2k, /E
Solving Eq. (12), we obtain,
Aw(z1) = e+ erz + i e (0<z,<hy) (13)

where c,(i =1,2,3,4) is undetermined coefficient.
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Substituting Eq. (13) into Eq. (10), we have,

A1 —A51i21i HiZy; —HiZy;
Awg’l),(zl,) =cse e e +cyzy rAicse v Aice N (0<z,<hy)  (14)

where 4, = /l‘l,//i i (E=1,2, .., N). c(i =5, 6) is undetermined coefficient.
From the differential equation theory it can be seen that Eq. (8) cannot be solved exactly by
Egs. (13) and (14). Therefore, an approximation method, the sub-domain method is used herein to

solve Eq. (8). Egs. (13) and (14) satisfy the following two integral equations, then they will satisfy
Eq. (8) approximately.

hy (2 (@)
pRn) 2% ZUaw i(z1) = Awll ()] dzy, = 0 (15)
o 2 £ o
lel ]7
2 )
LG Zhagp ) 2, - aw )] [z, = 0 (16)
it dz’ Er
3 214 phl
Substituting Eqs. (13) and (14) into Egs. (15) and (16), we have,
Cs = T7]iC3 + §IC4 (17)
¢ = Bics+ yicy (18)
where n = afl _e(/’i+/1s1i)/71/2]/(] /11 1)(6/1s1ih1i/2_ 1);
é:, — ale—ﬂ;h1;/2[] _ e(’{sli_/ui)hli/z]/(] . e}'elihli)(e’{slihli/z _ 1) :
,B, — 0(,[1 _ e(/ui_}'sli)hli/z]/(e_lslihli . 1)(6—41:"11‘/2 _ 1) .
a2 —(tt; + 21)h1/2 1’2

7= ae =T e

(1=, — 212 )" = DAy, ((=1,2,...,N)

RN
Il

Substituting Eqs. (13) and (14) into Eqgs. (9) and (11), we obtain the increment of the axial forces
AP(l)(le) and AP&II(ZII)

pli

3.2 Pile-soil interaction of number 2 and 3 piles

Using the same approach as that presented in section 3.1, we obtain the axial displacement
increments of the pile number 2 and its surrounding soil.

) i —H1iZy; HiZa; —HyiZs;
[121(221) = Clce + Cr.€ + C3.€ + C4c€ (0 = 27 < h21) (19)

(/) AsaiZai A —HiZ);
Awg(z5,) = ¢s.e +Cgel +A1,Cu +A1102L +A2,C3L +Azlc4¢ (20)
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Cse = ﬂlicle + }/llc2e + ﬂ2lCSL’ + 7/2lc4c (2])

Coe = TiC1e+ S1:C2e + ThiC3e + $2iCue (22)
where ¢, (i =1,2,3,4,5, 6) is undetermined coefficient.
= O+ B =412 5t = = B = 4012 5 Ay = R 1)
Ao = Ui+ A0)s Zoi = 2B = 4003 2o = W2k [ Epro

doy = Wbk, + 270k, )E(a\b— 12y, 4y = 2705k 0/ Ey(ayb — 1)

(Agoi + M) hyil2 }'\’Zthl Agaihyil2

Bi = au(l-e )/ (1~ )e 5

7/]”. _ akl(e—/lk,hzl/Z _ e(im—2/1]“)/12,/2)/(] /Lzlhz,) Agrihyi/2 .

ay = A€ ™" D Ay g ) (€ 1)

M = aki_ﬂkie/lmhm/z; ki = akie_ﬂklhb/z = ki€ el *k=12i=12,..,N)

Using the Hook’s law and Eqs. (19) and (20), the increments of the axial force on the i-th
segment and its surrounding soil of the number 2 pile, AP;Q,(zz,) and APEé),-(zz,) , can be found.
Substituting the subscript 2 with 3, the increments of the axial displacement Aw;’;,(z3,),
Aw\(z5,) and the increments of the axial force AP ;’3),(23,) APY)(z5,) on the i-th segment of the
number 3 pile and its surrounding soil can be found.
The axial displacement increments and force increments can be written in the following matrix

form,

MDD [B0Ey o o |fc
A @)= 0 H)zy o |1€ (23)
AXéjl (Z3i) 0 0 ngl)(ZBj) Ca

where AYY)(z,,), AXY(z,,) and AXY(zs,) are respectively the state vector increments of piles 1,2
and 3 and their surroundlng soil under the j-th load increment. AX,(,,’,) (zn) = [Aw,&f,),, Z,,) AP f,),,-(zm,-)

Awf,/,,),(zm,) APE,’,,),(Z,,,,)] (m=1,2, 3) C, C, C, are undetermined coefficient matrices, C. = [¢;
e c3 i)y Co=1[cre e C3e Cael’s Ca=[Crla Cou C3a Caal’- H,(,,/])(Zm,) is the transfer matrix.

1 21 eﬂizli e_'uiz“

H( i(z1) = 0 _Eﬁm% (z1)  6i(z1)
21 Fi(z1) Gi(z1)

0 —E(ab-m) f(z) &)
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HyiZ2; ~H1i%2; %3 ~HiZa;
e e e e

Hgl)(zzi) — | 2i(z2) 01(z2)  0(z2)  6r(220)
Fii(z2) Gii(z2) Fri(z) Grlzy))
NHi(z0)  g(z)  fHilz)  gi(22)

Substituting the subscript 2 with 3 in H(z’,)(z2 D Hg’,-) (z;,) is obtained.

iZ1i

Where wl(Zli) = _Epﬂ?’%ﬂleﬂi:“; 01(211') = Epﬂ-r?/ule_ﬂ 5

HiZyg Az —Ag1i71;
A"+ e + fie ;

1

Fi(le)

As1i%1

_IZI j’.\’lzl _.\'l i
Giz)) = die "+ e+ e

—Ae1i%1i

fi(z1;) = —E(ab— W%)(Aiﬂieﬂh + Uiﬂv.sflie/lmz}l — B A e )5

g(z1) = —E(ab—mr) (= A" + &y = e

Pu(22) = “Emape s 0(z0) = Eymape

Fi(z) = ﬂk,elmzﬁ + nkle_/lﬁ’zz" + Ak]_eﬂki:z,-

Gii(zy) = 7//(,-6/1“2':2' + fk,e_i‘vz'zz’ + A, (k=1,2)
Ji(z2) = —EJ(ab, - W;)(ﬂklﬂ’s2le/1ﬂi22i - Ukiﬂvsz,-@_lmzzj + Akiﬂkie/lki22i)

2 AgpiZai —AgiZa; “HiiZai
gkl(Z21') = _E.s'(albl - ﬂTZ)(ykl/,i’SZIe ’ - ékl/l.ﬂ’ZIe ’ _Akl/ukle ‘ 2)

The boundary conditions of the i-th segment and its surrounding soil are,

A Zadl.

Awg(0), AwG(z,)| o= Aw(l(0)

9) 9) %) 9) (m=1,23) @4
APp{ni(Zmi)L =0 = -AP y (0)> APsfnl(Zml)lz =0 = _APsfnl(O)

pmi

where Aw,(,’f,f,-(O) and AP,(;Q,-(O) are respectively the displacement increment and the axial force
increment of the m-th pile at the i-th segment under the j-th load increment. r, and r; are the radius
of the piles 2 and 3, respectively. Aw‘f’,’,,),(O) and APE,/,,) /(0) are respectively the displacement
increment and the axial force increment of the surrounding soils of the m-th pile at the i-th segment
under the j-th load increment.

Substituting Eq. (24) into Eq. (23), we have,
C HP0) 0 o | [AX7(0)
Cor=1| o HYO0) 0 AX5)(0) (25)
Ca 0 0o HY©O) Axi(0)

[}
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where AX(’)(O)(m =1,2,3) are the state increment vector of the m-th pile at the i-th segment

mi

under the j-th load increment.
Substituting Eq. (25) into Eq. (23), we have,

AXP (211 2, 23) = D (211 220 23,)AX(0) (26)
where Aij)(Zln Z)js 23/) = [AijI)(le) AX(Z’I)(ZZI') AXS’I)(Z:U)]T;
AXP(0) = [AX(0) AXY)(0) AXY(0)];

H(ljl)(zll) 0 0 H(lj,)(O) 0 0
) —
Dy (21, 235 231) = 0 Hg,)(zzi) 0 0 Hé’,)(O) 0
0 0 H{@E)|| 0 0 HI(0)

The continuity condition for each segment is,
AXL(0) = AX(hyy by by G= 1,2, My = 1,2, N 1) 27

where AXfQ 1(0) is the state increment vector of the (i+1)-th segment under the j-th load increment
at the bottom of the pile and its surrounding soil. AXf/ ) (hy;, hy,y hy;) is the state increment vector of
the i-th segment under the j-th load increment at the top of the pile and its surrounding soil.

AXY)(0) = [AXY), 1(0) AXY),,(0) AXY), (0)]
AXD By oy by = [AXD (R AXS)(hy) AXY) (B3]

From Eqgs. (26) and (27), we have,
1

AXY = (HDW(/@.,-, B hg,-)JAXX) (28)

i=N
where  AXY = [AXQ(hy) AXS(hyy) AXD(hs)] s
AXY = [AXY(0) AXY)(0) AXY(0)]';

AXD () = [AsD) APY), AsD) APDY (m=1, 2, 3);

pm pm

kA, A5 m=1,2, 3)

/) () ) )
A‘Xf71l(0) = [Asbm _khAhmAshm As sm sm

sm

As?) and As”) are respectively the settlement increments of the m-th pile under the i-th load

pm m

increment. AP;’,}, and APEZ are respectively the load increments at the top of the m-th pile under
the j-th load increment.AsY) and Asﬁ,’,,{ are the displacement increments at the bottom of the m-th
pile and its surrounding soil under the j-th load increment; A, and 4, are the cross section areas of

the m-th pile and the surrounding soil, respectively.
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From Eqgs. (26) and (27), the total displacement and internal force can be obtained as follows,

J J
) . )
z AM/‘njml(zmi) > Wsmi(zmi) = Z Aws{ni(zmi)

J=1 J=1

mel(zmi)
(29)
J ) J
Ppml(Zml) = z AP;;)?/(Z)71i); Psmi(zml) = Z AP.SIIH)I(Zmi)

Jj=1 J=1

From Eq. (28), the load distributed to each pile and its surrounding soil P,, and P,, and the
settlement at the top of the pile and its surrounding soil s,, and s,, under the j-th load can be
obtained,

J J
- . — ()
spm - Z Aspm: Sim = Z Aslm
J=1 J=1

_ (30)
J J
. )
P, = S APD: P, =3 AP

pm> tm
J=1 J=1

The proposed method can be used to determine the load-settlement curves for each pile and its
surrounding soil under any platform load. Also it can be used to obtain the relationship between the
cross-section axial force and the skin friction changing with depth.

4. Experimental and computational results
4.1 Experiment condition and content
Soil was uniformly distributed at the site for each case considered herein. Underground water

depth was below 4.5 m. The soil was powder clay. Its physical coefficients were dry density
70=14.6 KN/m’, and liquidation limit w;, =30%, plastic index I,=118.%%, natural water content

‘ rigidity load plate ‘ " plastic pipe
!—41 BEEREREKENERE]
]

T

i
i T
1) N
[N ] N}
RN I 1
* [ 4

an ar

2.
- - =

Jlaed v L

pile: 20 \|Istrain slice |

, L)

V

Fig. 2 Static load test of pile cap
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w = 20%, natural density y=17.5 kN/m’. The on-site experiment conducted included rigid platform
test (nine piles under the platform, as shown in Fig. 2) and foundation soil load test. A rectangular
rigid plate L; x L, =3.0 x 3.0 m was used for generating the loading. The flexible piles were a type
of condensed cement-soil pile with 20% cement. From the experiment it was found that its 14 day
compress strength with no lateral force g, =4.6 MPa, and Young’s modulus E, =365 MPa. The
manually dug and compacted pile was 3.50 m long with 0.35 m in diameter. The spacing between
piles was 1.05 m. The center of the side pile to the edge of the platform was 0.45 m. At the axis of
number 1, 2 and 3 piles, plastic pipes with diameter 3.0 cm were buried. The wall of the pipes was
attached with strain gages. They located at 0.0 m, 0.5 m, 1.0 m, 1.5 m, 2.0 m, 2.5 m, 3.0 m and
3.5 m from the top of the piles (as shown in Fig. 2).

4.2 Results from the finite element analysis and the proposed method

In order to examine the accuracy of the proposed method, both experimental measurements and
the finite element analysis were conducted to find the distribution of the pile friction along the
length of the pile. When the finite element method was used, the calculation area was selected
according to the previous studies (Schweigher and Pande 1986, Butterfield and Banerjee 1971).
Also the load exerted on the loading plate was equivalent to the uniform load. The linear elastic or
the Duncan hyperbolic curve model was used as the constitution model of the soil. The Young’s
modulus of the soil E, was obtained from the soil load test and was found to be E,=3.67 MPa; the
Poisson ratio was selected as 0.3. The Young’s modulus of the plate was 2.06 x 10°MPa; the
Poisson ratio of the pile and the plate was selected as 0.2. For Duncan hyperbolic curve model, the
coefficients were ¢=16.0kPa and ¢=24°. Other parameters included: elastic modulus number
K =150, unloading modulus number K,,= 368, elastic modulus index » =0.35, ratio of destruction
R,=0.85, experiment constants of Duncan hyperbolic curve model were G =0.238, F'=0.15 and
d=3.16. Using the proposed method, a pile and its surrounding soil were divided into 7 segments.
The parameters of the transfer function of the pile surrounding soil were: k,=1.35 x 10* kPa/m,
ao=1.04 x 10 m/kPa, hy=4.95x 102 kPa”', a;=1.174 x 10* m/kPa, h;=5.0 x 10°kPa"'. Fig. 3
shows the results obtained from the proposed method and from the on-site test, when the load
exerted on the pile cap was Py= 880 kN. It can be seen that: the most intense changes in the axial
force occurred in the number 3 pile along the pile length, while the slowest changes occurred in the

Axial force /kN
0 20 4p 60 80

... 1# pile(calculated curve)

________ 1# pile(test curve) >

=

_____ 2# pile(calculated curve) =
w2

_______ 2# pile(test curve) 3
3# pile(calculated curve) 3

........ 3# pile(test curve)

4

Fig. 3 Distribution of the axial force in pile section
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Skin friction T /kPa
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Fig. 4 Distribution of the skin friction along pile
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Fig. 5 Load-settlement curve of the piles cap

number 1 pile. This means that the pile friction is the largest for the number 3 pile and smallest for
the number 1 pile. Also, it can be seen that the reaction on the top of the number 3 pile is the
largest; the number 2 pile is the second; and the number 1 pile is the smallest. The ratios of these
reactions are pile 1: pile 2: pile 3 = 1: 1.62: 1.88. Fig. 4 shows the results from the proposed
method and Duncan hyperbolic curve model for Py= 880 kN. It can be seen that the pile friction is
the largest for the number 3 pile, the number 2 pile is next and the number 1 pile is the smallest.
Fig. 5 presents the results obtained by the proposed method is the closest to the experimental data,
thus verifying the accuracy of the proposed mothod.

5. Conclusions

1. Using the nonlinear load transfer function for pile side soil and the linear load transfer function
for pile end soil, a combined approach of the incremental load transfer matrix method and the
approximate differential equation solution method was presented in this paper for nonlinear
analysis of the interaction between flexible pile group and soil.

2. Tt was found that the distribution of pile friction was different for piles at different locations
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under the rigid platform. The friction and the reaction in the corner of a pile is the largest, on
the side is next and in the middle is the smallest.

3. The proposed method provides a new approach for the solution of the nonlinear interaction
between flexible pile group and soil. The numerical example shows that the results determined
from the proposed method match quite well with the experimental data and are in closer
agreement with the measurements than those obtained from the finite element method, thus
illustrating the proposed method is accurate and efficient.

Acknowledgements

The work described in this paper was fully supported by a grant from City University of Hong
Kong (Project No. 7001591). We are thankful for the assistances provided by Dr. J. Tang in
preparing the manuscript.

References

Alamgir, M., Miura, N., Poorooshasb, H.B. and Madhav, M.R. (1996), “Deformation analysis of soft ground
reinforced by columnar inclusions”, Computers and Geotechnics, 4, 267-290.

Balaam, N.P,, Poulos, H.G. and Brown, P.T. (1977), “Settlement analysis of soft clays reinforced with granular
piles’, Proc. of the 5th Asian Regional Conf., Bangkok, 1, 81-92.

Butterfield, R. and Banerjee, P.K. (1971), “The problem pile-group-pile cap interaction”, Geotechnique, 21, 282-
297.

Canetta, G. and Nove, R. (1989), “A numerical method for the analysis of ground improved by columnar
inclusions”, Computer and Geotechnics, 7, 99-114.

Haddadin, M.J. (1971), “Mats and combined footings analysis by the finite element methods”, Proc. ACI., 68,
945-949.

Hooper, J.A. (1973), “Observation on the behaviour of a piled-raft foundation on London clay”, Proc. of the
Institution of Civil Engineers, 55, 855-877.

Juran, 1. and Riccobono, O. (1991), “Reinforced soft soil with artificially cemented compacted-sand columns”, J.
of Geotechnical Engineering, 117, 1042-1060.

Liu, J., Xiao, H.B., Tang, J. and Li, Q.S. (2004), “Analysis of load-transfer of single pile in layered soils”,
Computer and Geotechnics, 31, 127-135.

Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, New York: Wiley.

Randolph, M.F. and Worth, C.P. (1978), “Analysis of deformation of vertically loaded piles”, J. of the
Geotechnical Engineering Division, ASCE, 104(12), 1465-1488.

Randolph, M.F. and Worth, C.P. (1979), “An analysis of vertical deformation of pile groups”, Geotechnique, 29,
423-439,

Schweiger, H.F. and Pande, GN. (1986), “Numerical analysis of stone column supported foundations”, Computer
and Geotechnics. 2, 347-372.

Xiao, H.B., Luo, Q.Z., Tang, J. and Li, Q.S. (2002), “Prediction of load-settlement relationship for large-diameter
piles”, The Structural Design of Tall Buildings, 11(4), 295-308.

Xiao, H.B., Tang, J., Li, Q.S. and Luo, Q.Z. (2003), “Analysis of multi-braced earth retaining structures
considering various excavation stages”, Proc. of The Institution of Civil Engineers, Structures and Buildings,
156(3), 307-318.





