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Transient thermal stresses of orthotropic functionally 
graded thick strip due to nonuniform heat supply
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Abstract. This paper is concerned with the theoretical treatment of transient thermal stresses involving
an orthotropic functionally graded thick strip due to nonuniform heat supply in the width direction. The
thermal and thermoelastic constants of the strip are assumed to possess orthotropy and vary exponentially
in the thickness direction. The transient two-dimensional temperature is analyzed by the methods of
Laplace and finite sine transformations. We obtain the exact solution for the simply supported strip under
the state of plane strain. Some numerical results for the temperature change, the displacement and the
stress distributions are shown in figures. Furthermore, the influence of the orthotropy and nonhomogeneity
of the material is investigated.

Key words: thermoelasticity; functionally graded material; material orthotropy; strip; transient state;
exact solution.

1. Introduction

Functionally graded materials (FGM) have become of major interest as new material that is

adaptable for a super-high-temperature environment. Therefore, there are many analytical studies

concerned with the thermoelastic problems for the functionally graded materials. As the exact

treatments for thermoelastic problems of the functionally graded materials, several analysis were

done. Lutz and Zimmerman presented the exact solutions for one-dimensional thermal stresses of

functionally graded cylinder and sphere whose elastic moduli and coefficient of linear thermal

expansion vary linearly with the radius (Lutz and Zimmerman 1996, Zimmerman and Lutz 1999).

Jabbari et al. presented the exact solution for one- or two-dimensional thermal stresses of

functionally graded hollow cylinder whose material properties vary with the power product form of

radial cordinate variable (Jabbari et al. 2002, 2003). Assuming that the shear modulus of elasticity,

the thermal conductivity and the coefficient of linear thermal expansion vary with the power product

form of axial cordinate variable, the axisymmetrical thermoelastic probrem of nonhomogeneous slab

(Jeon et al. 1997) and three-dimensional thermoelastic probrems of semi-infinite body (Tanigawa

et al. 1999) were analyzed by analytical methods. The exact solutions for two-dimensional or three-

dimensional thermal stress of functionally graded beam whose thermoelastic constants vary

† Associate Professor, Corresponding author, E-mail: ootao@me.osakafu-u.ac.jp
‡ Professor

DOI: http://dx.doi.org/10.12989/sem.2005.20.5.559



560 Yoshihiro Ootao and Yoshinobu Tanigawa

exponentially through the thickness (Sankar and Tzeng 2002) and functionally graded rectangular

plate whose material properties vary with the power product form through the thickness (Vel and

Batra 2002) were reported. These papers, however, treated only the thermoelastic problems under

the uniform heating or the steady temperature distribution. As a transient thermoelastic problem,

Sugano had analyzed exactly one-dimensional thermal stresses of nonhomogeneous plate where the

thermal conductivity and Young’s modulus vary exponentially, whereas Poisson’s ratio and the

coefficient of linear thermal expansion vary arbitrarily in the thickness direction (Sugano 1987). Vel

and Batra analyzed the three-dimensional transient thermal stresses of the functionally graded

rectangular plate (Vel and Batra 2003) by extending the analytical technique reported in Vel and

Batra (2002). A transient thermal stress problem of functionally graded thick strip due to

nonuniform heat supply is analyzed by Ootao and Tanigawa (2004).

On the other hand, few analysis for thermoelastic problems of orthotropic functionally graded

materials can be found in Ye et al. (2001), Kawamura et al. (2001), Ding et al. (2003). To the

author’s knowledge, the transient thermoelastic analysis of the orthotropic functionally graded

materials has not been reported.

In the present article, we analyzed exactly the transient problem of thermoelasticity involving an

orthotropic functionally graded thick strip due to nonuniform heat supply in the width direction as a

plane strain problem by modify the method which was reported in Ootao and Tanigawa (2004). 

2. Analysis

2.1 Heat conduction problem

We consider an orthotropic functionally graded strip that has nonhomogeneous thermal and

mechanical properties in the thickness direction as shown in Fig. 1. The thickness and length of the

strip are represented by B and Lx, respectively. The coordinate axes x and z are chosen as shown in

Fig. 1. The strip is assumed to be initially at zero temperature and is suddenly heated from the

lower and upper surfaces by surrounding media with relative heat transfer coefficients ha and hb. We

denote the temperatures of the surrounding media by the functions Ta fa(x) and Tb fb(x) and assume

its end surfaces (x = 0, Lx) are at zero temperature. The thermal conductivity is assumed to take the

following form

(1)λx z( ) λx0exp az/B( ), λz z( ) λz0exp az/B( ) , a 0≠==

Fig. 1 Analytical model and coordinate system
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while the specific heat c and density ρ are constant. In Eq. (1), a is an arbitrary constant which is

not zero. Then the temperature distribution shows a two-dimensional distribution in  plane, and

the transient heat conduction equation is taken in the following form:

(2)

Substituting the Eq. (1) into the Eq. (2), the transient heat conduction equation in dimensionless

form is

(3)

The initial and thermal boundary conditions in dimensionless form are

(4)

(5)

(6)

(7)

In expressions (3)-(7), we have introduced the following dimensionless values:

(8)

where T is the temperature change; t is time; T0 is reference temperature; and κz0 is typical value of

thermal diffusivity.

To solve the fundamental Eq. (3), we introduce the finite sine transformation with respect to the

variable  and Laplace transformation with respect to the variable τ . Performing these integral

transformations under the conditions (4) and (7), we obtain

(9)

where the symbols (^) and (*) mean the integral transformation with respect to the variable  and

τ , and the parameters of the transformations are denoted by q and , respectively. And

q represents the root of the equation
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To solve the fundamental Eq. (9), we introduce the following variable and the auxiliary function 

as

(11)

(12)

Taking into account Eqs. (11) and (12), we obtain the next fundamental equation for 

(13)

where

(14)

The solution of Eq. (13) is

(15)

From Eqs. (11), (12) and (15), we obtain the next equation for 

(16)

where Jγ ( ) and Yγ ( ) are the Bessel functions of the first and second kind of order γ, respectively.

Terms A and B are unknown constants. Accomplishing the inverse Laplace transformation and the

inverse finite sine transformation on Eq. (16), the temperature solution is shown as follows:

(17)

where

(18)

where ∆ and F are the determinants of 2 × 2 matrix [aij] and [eij], respectively; the coefficients 

and  are defined as the determinant of the matrix similar to the coefficient matrix [aij], in which
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respectively. The elements of the coefficient matrices [aij], [eij] and the constant vector {ci} are

given in Appendix A. In Eqs. (17) and (18),  and qk are

(19)

and µj represents the jth positive roots of the following transcendental equation

(20)

2.2 Thermal stress analysis

We now analyze the transient thermal stress of an orthotropic functionally graded thick strip with

simply supported edges as a plane strain problem. The displacement-strain relations are expressed in

dimensionless form as follows:

(21)

where a comma denotes partial differentiation with respect to the variable that follows. Stress-strain

relation in dimensionless form is given by the following relations:

(22)

where

(23)

The elastic stiffness constants and the coefficients of linear thermal expansion in dimensionless

form are assumed to take the following forms

(24)
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,

(25)

where the Poisson’s ratios νij are assumed to be constant. Substituting Eq. (24) into Eq. (23), we

obtain the next equations.

(26)

where

(27)

In expressions (21)-(27), the following dimensionless values are introduced:

(28)

where σij are the stress components, εij are the normal strain components, γij are the shearing strain

components, (u, v, w) are the displacement components, and α0 and E0 are the typical values of the

coefficient of linear thermal expansion and the Young’s modulus of elasticity, respectively.

Substituting Eqs. (21), (22), (24) and (26) into the equilibrium equations, the displacement

equations of equilibrium are written as

(29)

(30)

The boundary conditions of lower and upper surfaces can be represented as follows:

(31)
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(33)

In expressions (33), the first term on the right-hand side gives the homogeneous solution and the

second term of right-hand side gives the particular solution. We now consider the homogeneous

solution. We express  and  as follows:

(34)

Substituting the first term on the right-hand side of Eq. (33) and Eq. (34) into the homogeneous

equations of Eqs. (29) and (30), the condition that non-trivial solutions of  exist leads to

the following equation.
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(39)

where

 (40)

In Eq. (40), j, Re[ ] and Im[ ] are imaginary unit , real part and imaginary part,

respectively. Furthermore, in Eq. (39), C1J and C2J are unknown constants.

In order to obtain the particular solution, we use the series expansions of the Bessel functions as

follows:

 (41)

 if  integer (42)
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as the following expression using Eqs. (41) and (42).
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3. Numerical results

To illustrate the foregoing analysis, numerical parameters of heat conduction and the geometry of

the strip are presented as follows:

(46)

where Ha and Hb are the Biot numbers as defined in Eq. (8),  is the aspect ratio as defined in

Eq. (8),  is the dimensionless local coordinate, and  is half of the dimensionless heating

length, respectively. We assume that the strip is heated from the lower surface by surrounding

media, the temperature of which is denoted by the symmetric function with respect to the center of

strip . The Biot numbers of the lower and upper surfaces are assumed to be same values.

The end surfaces ( ) of the strip are at zero temperature as shown in Eq. (7). The

mechanical boundary conditions have been shown in Eqs. (31) and (32).

The orthotropic and nonhomogeneous parameters adopted for the numerical calculations are

shown in Table 1. In Table 1, a is a nonhomogeneous parameter of the thermal conductivity, b is a

nonhomogeneous parameter of the coefficient of linear thermal expansion, and l is a

nonhomogeneous parameter of the elastic stiffness constant, respectively. Values given for Case 1

correspond to the results for orthotropy and nonhomogeneity of the thermal conductivity; values

given for Case 2 correspond to the results for orthotropy and nonhomogeneity of the coefficient of

linear thermal expansion; and values given for Case 3 correspond to the results for orthotropy and

nonhomogeneity of the elastic stiffness constant. The case b = 0 shows that the coefficient of linear

thermal expansions are constant, and the case l = 0 shows that the elastic stiffness constants are

constant. The case  shows that the Young’s modulus of elasticity is isotropic.

The case  shows that the coefficient of linear thermal expansion is isotropic.

The case  shows that the thermal conductivity is isotropic. As the derived solution breaks

down if l = 0 or , the nonhomogeneous parameter l is taken to be 0.01, and the Young’s

modulus of elasticity  is taken to be 1.01.
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In Figs. 2-11, the results for  correspond to the case for steady state condition. In order to

examine the influence of orthotropy and nonhomogeneity of the thermal conductivities on the

temperature, thermal displacement, and thermal stress distributions, Figs. 2-5 show the results for

Case 1, that is, for two values of nonhomogeneous parameter a and two values of the dimensionless

value . Fig. 2 shows the variation in the thickness direction at the midpoint  of the

strip. From Fig. 2, it can be seen that the temperature change on the heated surface increases when

τ ∞=

λ x0 x Lx/2=

Fig. 4 Variation of thermal stress in the thickness direction (Case 1, ); (a) Normal stress ,
(b) Normal stress 

x Lx/2= σ xx

σ zz

Fig. 2 Variation of temperature change in the thickness
direction (Case 1, )x Lx/2=

Fig. 3 Variation of thermal displacement  in the
thickness direction (Case 1, )

w
x Lx/2=
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the parameter a or  decreases. Fig. 3 shows the variation of thermal displacement  in the

thickness direction at the midpoint of the strip. As shown in Fig. 3, the displacement  changes

along the thickness direction and shows the maximum absolute value on the heated surface. It can

be seen from Fig. 3 that the absolute values of thermal displacement  increase when the

parameter a or  decreases. Fig. 4 shows the variation of thermal stresses in the thickness

direction at the midpoint of the strip. The variations of normal stresses  and  are shown in

Figs. 4(a) and 4(b), respectively. From Figs. 4(a) and 4(b), the tensile stress occurs inside the strip

in a transient state without distinction of parameter a or , while the distributions in a steady state

substantially change when the parameter a or  changes. Fig. 5 shows the variation of shearing

stress  in the thickness direction at the edge ( ) of the heated region, because the

maximum stress occurs near  inside of strip. As shown in Fig. 5, it can be seen that the

large stress occurs near the heated surface in a transient state without distinction of parameter a or

, while the distribution for the parameters  and = 0.5 differs considerably from those

for other parameters in the steady state condition.

In order to examine the influence of orthotropy and nonhomogeneity of the coefficient of linear

thermal expansions on the thermal displacement and thermal stress distributions, Figs. 6-8 show the

results for Case 2, that is, for two values of nonhomogeneous parameter b and two values of the

dimensionless value . Fig. 6 shows the variation of thermal displacement  in the thickness

direction at the midpoint of the strip. From Fig. 6, the influence of the nonhomogeneity on the

thermal displacement  in a transient state is small. While the influence of orthotropy or

nonhomogeneity on the thermal displacement  in a steady state is large. Fig. 7 shows the

variation of thermal stresses in the thickness direction at the midpoint of the strip. The variations of

normal stresses  and  are shown in Figs. 7(a) and 7(b), respectively. Fig. 8 shows the

variation of shearing stress  in the thickness direction at the edge ( ) of the heated

region. From Figs. 7 and 8, it can be seen that the absolute values of thermal stresses ,  and

 in a transient state increase when the parameter b decreases or  increases, and the
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distributions in the steady state condition substantially change when the parameters b or  change.

As shown in Figs. 7 and 8, the thermal stresses ,  and  for the parameters  and

 show the maximum values.

In order to examine the influence of orthotropy and nonhomogeneity of the Young’s modulus of

elasticity on the thermal displacement and thermal stress distributions, Figs. 9-11 show the results

for Case 3, that is, for two values of nonhomogeneous parameter l and two values of the

dimensionless value . Fig. 9 shows the variation of thermal displacement  in the thickness

α x

0

σ xx σ zz σ zx b 1–=

α x
0

2.0=

Ex0 w

Fig. 8 Variation of shearing stress  in the thickness
direction (Case 2, )
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Fig. 7 Variation of thermal stress in the thickness direction (Case 2, ); (a) Normal stress ,
(b) Normal stress 
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direction at the midpoint of the strip. From Fig. 9, the absolute values of thermal displacement 

increase when the parameters l or  decreases. Fig. 10 shows the variation of thermal stresses in

the thickness direction at the midpoint of the strip. The variations of normal stresses  and 

are shown in Figs. 10(a) and 10(b), respectively. Fig. 11 shows the variation of shearing stress 

in the thickness direction at the edge ( ) of the heated region. From Figs. 10 and 11, it can

be seen that the absolute values of thermal stresses ,  and  increase when the parameters

l or  increase. As shown in Figs. 10 and 11, the thermal stresses ,  and  for the

parameters l = 1 and = 2.0 show the maximum values.
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4. Conclusions

In the present article, we analyzed the thermoelastic problem involving an orthotropic functionally

graded thick strip that has nonhomogeneous thermal and mechanical properties in the thickness

direction. 

In the analysis, the following conditions are assumed:

(1) Thermal conductivities, the elastic stiffness constants and the coefficients of linear thermal

expansion vary exponentially in the thickness direction.

(2) The specific heat and density are constant.

(3) The edges of the strip are at zero temperature.

(4) The mechanical boundary conditions of the edges are given by Eq. (32). 

In the analysis of the heat conduction problem, the methods of Laplace and finite sine

transformations were used. We obtained the exact solution for the transient temperature and

transient thermal stresses of an orthotropic functionally graded strip with simply supported edges

due to a nonuniform heat supply in the width direction under the plane strain condition. We

conclude that the transverse shearing stress and normal stress in the thickness direction are

evaluated precisely in a transient state.
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Appendix A

(A1)

(A2)

(A3)

a11

a

2
--- 1 γ+( ) Ha+ Jγ µ( ) a

2
---µJγ 1+ µ( )–=

a12

a

2
--- 1 γ+( ) Ha+ Yγ µ( ) a

2
---µYγ 1+ µ( )–=

a21 e
a/2( )– a

2
--- 1 γ+( ) Hb– Jγ µe

a/2( )–( ) a

2
---µe

a/2( )–

Jγ 1+
µe

a/2( )–( )–

⎩ ⎭
⎨ ⎬
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=

a22 e
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2
--- 1 γ+( ) Hb– Yγ µe
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2
---µe
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Yγ 1+
µe

a/2( )–( )–

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

e11

a

2
--- 1 γ–( ) Ha––= , e12

a

2
--- 1 γ+( ) Ha––=

e21 Hb
a

2
--- 1 γ–( )– exp

a

2
--- 1 γ–( )–=

e22 Hb
a

2
--- 1 γ+( )– exp

a

2
--- 1 γ+( )–=

c1 HaTa f̂a q( )–= , c2 HbTb f̂b q( )=




