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Mode III fracture analysis of piezoelectric materials 
by Trefftz BEM
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Abstract. Applications of the Trefftz boundary element method (BEM) to anti-plane electroelastic
problems are presented in this paper. Both direct and indirect methods with domain decomposition are
discussed in details. Each crack is treated as semi-infinite thin slit defined in a subregion, for which a
particular solution of the anti-plane problem, satisfying exactly the crack-face condition, is derived. The
stress intensity factors defined at each crack tip can be directly computed from the coefficients of the
particular solution. The performance of the proposed formulation is assessed by two examples and
comparison is made with results obtained by other approaches. The Trefftz boundary element approach is
demonstrated to be suitable for the analysis of the anti-plane problem of piezoelectric materials.
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1. Introduction 

During the past decades Trefftz approach, introduced by Trefftz (1926), has been considerably

improved and has now become a highly efficient computational tool for the solution of complex

boundary value problems. For the Trefftz boundary element method, Cheung et al. (1989)

developed a direct formulation for solving two-dimensional potential problem. Kita et al. (1999)

studied the same problem by the direct formulation and domain decomposition approach. Portela

and Charafi (1997) applied Trefftz Boundary element formulation to potential problems with thin

internal or edge cavities. Sladek et al. (2002) presented a global and local Trefftz boundary integral

approach to solve Helmholtz equation. Domingues et al. (1999) extended the Trefftz boundary

element approach to the analysis of linear elastic fracture mechanics. Recently, Qin (2003) applied

trefftz finite element method to anti-plane problems of piezoelectric materials. Most of the

developments in the field can also be found in (Kita 1995, Qin 2000). 

In the present paper, we confine our attention to the applications of Trefftz boundary element

method to anti-plane electroelastic problems which is different from the Trefftz finite element

method presented in our previous work (Qin 2003). Both direct and indirect methods are discussed

in details. Special functions that satisfy traction-free conditions along crack faces are used as trial

functions for those subdomains containing a crack. Numerical results to mode III problem obtained

by the Trefftz BEM are compared with those obtained from other approaches.
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2. Basic formulations for anti-plane problem

2.1 Basic equations

In the case of anti-plane shear deformation involving only out-of-plane displacement uz and in-

plane electric fields, we have

(1)

where φ is electrical potential. The differential governing equation can be written as

in Ω (2)

with the constitutive equations

(3)

or

(4)

where c44 is an elastic stiffness constant measured in a constant electric field while κ11 stands for

the dielectric constant measured at constant strain, e15 is the piezoelectric constant, +

 is the two-dimensional Laplace operator σxz and σyz, are the shear stresses, Dx and Dy are the

x- and y-components of electric displacement, γxz, γyz and Ex, Ey are, respectively, shear strains and

electric fields given by

(5)

The constants s44, g15 and λ11 are defined by the relations:

(6)

The boundary conditions of the boundary value problem (1)-(5) can be given by:

(7)

(8)
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(9)

(10)

where  are , respectively, prescribed boundary displacement, traction force, surface

charge and electric potential, an overhead bar denotes prescribed value, Γ = Γu + Γt = ΓD + Γφ is the

boundary of the solution domain Ω.

It is obvious from Eq. (2) that it requires

(11)

to have a non-trivial solution for the out-of-plane displacement and in-plane electric fields. It results

in 

(12)

2.2 Trefftz functions

It is well known that the solutions of the Laplace Eq. (12) may be found using the method of

variable separation. By this method, the Trefftz functions are obtained as Qin (2000)

(13)

(14)

for a bounded region and 

 (15)

 (16)

for an unbounded region, where r and θ are a pair of polar coordinates. Thus, the associated T-

complete sets of Eqs. (13)-(16) can be expressed in the form

(17)

(18)

2.3 Particular solution for a subdomain containing angular corner

It is well known that singularities induced by local defects such as angular corners, cracks, and so

on, can be accurately accounted for in the conventional FE or BEM model by way of appropriate

Dn Dini ωn– Dn on ΓD= = =

φ φ on Γφ=

u t ωn, , φ

c44κ11 e15

2
0≠+

∇2
uz 0, ∇2

φ 0==

uz r θ,( ) r
m

amcosmθ bmsinmθ+( )
m 0=

∞

∑=

φ r θ,( ) r
m

cmcosmθ dmsinmθ+( )
m 0=

∞

∑=

uz r θ,( ) a0
* a0lnr r

m–
amcosmθ bmsinmθ+( )

m 1=

∞

∑+ +=

φ r θ,( ) c0
* c0lnr r

m–
cmcosmθ dmsinmθ+( )

m 1=

∞

∑+ +=

N 1 rcosθ rsinθ … r
m

cosmθ r
m

sinmθ …,, , , , ,{ } Ni{ }= =

N 1 lnr r
1–
cosθ r

1–
sinθ … r

m–
cosmθ r

m–
sinmθ …, , , , , , ,{ } Ni{ }= =



228 Qing-Hua Qin

local refinement of the element mesh. However, an important feature of the Trefftz method is that

such problems can be far more efficiently handled by the use of particular solutions (Qin 2000). In

this sub-section we will show how particular solutions can be constructed to satisfy both the

Laplace Eq. (12) and the traction-free boundary conditions on angular corner faces (Fig. 1). The

derivation of such functions is based on the general solution of the two-dimensional Laplace

equation:

(19)

(20)

Appropriate trial functions for a sub-domain containing a singular corner are obtained by

considering an infinite wedge (Fig. 1) with particular boundary conditions prescribed along the sides

θ = ±θ0 forming the angular corner. The boundary conditions on the upper and lower surfaces of the

wedge are free of surface traction and surface charge:

(21)

This leads to

(22)

Considering the symmetry of free boundary condition on x1-axis of the singular corner and the

different properties of sin- and cos- functions, which should depend on different variables in order

to satisfy the same boundary conditions, introduce a set of new constants βn and rewrite the general

solutions (19) as
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Fig. 1 Typical subdomain containing a singular corner
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where λn and βn are two sets of constants which are assumed to be greater than zero. Differentiating

the solution (23) and substituting it into Eq. (22) yields

 

 

(24)

Since the solution must be limited for r = 0, we should specify

(25)

From Eq. (24) it can be deduced that

(26)

leading to

(27)

(28)

Thus, for an element containing an edge crack (in this case θ0 = π), the solution can be written in

the form

(29)

where  and 

It is obvious that the displacement function (29) includes the term proportional to r1/2, whose

derivative is singular at the crack tip. The solution for the second equation of (22) can be obtained

similarly and denoted as

(30)

Thus, the associated T-complete sets of Eqs. (29) and (30) can be expressed in the form

(31)
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fields near crack-tips using various numerical methods such as conventional FEM and boundary

element method. These procedures are usually complicated and time-consuming as they cannot

calculate the SIF directly from basic variables like the coefficients di and ei. But in the light of the

special purpose function for crack-tip element, it can be easily to obtain local field distribution in

crack problem, such as stress and electric displacement fields. Hence, high efficiency in solving

singular problem by HTBE approach is the attractive possibility of straightforwardly by evaluating

SIF KIII and KD from di and ei, which are associated with the singular factors in particular solutions

(29) and (30). To show this, considering the r−1/2 type of stress singularity the corresponding SIF

KIII can be defined as

(32)

and when θ = 0

(33)

Substituting Eqs. (4), (5), and (29) into Eq. (33), we have

(34)

When the cracks tip is defined at the origin of the polar coordinate system (see Fig. 1), Eq. (34)

can be written as

 (35)

Substituting Eq. (35) into Eq. (34), it can be obtained the expression of stress singular factor

(36)
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3. Indirect formulation

In the indirect method, the unknown displacement uz and electric potential φ are approximated by

the expansions as

(40)

where Ni is taken from Eq. (17) for subdomains without crack or Eq. (31) for the remaining, and c

denote the unknown vector. Using the definitions (3), (5), (8) and (9), the generalized boundary

force and electric displacements can be given by

(41)

With the expressions above, the indirect formulation corresponding to the anti-plane problem can be

expressed by

(42)

where wi (i = 1-4) are arbitrary weighting functions and uz, φ, t, Dn have the series representations

(40) and (41). If we use Galerkin method, the weighting functions are chosen as arbitrary variations

of the expressions (40) and (41), that is:
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Substituting Eq. (43) into Eq. (42), yields
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It is noted that the formulation above applys only to the solution domain containing one semi-

infinite crack when the particular solution (31) is used as the weighting function. For multi-crack

problem, the domain decomposition approach is required. In this case, the solution domain is

divided into several sub-domains (Fig. 2). For example, the domain containing two cracks can be

divided into four sub-domains (Fig. 2), In the figure, Ωi (i = 1-4) denote the sub-domains, Γ outer

boundary, and ΓIij the inner boundaries between sub-domains. For each sub-domain, the indirect

method leads to
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On the inner boundary ΓIij, the continuity conditions provides

(48)

where the subscript I stand for the inner boundary, and superscript i (or j) means the ith (or jth)

subdomain. Eqs. (47) and (48) can be used to solve multiple crack problems.

4. Direct formulation

The Trefftz direct formulation is obtained by considering (Cheung et al. 1989, Kita et al. 1999)
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Performing the integration by parts and taking the expression (40) as weighting function, that is:
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boundary Γ is divided into m linear elements, for which uz, t, φ, and Dn are approximated by

(53)

where uzi, ti, φ, and Dn are, respectively, their values at node i. s > 0 in the element located at the

right of the node i, s < 0 in the element located at the left of the node. Fi(s) is a global shape

function associated with the ith-node. Fi(s) is zero-valued over the whole mesh except within two

elements connected to the ith-node (see Fig. 3). Since Fi(s) is assumed to be linear within each

element, it has below three possible forms:

(54)
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Having performed discretion above, yields

Gu = Ht (58)

Applying the boundary conditions, we have

(59)

or simply

Kx = f (60)

The direct formulation above is only suitable for single crack problem. For multi-crack problem, as

was treated in Section 3, the domain decomposition approach is used to convert it into several

single crack problems. For a particular single crack problem with sub-domain i (see Fig. 2), Eq. (60)

becomes

in Ωi (61)

While on the inner boundary ΓIij, the continuity condition is again defined in Eq. (48).

5. Numerical example 

As a numerical illustration of the proposed formulation, two simple examples are considered. In

order to allow for comparisons with analytical results, which appeared in (Zhou and Wang 2001,
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Fig. 4 Configuration of the cracked infinite piezoelectric medium
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Qin 2003), the obtained results are limited to a central cracked piezoelectric plate (Qin 2003) and a

piezoelectric strip with two collinear cracks along the x-axis of the strip (Zhou and Wang 2001). In

all the calculations, The PZT-5H piezoelectric ceramic materials is used, the material constants of

which are (Qin 2001) c44 = 3.53 × 1010 N/m2, e15 = 17.0 C/m2, κ11= 1.51 × 10−8 C/(Vm), Jcr = 5.0 N/m

where Jcr is the critical energy release rate.

Example 1: we consider an anti-plane crack of length 2c embedded in an infinite PZT-5H

medium which is subjected to a uniform shear traction, , and a uniform electric

displacement,  at infinity (see Fig. 4). In the Trefftz BE calculation, only one half of the

geometry configuration shown in Fig. 5 is used due to the symmetry of the problem and a typical

boundary element mesh is shown in Fig. 6. The energy release rate for PZT-5H material with a

crack of length 2c = 0.02 m and a/c = 14 is plotted in Fig. 7 as a function of electrical load with the

mechanical load fixed such that J = Jcr at zero electric load. The results are compared with those

σzy τ∞=

Dy D∞=

Fig. 5 Geometry of the cracked solid in numerical
analysis

Fig. 6 A typical boundary mesh (32 elements)

Fig. 7 Energy release rate in cracked PZT-5H plate (a/c = 14, N/m2 and 32 elements)τ
∞

4.2 10
6

×=
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from Qin (2003). It is found from Fig. 7 that the energy release rate can be negative which means

the crack growth may be arrested. It can also be found that there is a good agreement between two

approaches although only 32 boundary elements have been used in the calculation. The energy

release rate appeared in Fig. 7 was defined by Qin (2001)

(61)

with

(62)

The boundary effect should be studied since we use a rectangular domain with side length 2a (see

Fig. 5), rather than the infinite domain. The boundary effect is investigated by using different ratios

of a/c (= 6, 10, 14, and 18). Numerical results of J/Jcr for different a/c are listed in Table 1. We

found that the accuracy of the results is adequate when a/c is great than 14.

To study the convergent performance of the proposed formulation, numerical results of J/Jcr for

different element meshes 24, 32, 48, 64, and 128 boundary elements are presented in Table 2 that

the h-extension performs very nicely, and Table 3 shows the results of KIII /KIIIS and KD /KDS for the
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Table 3 h-convergence study for KIII /KIIIS and KD /KDS for the central cracked piezoelectric 
  plate (a/c = 14, )
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element meshes above. It also shows a good convergent performance, where (Qin 2001)

(63)

with 

(64)

Table 4 shows the results of J/Jcr obtained from both the indirect method and the direct method. It

indicates that they have similar convergent performance. Therefore both of them are suitable for

anti-plane fracture analysis although the values of J/Jcr obtained from the indirect method are

slightly larger than those from the direct method.

Example 2: Consider a piezoelectric strip of width 2h(h = 2) which has an infinite extent in the

y-z direction (see Fig. 8). Two collinear impermeable throuth cracks of equal length (1 − b) along

the x-axis (Zhou and Wang 2001). Here 2b is the distance between the two cracks. All two cracks

are perpendicular to the edges of the strip. Assume that the strip be subjected to a constant shear

stress, σ32 = −τ0, over the surface of the two cracks. 

Owing to the symmetry of the problem only one half of the geometry configuration shown in Fig. 9

is analyzed and each subdomain (Ω1 or Ω2) is modelled by 64 boundary elements. 

KIIIS c44Kγ e15KE–=  KDS e15Kγ κ11KE+=,

K
γ

κ11τ∞ e15D∞+

c44κ11 e15

2
+

---------------------------------- πc, KE

c44D∞ e15τ∞–

c44κ11 e15

2
+

--------------------------------- πc= =

Table 4 J/Jcr for the central cracked piezoelectric plate from the two methods  (a/c = 14,
  )

Approach
Number of variables

48 64 96 128

Indirect method 1.5988 1.5924 1.5907 1.5901

Direct method 1.5961 1.5913 1.5901 1.5894

D
∞

2 10
3–

C/m
3
, and τ

∞
4.2 10

6
N/m

2
×=×=

Fig. 8 Two cracks in a piezoelectric strip under anti-
plane loading

Fig. 9 Geometry of the two crack system in the
Trefftz boundary element analysis
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Figs. 10 and 11 display the variation of Kinn/τ0 and Kout/τ0 with the crack distance b, where c, Kinn

and Kout are defined by Zhou and Wang (2001):

It can be seen from Figs. 10 and 11 that the results from the present Trefftz BEM are in good

agreement with analytical ones (Zhou and Wang 2001) when the crack distance b is greater than

0.4. However, discrepancy between the two methods will increase along with an decrease in b when

b is less than 0.4. This indicates that edge effect will become important when the ratio of crack

length (1 − b) to the distance from the crack tip to the edge of the subdomain (b here) is great than

1.5, i.e., (1 − b)/b > 1.5. This result can help us to select the rational size of a subdomian when

using the proposed formulation.

6. Conclusions

The Trefftz boundary element formulation for analysing anti-plane problems of piezoelectric

materials has been developed. Special purpose functions for subdomians with a semi-infinite crack,

satisfying exactly the crack-face condition, is proved to be useful in analysing stress singularity due

to local effects. On the basis of the formulas presented in the paper and the Trefftz finite element

model in Qin (2003), the energy release rate J/Jcr has been calculated and compared each other. The

discrepancy between the two models is within 4%. The convergent performance of the proposed

formulation was studied using several boundary element meshes and the results converge gradually

to a certain value when the mesh density is increased. The results also show that the boundary

effect can be ignored when a/c is great than 14. It can be seen from Table 4 that both the indirect

method and the direct method have similar convergent performance and thus are suitable for anti-

plane fracture analysis. The example for multi-crack problem is also considered here. The study

shows that both the present Trefftz BEM and analytical solution (Zhou and Wang 2001) can

provide almost the same results when the crack distance b is greater than 0.4. 

c 12, Kinn 2π b x+( )σ32 x 0,( )
x b

+

→

lim= , Kout 2π 1 x+( )– σ32 x 0,( )
x 1–

 –

→

lim==

Fig. 10 Kinn /τ0 vs crack distance b Fig. 11 Kout/τ0 vs crack distance b
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