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Abstract. The paper presents a new approach for the analysis of slope stability that is based on the
numerical solution of a differential equation, which describes the thrust force distribution within the
potential sliding mass. It is based on the evaluation of the thrust force value at the endpoint of the slip
line. A coupled approximation of the slip and thrust lines is applied. The model is based on subdivision
of the sliding mass into slices that are normal to the slip line and the equilibrium differential equation is
obtained as the slice width approaches zero. Opposed to common iterative limit equilibrium procedures
the present method is straightforward and gives an estimate of slope stability at the value of the safety
factor prescribed in advance by standard requirements. Considering the location of the thrust line within
the soil mass above the trial slip line eliminates the possible development of a tensile thrust force in the
stable and critical states of the slope. The location of the upper boundary point of the thrust line is
determined by the equilibrium of the upper triangular slice. The method can be applied to any smooth
shape of a slip line, i.e., to a slip line without break points. An approximation of the slip and thrust lines
by quadratic parabolas is used in the numerical examples for a series of slopes. 
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1. Introduction

The problem of slope stability is commonly solved by assuming a slip line geometry and

subdivision of the sliding mass into vertical slices. The problem is statically indeterminate. In early

investigations (Fellenius 1936, Janbu 1954, Bishop 1955) not all the equations of equilibrium were

simultaneously satisfied. Obviously, some simplifying assumptions are needed to render the problem

into a statically determinate problem. Two basic approaches have been proposed by Morgenstern

and Price (1965) and by Spencer (1973) which satisfy both, the moment and the force equilibrium

conditions. The first method is based on the assumption of the agreed relationship between the

lateral thrust and the vertical shear forces on the side face of the slice. According to the most

popular Spencer’s method, the inclinations of inter-slice forces are defined by arbitrarily chosen

coefficients ki for each inter-slice boundary, and by an angle θ that is common to all slices. The

factor of safety F is determined through an iterative process by varying the values of θ and F until

the force and the moment equilibrium conditions are satisfied. 
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Another approach that assumes the position of the line of thrust had been developed by Janbu

(1973). In this method the thrust line is described by a collection of ordinates and inclinations for

each slice interface. The equations of horizontal and vertical equilibrium for each slice can be

satisfied only by using an iterative procedure. 

However, not only the equilibrium and boundary conditions must be satisfied, but also the implied

state of stress within the soil mass must be physically acceptable (Morgenstern and Price 1965). It is

commonly accepted that soils do not carry tension. For an arbitrarily chosen slip surface and an

arbitrarily accepted assumption about the inter-slice forces inclinations it is not possible to ensure

that tension will not be developed in the slipping medium. Therefore, in each particular case, one

must examine whether tension exists above the slip surface or not. If the thrust line falls beyond the

potential sliding mass i.e., it intersects the slip surface, tension will exist within the soil mass, and

in that case it must be concluded that the examined slip surface is not valid. 

The question of physical correctness of the results obtained by different methods for slope

stability analysis is a subject of discussion among researchers. Yang et al. (2001) states that

“assumptions in traditional limit equilibrium methods lack sound physical basis.” Leshchinsky

(1990) thinks that “satisfaction of global equilibrium for a sliding body has no guarantee that

internal static conditions will be within an acceptable range.” Sharma and Moudud (1992) consider

the limit equilibrium method as “only a ‘tool’ for the assessment of the stability of slopes” and

recommend “to pay special attention to the results with a view to ensuring that some of the physical

assumptions are not grossly violated by the analysis.” 

In all above methods, the degree of slope stability is evaluated by the magnitude of the factor of

safety determined by an iterative process. However, the soil engineer is normally interested in

evaluation of the balance between the internal forces which tend to produce failure of slope by

sliding soil mass on the one hand and the mobilized resisting shear forces along the slip surface on

the other hand. The mobilized resisting forces are calculated for a value of a factor of safety that is

prescribed in advance by standard requirements. The forces that tend to move the soil mass, as well

as the resisting forces, act in the direction of the tangent to the slip line. Therefore, it is preferable to

subdivide the soil mass into slices by sections that are normal to the slip line and to consider force

equilibrium in corresponding (normal and tangent) directions. A tendency to moving of the soil mass

can be evaluated by an analysis of the lateral thrust forces acting on the corresponding slice side

(which are parallel to the above mentioned resistance shear force, that acts on the sliding mass base). 

This paper presents a new approach for the stability evaluation of a soil mass slope that is located

over a trial smooth slip line with an in advance prescribed factor of safety. The present approach is

straightforward and does not need any iterative procedure. The stability analysis is reduced to a

numerical solution of the Cauchy problem for the second-order differential equation which is

derived from the equilibrium conditions of an infinitesimal slice as defined above. The equation

coefficients and, as a result, the solution depends on the parameters of the assumed coupled slip and

thrust lines. A thrust line is approximated by the curve, passing through a certain initial point

(which is defined by the slip line) and through the slip line endpoint. Thus the thrust line is always

located within the potential sliding mass. The assessment of slope stability is based on the analysis

of the thrust force at the endpoint of the slip line. The present method allows the analysis of

stability of slopes for any smooth shape of the slip surface (not circular only). 

In the following examples the slip surface and the thrust lines are approximated by quadratic

parabolas. The results obtained by the proposed method are compared with results presented by

other authors. 
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2. The limit equilibrium equations

The potential sliding mass (of a unit thickness) is subdivided into infinitestimal trapezoidal slices,

which are normal to the slip line as shown in Fig. 1. A vertical tension crack at the top of the slope

is assumed. The thrust line passes within the bounds of the sliding mass. The shape of the first slice

at the upper end is triangular. The slope line (external boundary of the slope cross section) and the

trial slip line are defined in a Cartesian coordinate system (Fig. 1) by the equations y = h(x) and

y = H(x), respectively. The following forces act on an infinitesimal slice, having a width δ s (see

Fig. 2): 

the normal force: E(s) = E(s) t (s), 

the shear force: T(s) = −T(s) n(s), 

the weight of the slice: ∆W(s) = ∆W(s) [t(s)sinα − n(s)cosα]. 

Here bold letters indicate vectors; t, n - are tangent and normal unit vectors of the slip line; s - is

Fig. 2 Forces acting on a typical trapezoidal slice 

Fig. 1 Discretization of the potential sliding mass 
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the line coordinate along the slip line, α - is the inclination angle of the slice base (of the slip line

at the given point) with respect to the horizontal axis x (see Fig. 1). 

Except for the upper triangular slice, all the slices are loaded at their bottom by the effective

normal stress σe(s), the shear stress τ (s), and the pore water pressure u(s). 

The equilibrium of the typical slice leads to the following vector equations: 

 (1)

 (2)

where R(s) = D(s)n(s) is a vector that passes from the slip line to the thrust line, V(s) is the height

of the slice (the depth of the sliding mass) (see Fig. 1), the symbol “×” indicates the vector cross

product operation. The weight of the slice is 

(3) 

where γ - is the unit weight of the soil mass. 

In the above, Eq. (1) expresses the force equilibrium and Eq. (2) expresses the moment

equilibrium with respect to the slice base midpoint. The shear stress acting on the slice base in the

state of limit equilibrium is defined by the Mohr-Coulomb condition 

(4)

where c - is the cohesion with respect to the effective stress, ϕ - is the angle of shearing resistance

with respect to the effective stress, F - is the factor of safety. 

In the present local coordinate system the unit vectors t (s) and n(s) are related as follows: 

 (5)

where ρ (s) - is the radius of curvature of the slip line at the current point. 
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Substituting Eqs. (3-5) into (1) and (2) and requiring δ s → 0 yields the following system of scalar

differential equations of equilibrium (the derivations are detailed in Appendix): 

(6)

(7)

Substitution of the shear force (7) into Eq. (6) yields the following equation: 

(8)

The relationships between the line coordinate s and Cartesian coordinates x and y are: 

(9)

Substitution of the relationships (9) into the Eqs. (7) and (8) yields following expressions: 
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Therefore, the final form of the differential equation of the slope limit equilibrium becomes: 

 

(12)

 

This equation is solved for any given functions D(x), H(x) and V(x) (see Fig. 1). 

The parametric form of the equation of the normal to the slip line is: 

(13)

where sinα and cosα are calculated by (9) and m - is a variable parameter. Therefore V(x) satisfies
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(14) 

In the general case this equation may be solved using numerical techniques. Assume that the slope

line is linear, i.e.,

(15)

In that case the solution of (14) is obtained in the explicit form as follows: 
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(17)

Suppose that the slip line upper boundary point is on the slope line: H(0) = 0. The following

initial conditions must fulfill at that point: 

(18) 

and from Eq. (17) the following inequality is derived: 

(19) 

It implies that there exists tension at the initial point. It is commonly accepted that soils do not

carry tension, therefore, in fact, the slip line should start only from a bottom of certain tension crack

at the slope upper point x = 0 (see Fig. 1). It should be mentioned that earlier works found it

necessary to introduce a tension crack in order to obtain a statically admissible solution (Spencer

1973, Janbu 1973, Leshchinsky 1990, Sharma and Moudud 1992). 

For further analysis of the problem, the following non-dimensional parameters are introduced: 
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 (21)

Here the primes denote the derivatives with respect to the non-dimensional coordinate ξ. 

Eq. (21) yields the distributions of the non-dimensional inter-slice lateral thrust force Ω(ξ ) for any

given smooth shape of the coupled slip Y(ξ ) and thrust Λ(ξ ) lines and for any given initial

conditions. 

3. Equilibrium of the initial upper slice

The upper triangular slice that was mentioned in the previous section with the forces acting on it

is shown in Fig. 3. In the following solution the assumption (15) of a linear slope line is adopted.

Here the vertex O is the upper boundary point of the slip line and α0 - is the upper end angle of the

slip line inclination. The slice side OA (of the length H0 − h0) coincides with the vertical crack, the

side AB lies on the slope line and the slice side OB is normal to the slip line at its upper boundary

point. The line segment OM is a median passing through the vertex O. The input geometry

parameters (see Figs. 1, 3) are the following: 
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Fig. 3 Forces acting on the upper triangular slice 
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is applied at the midpoint G of the median and its distance to the side OA is 

(24)

The inter-slice lateral force, which is normal to the side OB, is obtained by the force equilibrium

condition 

(25)

The distance D0 from the upper boundary point of the slip line to the upper boundary point of the

thrust line is obtained by the moment equilibrium condition with respect to the vertex point O as

follows: 
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A non-dimensional form of relations (25-27) is obtained by using (20) as follows: 
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4. Analysis of the slope stability

In the conventional limit equilibrium procedure, a factor of safety is obtained from the solution

with respect to the chosen slide line. In the present approach the factor of safety is prescribed in

advance to ensure the slope reliability and the slope stability is evaluated for the assumed coupled

slip and thrust lines. The analysis of slope stability is based on the solution of Eq. (21), which may

be obtained numerically for any given functions Y(ξ ) and Λ(ξ ). The endpoint coordinate ξ = ξe of

the slip line is obtained from the slope and slip lines intersection condition: 

 (30)

The boundary conditions at the upper boundary point are calculated according to Eq. (28), the

initial value of the derivative is  assumed and Eq. (21) is solved in the range .

Finally, the non-dimensional force  at the endpoint of the slip line is obtained. 

The following condition shows that the sliding mass of the slope is in a state of limit equilibrium:

(31)

The critical state is defined by the given slip and coupled thrust lines and by the prescribed factor

of safety. If the active force is smaller than the slip resistance, the analyzed soil mass is in a stable

state and 

 (32)

A criterion for the unstable state of the potential sliding mass is 

(33)

Such a criterion was applied in Ginzburg and Razdolsky (1992) while solving the slope stability

problem using simplified equilibrium equations. A similar approach was used in Takuo et al. (2000)

for a design method of slopes with a row of piles to enhance the slope stability. 

The present method is applicable to any shape of a slip line. For the following analysis the

simplest approximation (34) of the slip line by a quadratic parabola is used. In this case the only

three parameters of the slip line must be defined in advance: its upper boundary point, its

inclination at this point and its endpoint. 

(34)

Here: 

(35)

The coupled thrust line is expressed by the following quadratic parabola: 
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An upper boundary point of the thrust line is given by (28). A starting angle θ0 of the line Λ(ξ ) is

defined by the condition of coincidence of the slip line and thrust line endpoints: 

(37)

Therefore, the angle θ0 and the coefficient κΛ are given as follows: 

(38)

Note that the coupled approximation of the slip and thrust lines excludes the possible development

of tension between slices in the stable and critical states of slope. 

The proposed method consists in estimation of slope stability at the prescribed normative value of

the safety factor [F ] and is reduced to a search of a slip line which gives the least stability reserve

i.e., the greatest value . The determination of value Ωe for each step of search of

maximum  follows the straightforward method i.e., an iterative process is not needed. The

condition of the critical state is . 

5. Examples

To evaluate the proposed method of analysis, several examples are illustrated. Quadratic parabola

slip and thrust lines are assumed. The first three examples (Figs. 4-6) are intended to demonstrate

how the positions of the trial slip and thrust lines affect the stability of the soil mass above the slip

line. The chosen slope parameters are identical to those reported by Spencer (1973): 

The non-dimensional depth of the vertical crack at the slope top is Y0 − Z0 = 0.15 and the
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Fig. 4 Thrust force distribution within a soil mass in an unstable state (Ω
e  > 0) 
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prescribed factor of safety is F = 2.7. Each figure shows the slope line Z, the trial slip line Y(ξ ) and

the location of the thrust line YT (ξ ) within the slope as well as the distribution of the thrust force

Ω(ξ ). In Fig. 4 that corresponds to an initial angle α0 = 400 the final boundary thrust value is

Ωe = 0.001 > 0 and therefore the soil mass can slide along the trial slip line. The thrust distribution

in Fig. 5 (α0 = 460) corresponds to the critical state of the soil mass: Ωe = 0 (the feasible slip line).

Here the circular slip line Y#(ξ ) considered by Spencer (1973) is also shown. The factor of safety

obtained by Spencer for this line is F = 2.5. The final boundary thrust value in Fig. 6 (α0 = 550) is

Ωe = −0.053 < 0 and therefore the soil mass can not slide along the trial line. A graphical

comparison of the above trial slip lines and the thrust force distributions is shown in Fig. 7. The

initial angle of inclination α0 for each trial slip line is indicated. 

The value of the factor of safety essentially influences the thrust force distribution and thus the

stability evaluation of the soil mass laying above the trial slip line. The influence of the factor of

Fig. 5 Thrust force distribution within a soil mass in a critical state (Ω
e 
= 0) 

Fig. 6 Thrust force distribution within a soil mass in a stable state (Ω
e
< 0) 
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safety on the thrust force distribution is illustrated in Fig. 8, which corresponds to the initial slip

line inclination α0 = 460 (see also Fig. 5). The value of F = 2.2 yields Ωe = −0.039 < 0 and

corresponds to a stable state of the soil mass. Increasing the factor of safety leads to decrease in

stability of the soil mass above the trial slip line. The value of F = 2.7 corresponds to the critical

state of the soil mass (Ωe = 0) and F = 3.2 yields Ωe = 0.02 > 0 and corresponds to an unstable state.

The feasible slip lines corresponding to the critical states of the slope for the above mentioned

values of the safety factors are plotted in Fig. 9. A geometry arrangement of the slip lines shows

Fig. 7 Comparison of slip line configurations and thrust force distributions for stable, critical and unstable
states of a soil mass 

Fig. 8 Influence a safety factor on a thrust force distribution 
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that decreasing the factor of safety leads to increasing the bulk of the sliding mass above the

corresponding slip line. 

The thrust force distribution and the soil mass above the trial slip line depend on the magnitude of

the pore water pressure. Fig. 10 shows the influence of the pore water pressure on the soil mass

stability. The slip and thrust lines in this figure are the same as these shown in Fig. 6, and the

prescribed factor of safety is F = 2.7. Increasing of pore water pressure leads to slope instability.

For the pore water coefficient ru = 0 the trial line was found to be stable (Ωe = −0.053 < 0). The

values of the pore water coefficient ru = 0.25 and ru = 0.5 yield Ωe = 0 (the critical state) and Ωe =

0.045 (an unstable state), respectively. The feasible slip lines corresponding to the critical states of

Fig. 9 Feasible slip lines corresponding to different values of a safety factor 

Fig. 10 Influence a pore water pressure on a thrust force distribution 
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the slope for the above values of the pore water coefficient are plotted in Fig. 11. They all have

common upper and lower boundary points. A geometrical observation of the slip lines shows that

increasing the pore water coefficient leads to an increasing sliding soil mass above the

corresponding slip line. 

Slopes with a crack near the slope upper end were discussed in (Leshchinsky 1990, Sharma and

Moudud 1992). The soil parameters were chosen as follows: γ = 110 pcf, c = 1000 pcf, ϕ = 15o. The

vertical distance from the soil surface to the upper boundary point of the slip line is H0 − h0 = 6.5

Fig. 11 Feasible slip lines corresponding to different values of a pore water pressure 

Fig. 12 Thrust force and normal stress distributions corresponding to the critical state of a soil mass, the crack
depth is Y0 − Z0 = 0.217
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feet (the non-dimensional distance is Y0 − Z0 = 0.217) and the slope inclination is k = 0.5. The plots

of the slip and thrust lines, as well as distribution of the thrust force Ω and distribution of the

normal stress along the slip line (Φ = σe /γL) are shown in Fig. 12. The minimum value of the factor

of safety is the same as has been obtained in Sharma and Moudud (1992): F = 2.9. Fig. 13 shows

the results of the slope stability analysis for the slope with the minimal feasible depth of the crack,

which was obtained by the proposed method, that equals to Y0 − Z0 = 0.185. In this case the

minimum factor of safety is F = 3.0. The slip lines, the thrust force Ω and the normal stress Φ
distributions for both cases are shown in Fig. 14. One can see that the differences are negligible. 

Fig. 13 Thrust force and normal stress distributions corresponding to the critical state of a soil mass for the
minimum value of crack depth Y0 − Z0 = 0.185 

Fig. 14 Comparison of slip line configurations and thrust force and normal stress distributions corresponding
to different values of the crack depth 
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One of the existing approaches to analyze slope stability considers the slip mass as a whole and

assumes that the normal stress distribution along the slip line is a quadratic curve (Yang et al.

2001). It is interesting to compare values of the factor of safety (Yang et al. 2001) with the

minimum values obtained by the present method for several slopes. The slope properties are the

following: the height is 20 meters, the soil unit weight is 17.66 kN/m3, the internal friction angle is

20o, and the cohesion is 9.81 kPa. The non-dimensional depth of the vertical crack at the top of the

slope is Y0 − Z0 = 0.1. The minimum factors of safety for the slopes with initial inclination angles

Fig. 15 Thrust force and normal stress distributions corresponding to the minimum value of a safety factor,
slope angle inclination β = 25o

Fig. 16 Thrust force and normal stress distributions corresponding to the minimum value of a safety factor,
the slope angle inclination β = 45o
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25o and 45o that were obtained by the present method are F25 = 1.52 and F45 = 0.775. (Note, that a

slope with F < 1 is unstable). The corresponding values obtained by Yang et al. are F25 = 1.9744 and

F45 = 1.1301. The plots of the slip and thrust lines, as well as distribution of the thrust force Ω and

distribution of the normal stress along the slip line (Φ = σe/γL) for the slopes with initial inclination

angles 25o and 45o are shown in Figs. 15-16, respectively. 

6. Conclusions 

A method for slope stability analysis, which is based on the coupled approximation of the slip and

thrust lines is presented. The differential equation describing the thrust force distribution has been

derived. It is based on subdivision of the sliding mass into differential slices, normal to the slip line,

and applying the equilibrium requirements. Analysis of the equilibrium equation shows that the

slide line can start only from a point, located within the sliding mass at some distance below the

slope top surface. Therefore an initial crack at the top of the sliding mass is necessary to initiate the

slide process. A thrust line within the soil mass above the trial slip line excludes the possible

development of tension between slices in the stable and critical states. The coordinates of the thrust

line upper boundary point are obtained by equilibrium of the upper triangular slice. Contrary to the

conventional iterative limit equilibrium procedure, the factor of safety in the present method is

prescribed in advance to ensure the slope reliability, and then the slope stability is checked for the

given slip and thrust lines. Slope stability analysis is based on a numerical solution of the above

mentioned equation and on the analysis of the thrust force at the slip line endpoint. The present

method is applicable to any smooth shape of the slip line. For the above numerical examples, this

shape was chosen as a quadratic parabola. The analysis of several slopes that were considered

previously by other authors has been carried out utilizing the present method and comparison of the

obtained results demonstrates the present method correctness and physically significance. 
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Notation

c : cohesion with respect to the effective stress; 
c

*
: non-dimensional cohesion; 

D : distance between the thrust and slip lines (length of vector R – see Fig. 1); 
E : total lateral thrust on the side face of the slice (see Fig. 2); 
F : factor of safety; 
h(x) : equation of the slope line (external boundary of the slope cross section); 
H(x) : equation of the potential slip line; 
k : inclination of the slope line; 
L : basic linear dimension; 
n : normal unit vector of the slip line (see Fig. 1); 
r

u
: pore water coefficient; 

R : vector that passes from the slip line to the thrust line; 
s : line coordinate of the slice along the slip line (see Fig. 1); 
t : tangent unit vectors on the slip line (see Fig. 1); 
T : shear force on the side face of the slice (see Fig. 2); 
u : pore water pressure (see Fig. 2); 
V : height of the slice (see Fig. 1); 
x, y : Cartesian coordinates; 
Y, Z : non-dimensional coordinates of the slip and slope lines; 
α : inclination of the slice base with respect to the horizontal axis (see Fig. 2); 
ϕ : angle of shear resistance with respect to the effective stress; 
Φ : non-dimensional effective normal stress; 
γ : unit weight of the soil; 
∆W : weight of the slice (see Fig. 2); 
Λ : non-dimensional length of the vector R; 
θ0 : initial angle of the line Λ(ξ ) inclination; 
ρ : radius of curvature of the slip line; 
σ

e
: effective normal stress at the bottom of a slice (see Fig. 2); 

τ : shear stress at the bottom of the slice (see Fig. 2); 
Ω : non-dimensional total lateral thrust; 
ξ : non-dimensional linear coordinate. 

Appendix: Interim transformations preceeding the equilibrium Eqs. (6)-(7)

The Eqs. (6)-(7) is derived from Eqs. (1)-(2) as a result of the follows transformations: 
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where notation (a, b) shows a scalar product of vectors a and b
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