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1. Introduction 

In recent years, intelligent structures and smart systems have become a hot topic. Piezoelectric

and magneto-electro-elastic materials have been widely used to make various transducers and

actuators and have important applications in high technology. For piezoelectric materials, Lee and

Jiang (1994) obtained the fundamental solutions by employing the double Fourier transform, Sosa

and Castro (1994) also gave the solutions for a point force applied vertically on the boundary of a

piezoelectric half-plane. Ding et al. (1998a,b) derived a general solution in terms of three harmonic

functions and studied the Green’s functions for a two-phase infinite plane using the method of trial-

and-error. Ding et al. (1998c) constructed the fundamental solutions following the general solution

in terms of harmonic functions, and performed the numerical examples by the corresponding

boundary element method.

Recently, more and more attention has been paid to magneto-electro-elastic materials. Pan (2001)

derived the exact three-dimensional solution of a simply supported, multi-layered rectangular plate

under static load. Pan (2002) presented 3D Green’s functions for an-isotropic full space, half space,

and bi-materials based on the extended Stroh formalism. Pan et al. (2002) extended the analytical

method of Pan (2001) to the free vibration of three-dimensional, linear an-isotropic, simply

supported, and multi-layered rectangular plates. Wang and Shen (2002) obtained the general

solution expressed by five potential functions, which was then applied to find the fundamental

solution for a generalized dislocation. Hou et al. (2003) analyzed the elliptical Hertzian contact of

transversely isotropic magneto-electro-elastic bodies by virtue of the general solution that was

expressed in terms of five harmonic functions. Ding and Jiang (2003) obtained the fundamental

solution of infinite magneto-electro-elastic solid in five harmonic functions, derived the boundary

† Associate Professor, Corresponding author, E-mail: jam@vip.sina.com
‡ Professor

DOI: http://dx.doi.org/10.12989/sem.2005.20.2.259



260 Aimin Jiang and Haojiang Ding 

integral formulation and performed two numerical calculations.

In this paper, the basic equations of 2D magneto-electro-elastic media are established on the basis

of the constitutive equations and the assumption of plane-strain, and the work of Ding et al.

(1998a,b,c) is generalized to the magneto-electro-elastic half-plane problem. Firstly, by virtue of the

strict differential operator theory, the general solution for the case of distinct material eigenvalues is

derived, which is expressed in terms of four harmonic functions. Then, based on the obtained

general solution along with the trial-and-error method, the Green’s functions for point forces, point

charge and point current acting in interior of a magneto-electro-elastic half-plane are systematically

derived. Finally, the fundamental solutions and the corresponding boundary integral formulation are

given and numerical examples are presented. It is shown that our fundamental solutions are not only

easy to understand and convenient to check, but also very simple and uniform that can be widely

used.

2. Governing equations and the general solutions  

The basic equations of transversely isotropic magneto-electro-elastic bodies can be found in Pan

(2001) and Ding et al. (2003). If the displacements ui, the electric potential Φ and the magnetic

potential Ψ are independent of y, then we will have the so-called plane-strain problem. If xoy plane

is selected to be the isotropic plane, the basic equations for two-dimensional magneto-electro-elastic

solid in absence of body forces, free electric charge and free magnetic charge in the (x, z)

coordinates can be simplified as follows:

(1)

 (2)

With the method and the strict differential operator theorem presented by Ding et al. (1998a,b),

the general solutions for Eqs. (1), (2) in the case of distinct eigenvalues can be derived as follows:
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where , and the generalized displacements and stresses are defined as follows:

(4)

The functions ψj satisfy the following equations:

 (5)

where  and  are the four roots of the equation (we take Re(sj) > 0)

(6)

where kmj and ωmj in Eq. (3) and an in Eq. (6) are the same as those derived by Hou et al. (2003).

3. Green’s functions for magneto-electro-elastic half-plane

Taking the origin of the coordinates at the straight linear boundary of the half-plane with x axis is

along with the straight line and z axis pointed inwards. Point forces, point charge and point current

are assumed be applied at the point (0, h), the boundary conditions (z = 0) can be known as

 (7)

For the sake of convenience, we introduce a series of denotations:

 (8)

3.1 Green’s functions to the problem of combination of point force Pz in z direction, point

charge Q and point current J
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Considering the continuity condition of u at z = h yields

 (11)

Considering the equilibrium of the elastic strip cut by two lines of , where ε can be

arbitrary value, gives three additional equations:

 (12)

where, . 

It is shown that the combination of Eqs. (11) and (12) will give constants Aj. Substituting Eq. (10)

into the boundary condition (7) gives the equations to determine the constants Ajk as follows

 (13)

 (14)

3.2 Green’s functions to the problem of point force Px  in x direction

Assuming the displacement functions ψj are:

(15)

where Ej and Ejk are arbitrary constants to be determined. Substituting Eq. (15) into (3) yields

(16)

Consideration of the continuity of wm at z = h yields

(17)

Just like that in the previous section, the whole balance condition of the elastic strip cut by two

lines of z = h ± ε gives 
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Then we can solve constants Ej by combining Eqs. (17) and (18). Further, substituting Eq. (16) into

the boundary condition (7), we get the equations to determine that constants Ejk as follows:

(19)

(20)

Taking Px = 1, Pz = Q = J = 0 or Pz = 1, Px = Q = J = 0 or Q = 1, Px = Pz = J = 0 or J = 1, Px = 0,

Pz = Q = 0, we can derive the fundamental solutions for a magneto-electro-elastic half-plane.

4. Boundary integral formulation

Let S be the boundary of the domain Ω of a magneto-electro-elastic half-plane. The boundary

conditions are expressed by 

St:σijnj = ;   Su:ui = ;   Sω:Dini = ;   SΦ:Φ = ;   Sη:Bini = ;   SΨ:Ψ = (21)

where ti represent the surface tractions, ω is the surface charge, η is the surface magnetic induction.

With the extended Somigliana equation, the boundary integral formulation is obtained:

 (22)

where C is the coefficient matrix, and the generalized displacement vector u, surface traction vector

t as well as body force b are

, , (23)

The two matrices U* and T* in Eq. (22) are composed of fundamental solutions 

(24)

4.1 Examples

A magneto-electro-elastic half-plane with a circular hole of radius r (r = 1), which is centered at

point (0, h). Assume there is uniform radial load all around the hole:
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As we know, when , the problem above becomes as an infinite magneto-electro-elastic

plane with a circular hole with uniform radial load all around, so it can be used to verify our

derived fundamental solutions and boundary element method. The displacement, stresses, electric

displacement and magnetic induction of the point (r, h) (when , it corresponds to the center

(r, 0) of an infinite plane) are tabulated in Table 1 for case of the same material constants in Ding

(2003). It can be found that the numerical results become closer to those of infinite plane problem

as h get larger.
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h ∞→

h ∞→

Table 1 Numerical results by BEM

h u σ
z

D
z

B
z

σ
x

10 0.90165E-11 0.82548E+00 −0.45736E-11 −0.61201E-08 −0.99432E+00

20 0.89269E-11 0.76866E+00 −0.10048E-10 −0.61683E-08 −0.99531E+00

30 0.89155E-11 0.75950E+00 −0.11055E-10 −0.61738E-08 −0.99547E+00

∞ 0.89073E-11 0.75885E+00 −0.11064E-10 −0.61768E-08 −0.99559E+00




